AUTHOR=Hao Jianwen , Wang Hongguo , Zhang Xiaoning , Lin Tao , Jiang Xiufeng , Liu Congcong , Li Xiangyang TITLE=Dynamic resilient modulus of subgrade silty clay for heavy-haul railway: an experimental investigation and the predicted method JOURNAL=Frontiers in Earth Science VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2023.1276116 DOI=10.3389/feart.2023.1276116 ISSN=2296-6463 ABSTRACT=

A large-scale series of cyclic triaxial tests were conducted to explore the evolution of the dynamic resilient modulus of silty clay for the heavy-haul railway subgrade. A novel loading sequence for measuring the dynamic resilient modulus was established, which characterized the dynamic stress state of the subgrade induced by the heavy-haul train load. In the experimental investigation, the deviatoric stresses, confining stress, initial moisture content, and compaction degree were considered as variables, and the effects of the aforementioned variables were evaluated quantitatively. The experimental results showed that the dynamic resilient modulus was negatively related to deviatoric stresses and initial moisture content, where the average decreased rates were 14.65% and 27.79% with the increase in deviatoric stresses from 60 kPa to 150 kPa and increase in the initial moisture content from 9.8% to 15.8%, respectively. Furthermore, the dynamic resilient modulus was positively related to confining stress and compaction degree, where the average increased rates were 23.25% and 27.48% with the increase in confining stress from 20 kPa to 60 kPa and increase in compaction degree from 0.91 to 0.95. To provide a better application, the two high-accuracy predicted methods were established through the empirical model and artificial neural network approach including the aforementioned variables. This study can provide useful guidelines for the effective and safe design of the heavy-haul railway subgrade filled with silty clay.