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The identification of ancient landslides has become a challenging task due to the
long-term reconstruction and sediment cover, which obscure the original
geomorphic characteristics of these landslides. To address this issue, a
comprehensive remote sensing identification model, known as GTVI, is
developed using the Object Based Image Analysis (OBIA) based on multi-
source and high-resolution remote sensing data in the Dadu River Basin. The
study reveals significant differences in texture, hue, shape, and adjacency topology
between ancient landslides and reactivated landslides. The gray level co-
occurrence matrix entropy (GLCM), terrain roughness index (TRI) and
vegetation index (NDVI) effectively capture the information related to ancient
landslides. The feasibility of the GTVI (GLCM and Terrain roughness and
Vegetation index) model is confirmed through field investigations and remote
sensing image analysis of typical landslides, demonstrating its high accuracy. This
research provides a valuable method and technical reference for the rapid
identification of ancient landslides in plateau canyon areas.
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1 Introduction

The eastern margin of the Tibetan Plateau is well known for its high topographic relief,
intense endogenous and exogenous geological processes, and extreme climatic conditions.
This region also has a vast number of well-developed ancient landslides that pose a
significant risk of reactivation (Ren et al., 2021; Yang et al., 2021; Zhang et al., 2023).
Accurate identification of these ancient landslides is essential for studying their reactivation
mechanisms and for risk prevention (Dong et al., 2022; Guo et al., 2023; Xu et al., 2023). It
plays a crucial role in the research and prevention system of landslide disasters.

However, ancient landslides have undergone long-term geological processes, and their
original appearance characteristics are unclear, making it difficult to quickly and accurately
identify them in practice (Zhang et al., 2015; Xu, 2020; Cui et al., 2023). Remote sensing
identification of reactivated landslides can achieve over 80% accuracy due to the significant
spectral differences between the landslide area and the surrounding environment (Ji et al.,
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2020). However, for ancient landslides, their spectral characteristics
do not differ significantly from the surrounding environment,
making automatic identification more difficult. Even for ancient
landslides in the Loess Plateau with relatively obvious geomorphic
features, the current identification accuracy is only 60%–70%
(Xu, 2020). Identification of ancient landslides in the deep valley
area on the eastern margin of the Tibetan Plateau is even more
difficult and less accurate due to the complex terrain and
vegetation cover.

In recent years, the development of high-resolution
multisource remote sensing techniques has provided the
possibility to solve these problems (Keyport et al., 2018). The
integration of various information extraction and multiscale
segmentation techniques to quickly and accurately extract
quantitative information from a large amount of remote sensing
data (such as high spatial, high spectral, high radiometric, and high
temporal resolution images) has become a hot topic (Lu et al.,
2011; Bruzzone et al., 2013). Martha et al. (2010) considered the
spectral, geomorphological, and spatial information of landslides
and used multispectral images and multiscale segmentation
techniques to identify landslides in the Mandakini River in
India. Daniel et al. (2012) classified landslides in northwestern
Italy based on SPOT-5 and DEM data using an object-oriented
semi-automatic analysis method. However, current research has
mainly focused on the identification of reactivated landslides based
on significant spectral and textural features, with relatively less
research on the identification of ancient landslides that have
spectral characteristics similar to those of their surroundings.

In this paper, we applied an Object Based Image Analysis
method (OBIA) to analyse the characteristics of landslides in the
Dadu River Basin on the eastern margin of the Tibet Plateau using
multi-source high-resolution remote sensing data (Landsat, ZY-3
satellite images, and UAV images). We established a comprehensive
remote sensing identification model (GTVI, GLCM and Terrain
Roughness and Vegetation Index) for ancient landslides in the deep
valley area, significantly improved the efficiency and accuracy of
landslide remote sensing information extraction.

2 Data and methods

2.1 Data selection and preprocessing

The Dadu River Basin is characterized by complex topography
and landforms, with a maximum elevation of 4260 m and a
minimum elevation of 1940 m, resulting in a relative elevation
difference of up to 2300 m. This makes it a typical deep valley
landscape. The area consists of various types of exposed rock
formations, including metamorphic rocks, igneous rocks,
sedimentary rocks, and Quaternary loose deposits. Geological
hazards occur mainly in the Quaternary breccia deposits and soft
metamorphic rocks such as quartzite and slate. The intersection of
the NW-trending Xianshuihe Fault Zone and the NE-trending
Longmenshan Fault Zone in the study area contributes to intense
tectonic activity and frequent landslide disasters. This area exhibits
characteristics such as multiple occurrence points, wide distribution,
and sudden onset, which pose significant risks (Figure 1).

The study utilized several basic data sources, including SRTM
DEM data with a resolution of 30 m, ZY-3 DOM data with a
resolution of 2 m, Landsat 8 OLI data (path 131, row 39)
acquired on 25 December 2017, and small-scale UAV images
acquired in August 2019. Landsat data were used to interpret the
distribution of landslides, while high-resolution remote sensing
images from ZY-3 and UAV were employed to analyze the
detailed characteristics of landslides. To ensure accurate spatial

FIGURE 1
Distribution map of landslides in the study area.

FIGURE 2
Landslide information extraction using the OBIA method.
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and spectral information of the remote sensing data, the Landsat
8 images were pre-processed using ENVI 5.3 and ArcGIS
10.2 software. This included radiometric calibration, atmospheric
correction, geometric correction, mosaicing, and image cropping
prior to performing the OBIA classification.

2.2 Object based image analysis method

OBIA is a classification method that takes into account spatial,
textural, and spectral features to classify remote sensing images. It
effectively addresses issues encountered in traditional pixel-based
classification methods, such as “same object, different spectra” or
“same spectra, different objects.” OBIA offers advantages such as
high interpretation accuracy and the ability to eliminate speckle
noise (Martha et al., 2012; Scaioni et al., 2014; Patil et al., 2020). The
OBIA data processing workflow is illustrated in Figure 2. Image
segmentation and feature selection are critical steps in landslide
information extraction using OBIA, as they determine the efficiency
and accuracy of landslide information extraction (Tian et al., 2007).

2.2.1 Image segmentation
The choice of the segmentation scale has a significant impact on the

classification accuracy (Woodcock et al., 1987; Hölbling et al., 2012;
Wang et al., 2015). In this study, the local variance method (Eq. 1) was
employed as an effective measure to evaluate the quality of the image.
To estimate the scale factor, a scale parameter estimation tool was
utilized (Lee et al., 2003; Jacquin et al., 2008). This tool automatically
calculated the local variance (LV) for each segmented object at the
corresponding segmentation scale. The optimal segmentation scale was
determined by analysing the dynamic rate of change of LV, known as
ROC, as shown in Eq. 2 (Lucian et al., 2011).

vL � 1
N
∑N
i�1

x − �x( )2 (1)

In Eq. 1, vL represents the local variance, which is a measure of
the variation in grayscale values within a segmented object. The
variable x refers to the grayscale value of a pixel within the object. By
calculating the local variance using Eq. 1, we can assess the level of
variation in pixel values within each segmented object, which helps
evaluate the quality of the image segmentation.

ROCL � L − L-1( )
L-1

[ ]*100 (2)

According to Eq. 2, L and L-1 represent the LV values
corresponding to the current segmentation scale layer and the
next segmentation scale layer, respectively. The ROC curve is
used to determine the optimal segmentation scale, with the peak
point on the curve indicating the reference value for the optimal
scale factor.

Based on Figure 3, which provides information on the ROC
curve, the potential optimal scale factors for the study area are 30, 50,
70, and 95. Taking into consideration factors such as terrain,
landforms, and landslide characteristics, a scale factor of 50 is
chosen. Additionally, a shape factor of 0.4 and compactness
factor of 0.5 are selected.

The region growing and merging algorithm for multiscale
segmentation based on the principle of minimizing heterogeneity
adopts a spectral criterion and a shape criterion in segmentation to
determine the degree of homogeneity (f) of individual pixels and
neighboring pixels in an image (Eq. 3) (Baatz et al., 1999).

f � w · hspectal + 1 − w( ) · hshape (3)

In Eq. 3, hspectal denotes the spectral discreteness criterion,
i.e., spectral feature heterogeneity, hshape denotes the shape
discreteness criterion, i.e., shape feature heterogeneity, and w is
the user-defined spectral weight with respect to the shape, 0≤w≤1.

The compactness heterogeneity indicates the compactness of the
area after merging (Eq. 4),

hcmpct � l�
n

√ (4)

In Eq. 4, l is the actual boundary length of the image object, and n
is the number of image elements composing the image object.

Smoothness heterogeneity indicates the boundary smoothness
of the merged region (Eq. 5),

hsmooth � l

b
(5)

In Eq. 5, l is the actual boundary length of the image object, b is
the shortest possible boundary length of the image object.

The shape factor is then calculated by the above two criteria
(Eq. 6).

FIGURE 3
Multiscale segmentation and optimal segmentation scale selection. (A) The level of multiscale segmentation. (B) Relationship curve between ROC
and LV.
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hshape � w · hcmpct + 1 − w( ) · hsmooth (6)

With these parameters, the segmentation objects obtained are of
moderate size, with minimal internal spectral differences and clear
boundaries between different categories. This selection aims to
balance the spatial geometric distribution characteristics of
landslides with capturing local details, thereby facilitating the
extraction of landslide information.

2.2.2 The selection of attribute features
After performing multiscale segmentation, we obtain several

homogeneous image objects with strong homogeneity. To
extract the desired information, we select attributes of the
image objects, including spectral features, shape features,
texture features, and terrain features (Martha et al., 2010; Rau
et al., 2014).

The aim of this study is to select the most suitable attribute
features for landslide information extraction from the
11 classification features presented in Table 1. The selection
principle is based on the samples of each category and the initial
feature set. The aim is to find the combination of features that
maximizes the average distance and minimizes the distance between
categories, resulting in an optimal separation distance. This optimal
feature set will be used for classification.

Using the “Feature Space Optimization” tool, we determined the
following optimal attribute features that are suitable for landslide
information extraction in the study area: NDVI, brightness value
(BI), aspect ratio, topographic roughness index (TRI), elevation,
gray-level cooccurrence matrix (GLCM entropy all dir), and slope.
These seven features were selected to establish the feature space of
the objects, as shown in Figure 3.

2.2.3 Extraction of landslide information
After selecting the object features, we use the assignment

algorithm to statistically determine threshold ranges for each

feature of landslides based on the feature value window
(Figure 4). Then, the thresholds for different attribute features
are determined according to the optimal attribute features,
resulting in the extraction of landslide candidate areas (Figure 5).
Comparing Figures 5A, B, it can be observed that the landslide
candidate areas are mainly distributed along both sides of the river,
which indicates a satisfactory overall extraction effect, as shown in
Figure 5C.

It is important to note that due to the image segmentation
process, there are multiple image objects of the same category within
the landslide candidate areas. As a result, there are numerous blocks,
messy boundaries, and high computational complexity, which are
not conducive to result analysis. In addition, roads, buildings,
shadows, and other features have high similarity to landslide
information in terms of spectral, morphological, and background
aspects (Figure 5B). Therefore, it is necessary to combine high-
resolution remote sensing images with field surveys for verification.
The scattered small patches need to be integrated and smoothed to
allow a more accurate classification of the images based on real
conditions (Figure 5C).

3 A comprehensive remote sensing
identification model for ancient
landslides

There are significant differences in the characteristics of ancient
landslides and reactivated landslides. Ancient landslides, which
occurred a long time ago, typically have a relatively smooth
surface and high vegetation cover. In contrast, reactivated
landslides have a rough surface, and the vegetation that was
damaged by the landslide has not yet fully recovered within a
short period of time. As a result, remote sensing identification of
ancient landslides is more challenging than that of reactivated
landslides.

TABLE 1 Common image attribute classification features.

Attribute features Name Define and characterize object features

Apectral features NDVI The ratio of the difference between the reflection value in the near-infrared band and the reflection value in the
red band, and the sum of the two

Mean The spectral mean corresponding to a certain layer

Brightness value (BI) The sum of the spectral mean values of the spectral layers divided by the number of spectral layers (if the loose
rock and soil mass of the landslide is exposed, the brightness is greater)

StdDev Calculated from the spectral brightness and spectral mean of the object layer, the standard deviation of the
landslide object is small

Shape features Aspect ratio The Aspect ratio of landslide is generally large

destiny The compactness of the image object

Texture features GLCM: entropy If the value distribution in GLCM is relatively uniform, the value will be higher

GLCM: contrast Reflecting the clarity of the image and the depth of the texture stripes

Terrain features Slope The steepness of the surface

Elevation The distance from the perpendicular direction of a certain point to a hypothetical level

Topographic Roughness
Index (TRI)

The ratio of surface area to projected area of surface units indicates that the surface roughness in landslide areas
is relatively high
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To improve the accuracy of ancient landslide identification, it is
essential to construct a comprehensive remote sensing identification
model specifically designed for ancient landslides. This can be achieved
through a comparative analysis of the attribute characteristics of ancient

landslides and reactivated landslides. By identifying the key differences
in attribute characteristics between these two types of landslides, the
remote sensing model can be tailored to effectively distinguish between
them and accurately identify ancient landslides.

FIGURE 4
Optimal attribute feature layer and threshold selection.

FIGURE 5
Landslide extraction results in eCognition view. (A) Remote sensing images. (B) Preliminary identification results of ancient landslides, red represents
the landslide range. (C) Landslide extraction results.
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3.1 Differences in attribute characteristics
between ancient landslides and reactivated
landslides

Based on the field survey, a comparative analysis of sample
information (Table 2) between ancient landslides and reactivated
landslides reveals significant differences in terms of texture, hue,
morphology, and critical topology. Specifically, there are noticeable
differences in attributes such as the vegetation index (NDVI),
brightness index (BI), terrain roughness index (TRI), and gray-
level co-occurrence matrix entropy (GLCM).

To provide a more intuitive representation of these differences,
we remove the unit constraints of the different attributes. This allows
for a weighted comparison of indicators with different units or
scales. The attribute characteristics of the selected samples from
ancient landslides and reactivated landslides are then normalized
using Eq. 7, which helps standardize the data for analysis and
comparison purposes. By normalizing the attribute values, we can
effectively compare and evaluate the differences between ancient
landslides and fresh landslides in a more meaningful way.

x* � x − x min

x max − x min
(7)

TABLE 2 Sample objects of the ancient landslide and the reactivated landslide.

Object NDVI Aspect ratio Elevation Slope GLCM(Entroy all dir) TRI Brightness

1 0.3464 2.644 2683.4 17.63 7.667 1.051 881.31

2 0.2842 3.547 2216.57 34.41 7.015 1.223 857.1

3 0.3439 2.175 2498.76 24.14 7.806 1.099 879.4

4 0.3218 1.292 2203.39 18.96 7.51 1.049 840.06

5 0.3494 1.835 2872.14 21.07 7.902 1.09 886.93

6 0.2686 1.68 2115.94 28.11 7.71 1.142 852.79

7 0.3181 1.679 3004.8 18.99 7.891 1.059 987.02

8 0.3453 1.411 2475.51 9.12 7.396 1.013 1003.41

9 0.3831 2.585 2132.24 21.46 8.371 1.081 875.65

10 0.3565 1.192 2140.02 18.22 7.429 1.047 937.11

11 0.3334 1.632 2668.01 16.99 7.681 1.047 868.07

12 0.3555 1.219 2805.85 21.96 7.757 1.087 963.44

13 0.3274 1.048 2745.07 34.91 7.302 1.235 873.53

14 0.3379 2.123 2378.12 22.91 7.397 1.087 937.93

15 0.3665 1.302 3159.47 21.96 7.652 1.083 894.74

16 0.1485 3.288 2093.17 27.98 6.023 1.175 1112.01

17 0.2036 1.366 2055.35 23.15 7.013 1.098 892.03

18 0.0492 4 1904.69 8.849 6.716 1.058 1164.86

19 0.2314 1.833 2779.27 39.38 5.57 1.296 1224.07

20 0.276 1.667 2164.04 27.38 7.103 1.129 944.13

21 0.1698 1.163 2124.93 39.05 6.316 1.299 1158.51

22 0.1134 3.948 2077.6 42.15 6.739 1.355 999.89

23 0.2186 1.048 2295.22 40.2 5.773 1.316 1194.71

24 0.2362 1.619 2657.6 41.69 7.754 1.369 1118.73

25 0.2733 2.561 2727.71 32.77 6.942 1.242 1147.46

26 0.2174 2.472 2467.98 52.64 6.711 1.668 1352.28

27 0.2878 4.33 3033.79 40.57 6.466 1.331 1156.87

28 0.1928 2.076 2918.01 34.89 5.269 1.303 1315.99

29 0.2102 1.685 3072.02 39.82 6.632 1.307 1109.44

30 0.2727 3.967 3082.18 47.97 4.757 1.569 1390.72
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In Eq. 3, x* represents the normalized attribute feature value,
xmin denotes the minimum value of the attribute feature, and xmax

represents the maximum value of the attribute feature.
After the attribute feature values are normalized according to Eq.

3 and scaled them proportionally to the specified range [0, 1], they
are transformed into dimensionless numerical values. Statistical
analysis is then performed on the attribute features of the
selected samples (Figure 6). The analysis reveals significant
differences between ancient landslides and reactivated landslides
in attributes such as NDVI, GLCM, TRI, and BI.

For ancient landslides, the normalized values of NDVI and
GLCM are relatively high, ranging from [0.8, 1]. This indicates
that ancient landslides have a higher vegetation index and higher
gray-level co-occurrence matrix entropy than reactivated
landslides. On the other hand, the normalized values of NDVI
and GLCM for reactivated landslides are relatively low, ranging
from [0, 0.6], indicating lower vegetation cover and less texture
complexity.

In contrast, the normalized values of TRI and BI for reactivated
landslides are higher than those for ancient landslides. This indicates
that reactivated landslides exhibit more terrain roughness and
brightness than ancient landslides. The normalized values of TRI

and BI for ancient landslides are concentrated around [0, 0.2], with
only a few exceeding 0.2, indicating relatively smoother terrain and
lower brightness.

These findings highlight the different attribute characteristics
between ancient landslides and reactivated landslides, and provide
insights that can be further utilized for the accurate identification
and differentiation of these types of landslides using remote sensing
techniques.

3.2 A remote sensing identification model
(GTVI)

Ancient landslides and reactivated landslides exhibit significant
differences in attributes such as NDVI, GLCM, TRI, and BI, as
shown in Figure 6. Since both BI and NDVI represent spectral
characteristics, but NDVI provides more meaningful data, NDVI is
selected as one of the factors for the identification model. When
considering the analysis of the original attribute features in Table 2,
it can be observed that the numerical values of NDVI and GLCM
differ by an order of magnitude. However, both attributes
consistently demonstrate differences between the two types of

FIGURE 6
Distribution of ancient landslides and reactivated landslides based on object attribute features.

FIGURE 7
Frequency density function of IGTVI values corresponding to the pixels of ancient and reactivated landslides.
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landslides: reactivated landslides have lower values, while ancient
landslides have higher values.

To enhance the clustering characteristics between ancient
and reactivated landslides, a modification is proposed. The
attribute values of NDVI are multiplied by 10 and then
summed with the GLCM attribute values. This modification
aims to provide a clearer separation between the two types of
landslides. In contrast, the TRI values exhibit differences that are
opposite to those of NDVI and GLCM. To further enhance the
clustering and differentiation in the identification model, the TRI
values are subtracted.

The final GTVI (GLCM and Terrain roughness and Vegetation
index) model is given by Eq. 8:

GTVI � ValueGLCM + ValueNDVI × 10 − ValueTRI (8)
To validate the clustering performance of the model, a quality

function IGTVI is constructed based on the GTVI model. The IGTVI
values are then normalized using Z-score standardization on the
model data. Eq. 9 for obtaining IGTVI is as follows:

IGTVI � GTVI − GTVIave
GTVIσ

(9)

GTVIave is the average value of GTVI, that is:

GTVIave � GTVIx1 + GTVIx2 +/GTVIxn
n

(10)

GTVIσ is the square root of the sample variance, that is:

GTVIσ � sqrt s2( ) (11)
In Eqs. 10, 11, n represents the total number of samples, and s

represents the sample standard deviation.
To provide a more intuitive understanding of the attribute

differences between reactivated landslides and ancient landslides,
the analysis focuses on the pixels within the landslide samples. The
maximum value, mean value, variance, and standard deviation of
these sample pixels are calculated.

To visualize the distribution of the IGTVI values of the sample
pixels in the Dadu River Basin, a histogram is plotted. This
histogram represents the number of pixels corresponding to
different IGTVI values in both the ancient and reactivated
landslide areas (Figure 7). The analysis reveals that the
frequency distribution of the pixel counts for both reactivated
landslides and ancient landslides approximately follows a
Gaussian distribution.

To further analyze and quantify this distribution, MATLAB is
used to fit the frequency count data of pixel counts. The results, as
shown in Figure 7, indicate that the frequency counts of pixel counts
for both reactivated landslides and ancient landslides conform to a
normal distribution. This means that the frequency density
functions of the sampled pixels can be obtained for both types of
landslides. By obtaining the frequency density functions, it becomes
possible to analyze and compare the distribution characteristics of
the IGTVI values in reactivated landslides and ancient landslides
more precisely.

FIGURE 8
Landslide results extracted by the OBIA method. (A) The Suopo landslide group. (B) The Jiaju Landslide Group.

TABLE 3 Attribute features of typical objects in the Suopo landslide group.

Attribute object NDVI Aspect ratio Elevation Slope GLCM(Entroy all dir) TRI Brightness

Chanong landslide 0.1594 3.522 2086.76 29.92 6.087 1.167 1107.01

Songda landslide 0.2551 1.383 2180.95 23.84 7.133 1.296 1147.07

Suopo landslide 0.3538 1.684 2884.34 22.57 7.892 1.091 887.73

Moluo landslide 0.3036 1.593 3004.72 19.73 7.887 1.064 986.51

Zegong landslide 0.3158 1.367 2192.16 22.31 7.904 1.049 979.39
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f i( ) � 1
0.5738

���
2π

√ e−
i+0.9590( )2
2×0.57382 i ∈ −3.0, 1.0[ ] (12)

f j( ) � 1
0.3642

���
2π

√ e−
j−0.9669( )2
2×0.36422 j ∈ −0.5, 2.5[ ] (13)

The obtained correlation coefficient (R2) from fitting a Gaussian
curve to the pixels of ancient landslides is 0.8876, while for
reactivated landslides, it is 0.8041. In addition, the frequency of
reactivated landslides having IGTVI ≤ 0 is 96.1%, while the frequency
of ancient landslides having IGTVI ≥ 0 is 99.5%. These results
indicate that the clustering effect of the GTVI model is very
good, implying that distinguishing ancient landslides from
reactivated landslides based on the GTVI model has good
statistical significance.

3.3 Verification of the remote sensing
identification model

In general, remote sensing data can be effectively utilized for the rapid
detection and identification of reactivated landslides. This is because there
are usually significant spectral differences between landslide areas and
their surrounding environments (Ji, 2012). However, the accurate
identification of ancient landslides can be challenging due to various
factors, such as long-term transformation or sediment deposition. These

factors often make the spectral characteristics of ancient landslides being
less distinct from their surroundings.

To overcome these challenges and achieve accurate
identification, the GTVI model needs to be analyzed in
conjunction with typical examples. Therefore, in this study, the
Suopo landslide group and the Jiaju landslide group are selected as
representative cases. These landslide groups contain both
reactivated landslides and ancient landslides. To conduct a
comprehensive analysis of the landslides, remote sensing
information is combined with field investigations (Figure 8).

3.3.1 Case study analysis
1) The Suopo landslide group

The Suopo landslide group is located 3 km south of Danba
County town upstream of the Dadu River. It consists of several
individual landslides, including the Suopo landslide, Chanong
landslide, Moluo landslide, Songda landslide, and Zegong
landslide (Figure 8A). Table 3 provides the attribute values of
these typical landslides in the Suopo landslide group.

The attribute values show that the NDVI, GLCM, and TRI
values vary significantly among the different landslides. The
Chanong and Songda landslides have relatively lower NDVI and
GLCM values, while their TRI values are comparatively higher.
Further field investigation revealed several characteristics of these

FIGURE 9
Remote sensing interpretation and field verification of the Suopo landslide group. (A) and (B) The Chanong landslide. (C) and (D) The Songda
landslide.
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landslides. The Chanong and Songda landslides exhibit severe
destruction of surface vegetation, loose soil, and clear signs of
recent activity. This suggests that they are reactivated landslides.
On the other hand, the Moluo, Suopo, and Zegong landslides have
abundant vegetation cover on their slopes and do not show clear
topological relationships with the surrounding areas. These
characteristics indicate that these landslides are ancient landslides
(Figure 9).

2) The Jiaju landslide group

The Jiaju Landslide Group is located in Niela Township, Danba
County, in the upstream area of the Dadu River. It is approximately

6 km away from the county town and consists of several individual
landslides, including the Jiaju, Niela, Hanei, and Nading landslides
(Figure 8B). Table 4 provides the attribute characteristics of these
typical landslides in the Jiaju landslide group. The attribute values
show remarkable differences among the landslides. Specifically, the
Niela landslide exhibits significantly smaller NDVI and GLCM
values than the other landslides. On the other hand, its TRI
value is relatively larger.

Field investigations were conducted to further understand the
characteristics of the landslides. The results indicate that the Niela
landslide is a reactivated landslide. This conclusion is supported by
the lower NDVI and GLCM values, which indicate less vegetation
cover and less texture variation within the landslide area. Moreover,

FIGURE 10
Remote sensing interpretation and field verification of the Jiaju landslide group.

FIGURE 11
IGTVI values of reactivated landslide and ancient landslide pixels. (A) The Suopo landslide group. (B) The Jiaju Landslide Group.

TABLE 4 Attribute features of typical objects in the Jiaju landslide group.

Attribute object NDVI Aspect ratio Elevation Slope GLCM(Entroy all dir) TRI Brightness

Niela landslide 0.1943 1.632 2168.04 27.38 5.570 1.299 999.44

Jiaju Landslide 0.3568 1.208 2139.52 18.50 7.431 1.054 936.03

Hanei landslide 0.3216 1.370 2223.16 19.70 7.404 1.065 839.76

Nading landslide 0.3387 2.119 2497.83 23.85 7.432 1.099 942.38
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a higher TRI value indicates a higher degree of surface roughness,
which is commonly associated with reactivated landslides. In
contrast, the other landslides in the Jiaju Landslide Group exhibit
typical features of ancient landslide landforms. These characteristics,
combined with field observations, suggest that the Jiaju, Hanei, and
Nading landslides are ancient landslides rather than reactivated
landslides (Figure 10).

3.3.2 Result analysis
Applying Eqs. 3–7 to the landslide pixels extracted from Table 3

and Table 4 and plotting the histogram of the number of pixels
corresponding to IGTVI values (Figure 7), several observations can
be made.

First, it is evident that the IGTVI values for reactivated landslides
are generally less than 0, while the IGTVI values for ancient landslides
are generally greater than 0. This distinction in IGTVI values between
reactivated and ancient landslides highlights the potential of the
GTVI model to differentiate between these two types of landslides
(Figure 11).

Second, the pixel distribution of reactivated and ancient
landslides follows an approximately normal distribution. This
statistical characteristic further validates the reliability of the
GTVI model based on attributes such as GLCM, NDVI, and TRI.
The normal distribution of pixel values suggests that these attributes
effectively capture the differences between reactivated and ancient
landslides, allowing for accurate classification using the GTVI model
(Figure 11).

Based on these observations, it can be concluded that the GTVI
model provides a solid basis for distinguishing between reactivated
and ancient landslides. The model’s reliance on attributes such as
GLCM, NDVI, and TRI, combined with the statistical characteristics
exhibited by the IGTVI values, enhances its reliability and accuracy in
landslide classification.

4 Conclusion

Based on the analysis of multi-source and high-resolution remote
sensing data in theDaduRiver basin, the study applied theObject Based
Image Analysis (OBIA) method to conduct attribute analysis of
landslides. Vegetation indices (NDVI), terrain roughness index
(TRI), and gray-level co-occurrence matrix entropy (GLCM) were
used as indicators to establish a comprehensive identification model
for ancient landslides, known as the GTVI model. The following
conclusions were drawn from the study:

1) The optimal scale factor for landslide information extraction in
the Dadu River basin was determined to be 50, with a shape
factor of 0.4 and compactness factor of 0.5, using ROC-LV curves
and OBIA technology.

2) Statistical analysis of landslide attribute characteristics revealed
significant differences between ancient landslides and reactivated
landslides in terms of texture, hue, shape, and adjacency
topology. Based on these differences, the GTVI model was
established using NDVI, TRI, and GLCM as basic indicators.

3) The reliability of the GTVI model in identifying ancient
landslides was confirmed through field investigations of
typical landslides and analysis of remote sensing image

features. The model demonstrated the ability to discriminate
between reactivated and ancient landslides based on their
attribute characteristics. This finding provides a valuable
method and technological reference for the rapid
identification of ancient landslides in deep valley areas.
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