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Building extraction from high-resolution remote sensing images is widely used in
urban planning, land resource management, and other fields. However, the
significant differences between categories in high-resolution images and the
impact of imaging, such as atmospheric interference and lighting changes,
make it difficult for high-resolution images to identify buildings. Therefore,
detecting buildings from high-resolution remote sensing images is still
challenging. In order to improve the accuracy of building extraction in high-
resolution images, this paper proposes a building extraction method combining a
bidirectional feature pyramid, location-channel attention feature serial fusion
module (L-CAFSFM), and meticulous feature fusion module (MFFM). Firstly,
richer and finer building features are extracted using the ResNeXt101 network
and deformable convolution. L-CAFSFM combines feature maps from two
adjacent levels and iteratively calculates them from high to low level, and from
low to high level, to enhance the model’s feature extraction ability at different
scales and levels. Then, MFFM fuses the outputs from the two directions to obtain
building features with different orientations and semantics. Finally, a dense
conditional random field (Dense CRF) improves the correlation between pixels
in the output map. Our method’s precision, F-score, Recall, and IoU(Intersection
over Union) on WHU Building datasets are 95.17%、94.83%、94.51% and 90.18%.
Experimental results demonstrate that our proposedmethod has a more accurate
effect in extracting building features from high-resolution image.
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1 Introduction

With the rapid development of sub-meter-level high-resolution earth observation
satellites, it has become possible to obtain high-resolution images of the surface over a
large area. Buildings are one of the most common and essential elements of the earth’s
surface (Cai, et al., 2021; Sheikh, et al., 2022; Yuan and Mohd Shafri, 2022; Zhang, et al.,
2022). Building detection from remote sensing images has been widely used in urban
development planning, land development and utilization, post-disaster damage assessment,
and other fields. Factors such as the size, shape, texture difference, cloud occlusion, surface
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material reflection, and shadow of buildings in remote sensing
images can reduce the accuracy of building detection. Improving
the accuracy of building detection has essential application value and
practical significance for urban 3Dmodeling, map updating, disaster
assessment, etc (Bauchet, et al., 2021; Chen and Sun, 2022; Fang,
et al., 2022; Hou, et al., 2022; Yang, et al., 2022).

Traditional methods of extracting buildings from remote
sensing images mainly rely on manually extracted features, such
as brightness, texture, shape, and prior knowledge. (Lin and Zhang,
2017) proposed an object-based morphological building index
(OBMBI) by comprehensively using image segmentation and
graph-based mathematical morphology top-hat reconstruction
technology, using image segmentation to obtain objects and
establish topological relationship diagrams between objects. The
feature function of the graph is created using the brightness value
feature of the object, and a bidirectional mapping relationship
between the pixels, objects, and graph nodes is established.
Morphological building index maps are generated using top-hat
reconstruction techniques. But this method is only suitable for
remote sensing images with a resolution better than 1 m. (Ma,
et al., 2019) proposed a new morphological attribute building
index (MABI), which establishes morphological attribute filters
(AFs) with the building features of the input images (Such as
high local contrast, internal homogeneity, shape, and size) and is
used for image segmentation to obtain building regions with high
homogeneity. However, this method’s segmentation standard
deviation threshold must be manually set. (Zhang, et al., 2019)
used a novel rotation uniform invariant local binary pattern
algorithm to obtain low-density feature maps and use mean
shifts to extract building edges. This method can accurately
segment the boundary of simple buildings, but the detection
effect could be better when there are many buildings and
complex scenes. (Wang, et al., 2019) proposed the Adaptive
Morphological Attribute Profile under Object Boundary
Constraint (AMAP-OBC) method under the constraints of
building boundaries and combined with Morphological Attribute
Profiles (MAPs). In the preprocessing step, candidate object sets are
extracted through MAPs. Secondly, the candidate object set is
processed by AMAP-OBC to obtain the initial building set.
Finally, the building sets are segmented using an adaptive
threshold to obtain final building extraction results. However, the
morphological property profile of this method is challenging to
obtain in advance.

Because traditional building extraction methods for high-
resolution remote sensing images often rely on low-level features,
and the means of describing and representing building features are
single and specific, it is challenging to extract the features of different
types of buildings (Borba, et al., 2021; Xiao, et al., 2022). In fact,
traditional building extractionmethods are not universal and cannot
meet the needs of most scenes. Assuming that the high-level
semantic features of high-resolution remote sensing images are
utilized, along with their low-level features (Xie, et al., 2020;
Tian, et al., 2022), such as shape, texture, brightness, and
contour, different levels of features are fused, which can improve
the accuracy of building extraction.

In recent years, deep learning technology has led the continuous
in-depth application and expansion of artificial intelligence in
different industries and fields, especially in computer vision

(Chen, et al., 2022a; Shi, et al., 2022; Wei, et al., 2022). The
reason is that deep learning can manipulate data or symbols to
form different levels of features to recognize patterns, model
approximate functions in the data or symbols, and interpret and
understand what people see. Deep learning, as a learning
mechanism, writes rules for specific patterns or defines symbols
for fuzzy concepts through self-supervised learning of large amounts
of data. Therefore, image-building extraction can define and
describe a pattern or concept from many images (Abdollahi,
et al., 2020; Li, et al., 2020a; Saini, et al., 2021; Chen, et al.,
2022b; Yan, et al., 2022; You, et al., 2022).

Some researchers have used deep learning methods to segment
buildings in high-resolution remote sensing images, significantly
improving detection accuracy. Yu, et al. (2021) proposed the
Capsule Feature Pyramid Network (CapFPN), which utilizes the
characteristics of the feature pyramid and fuses the features of the
capsule network at different levels. CapFPN can extract features with
high resolution and intrinsic solid semantics, effectively improving
the extraction accuracy of pixel-level buildings. (Zhu, et al., 2021)
used Multi Attending Path Neural Network (MAP-Net) to learn
multi-scale features in feature space. They use an attention module
to adaptively compress the features of each channel, which is used to
fuse multi-scale features. Then, global dependency can be captured
using a pyramid spatial pooling module to optimize discontinuous
buildings. (Zhu, et al., 2018) used a Bidirectional Feature Pyramid
Network (BFPN) to fuse feature maps of different scales and
enhance the feature encoding ability. The above methods use the
feature pyramid structure to extract and fuse multi-scale features.
However, the feature information extracted by a single feature
pyramid network must be more prosperous, and the model’s
ability to perceive features needs to be improved.

The attention mechanism is widely used in the field of image
processing, inspired by the research on human attention. In image
analysis, the attention mechanism can focus on important feature
information with high weight and ignore irrelevant information
with low weight. (Guo, et al., 2020) proposed a U-Net building
extractionmethod with attentionmodules andmultiple losses. It can
improve the model’s sensitivity through the attention module and
suppress the background influence of irrelevant feature areas.
However, as a fully supervised method, it relies on many manual
label samples. (Das and Chand, 2021) proposed Attention Building
Net (ABNet), which utilizes a convolutional attention module with a
channel and spatial attention mechanism to focus on essential
features selectively. Building boundaries can be accurately
extracted because it improves the overall feature representation.
However, this method needs to pay attention to the correlation
between features of different levels and scales, resulting in poor
detection in complex scenes. (Cai and Chen, 2021) designed a
downsampling module combining separable convolution and
channel attention to extract features from the input graph.
However, single-channel attention only pays attention to the
channel information of features and needs help to obtain good
feature space information. (Li, et al., 2020b) used a convolutional
neural network to extract pixel-level building shadows and used
conditional random fields (CRF) as post-processing optimization
experimental results, which achieved good results. However, CRF
needs to use the correlation between pixels; there is still room for
improvement.
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The above scholars have provided different methods to improve
the model network and attention mechanism. However, some
methods still need to be improved, such as insufficient extraction
of features from a single model, insufficient attentional fusion, and
failure to consider correlations between features in neighboring
hierarchies. In response to these issues, this paper designs the
location-channel attention feature serial fusion module
(L-CAFSFM) and the meticulous feature fusion module (MFFM)
in the bidirectional feature pyramid network. First, based on the
ResNeXt101 network, combined with deformable convolution, a
group of feature maps with different levels and resolutions is
generated. Then, the L-CAFSFM is used to iteratively calculate
the two adjacent feature maps from low level to high level and
from high level to low level. MFFM is used to fuse the output of two
directions. Finally, Dense Conditional Random Field (Dense CRF) is
applied to optimize the results and output the prediction image.

2 Methodology

In this section, we will elaborate on our method. First, the overall
network structure diagram is introduced. Then, the Location-
Channel Attention Feature Serial Fusion module (L-CAFSFM),
Meticulous Feature Fusion module (MFFM), and loss function
are introduced in detail.

2.1 Model overview

Traditional neural network models want to improve accuracy by
deepening or widening the network. However, with the increase of
super parameters (such as the number of channels and convolution
size), the difficulty of network design and computational expense
will increase. ResNext deep neural network can improve the
accuracy without increasing the complexity of the parameters
and also reduce the number of super parameters. Based on
VGG/ResNets’ duplicate layer strategy and split transform merge
strategy, the ResNext101 network proposes an aggregate
transformations method, which uses a parallel stack of blocks
with the same topology structure to replace the original ResNets’
three-layer convolutional block. The model’s accuracy is improved

without significantly increasing the number of parameters. At the
same time, because of the same topology, the super parameters are
reduced accordingly.

Traditional convolution kernels’ size is usually fixed (e.g., 3 × 3,
5 × 5, 7 × 7). They have poor adaptability to changes in unknown
objects and weak generalization ability. Deformable convolution
introduces a learnable offset in the receptive field so that the
receptive field becomes a polygon, which is no longer limited to
a square, and can extract more accurate features at different levels.
Therefore, we use the ResNeXt101 network (Xie, et al., 2017)
combined with deformable convolution (Dai, et al., 2017) to
extract feature maps of different scales and levels of the input image.

The network structure diagram proposed in this paper is shown
in Figure 1.

High-level features contain rich semantic information about
buildings, and low-level feature maps have fine local detail features
of buildings. Inspired by the article (Zhu, et al., 2021), we
concatenate adjacent high-level features with low-level features
and input them into the L-CAFSFM for computation. Two
different directions are used to calculate semantic information
iteratively: one is from high-level to low-level, and the other is
the opposite, to obtain multi-scale information in different
directions and levels. Then, MFFM fuses the outputs from both
directions. Finally, dense conditional random field (Dense CRF)
improves the correlation of each pixel in the output image to obtain
a building prediction map.

2.2 Location-channel attention feature serial
fusion

Attention mechanisms can focus on the more critical
information of the current task in a large amount of information,
reduce attention to other information, and even filter out irrelevant
information to improve the efficiency and accuracy of task
processing. The attention mechanism is widely applied in
computer vision fields such as image segmentation and
classification and is roughly divided into three categories: spatial,
channel, and spatial-channel hybrid attention. SE (Squeeze-and-
Excitation) attention (Jie, et al., 2017) is typical channel attention,
which only considers the internal channel information and ignores

FIGURE 1
The overall structure of the network. Deform Conv denotes deformable convolution, Concat denotes concatenating, and Up denotes upsampling.
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the importance of location information. BAM(Bottleneck Attention
Module) (Park, et al., 2018) and CBAM(Convolutional Block
Attention Module) (Woo, et al., 2018) try to introduce location
information by global pooling on channels, but they can only
capture local information instead of long-range dependent
information. The self-attention is an improvement of the
attention mechanism, which reduces the dependence on external
information and is better at capturing the internal correlation of
features. However, when using the self-attention mechanism to
encode the information about the current position, the model
will excessively focus on its own position.

Given the above attention mechanism problems, we introduce
coordinate attention and Swin Transformer Block to build the
Location-Channel Attention Feature Serial Fusion module
(L-CAFSFM). Coordinate attention can improve the ability to
obtain location information and channel information and reduce
the loss of channel information and location information caused by
downsampling operations (Hou, et al., 2021). Swin Transformer
Block can capture the internal correlation of location and channel
information and improve the network’s sensitivity to information
(Liu, et al., 2021). The L-CAFSFM is shown in Figure 2.

L-CAFSFM can be divided into feature location enhancement
and feature channel information optimization.

2.2.1 Feature location enhancement
In the feature location enhancement step, the Coordinate

Attention Block calculates the input feature map. Coordinate
attention captures feature details across channels and includes
feature orientation and location information. It enables the
model to locate and identify target regions more accurately and
enhances the model’s feature expression capabilities. Coordinate
attention can take an arbitrary X � [x1, x2, . . . , xC] ∈ RC×H×W as

input and transform it into Y � [y1, y2, . . . , yC] ∈ RC×H×W, which is
output with the same size and the same channel as X.

Coordinate attention encodes channel relationships and long-
term dependencies with precise location information and can be
divided into coordinate information embedding and attention
generation. The structure of coordinate attention is shown in
Figure 3.

In the coordinate information embedding module, global
average pooling is performed respectively on the horizontal and
vertical directions of the input feature map so that the attention
module can capture the interaction information in different
directions and different spaces. Specifically, for the input feature
X, the pooling kernels of size (1, W) and (H, 1) are used to encode
along the vertical and horizontal directions, respectively, so the
output of the c-th channel at height h is:

Yh
c h( ) � 1

W
∑

0≤ i<W xc h, i( ) (1)

the output of the c-th channel at height h is:

Yw
c w( ) � 1

W
∑

0≤ i<W xc w, i( ) (2)

By aggregating features along two spatial directions, a pair of
direction-aware feature maps can be obtained, enabling the
attention module to capture long-term dependencies along one
spatial direction and preserve precise location information along
the other. It helps the network to more accurately locate the target of
interest.

In the coordinate attention generation module, a better global
receptive field can be obtained after the above transformation, and
the precise location information of the feature can be encoded. In
order to capture the information between channels simultaneously,

FIGURE 2
The structure of L-CAFSFM.
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the two outputs of the module in the previous step are concatenated
and computed through the convolution transformation function.

F � Nl Concat Yh, Yw[ ]( )( ) (3)

where Concat (·) is a concatenation operation along the horizontal
and vertical directions, and Nl (·) is a nonlinear activation function.
F is the intermediate feature vector that encodes the spatial
information in the horizontal and vertical directions. Then it is
decomposed into two separate vectors Fh and Fw along the
horizontal and vertical directions, which are activated by
convolution transformation and Sigmoid function, respectively.
The results are:

Sh � Sig Ch Fh( )( ) (4)
Sw � Sig Cw Fw( )( ) (5)

where Ch(·) and Cw(·) represent convolution operations on Fh and
Fw. The output T of the last Coordinate Attention Block is:

T � X × R Sh( ) × R Sw( ) (6)

where R(·) represents the Re-Weight operation, that is, restore
Sh∈ RC×1×W and Sw∈ RC×H×1 to C×H×W size. The output
T ∈ RC×H×W has the same size and dimension as the input X. We
compress T into T′ ∈ RC×1×(H×W). T′ is a row vector with dimension
C and size [1, (H × W)]. T′ is used as the output of this stage.

2.2.2 Feature channel information optimization
In optimizing feature channel information, we choose Swin

Transformer Block in the article (Liu, et al., 2021) to calculate
the output of the previous step. Swin Transformer Block consists
of a self-attention based on a sliding window and a self-attention
without a sliding window. Multi-head attention is added to self-
attention, which can extract feature information from multiple
dimensions. Constraining attention computation within a
window through multiple windows and using Shifted Window to
link multiple windows make it easier to capture fine local features.
Therefore, this paper designs a feature optimization module based
on Swin Transformer Block, as shown in Figure 4.

The main body of the module consists of two Swin Transformer
Blocks. W-MSA (Window-based Multi-head Self Attention) is a
multi-head self-attention without a sliding window. Different from

the global self-attention calculation, W-MSA can calculate self-
attention. It reduces the amount of computation without causing
a lot of memory consumption.

Because self-attention is calculated in multiple windows, the
information between windows cannot interact, and the effect of
global modeling cannot be achieved. To solve this problem, the
article (Liu, et al., 2021) proposes the SW-SAM module. SW-SAM
(Shifted Window-based Multi-head Self Attention) is a multi-head
self-attention with a sliding window. By sliding the window in the
feature map, the information of different windows is collected, and
the communication between the windows is realized to establish a
global model. MLP is a multilayer perceptron that performs
nonlinear classification of features. This module calculates the
output of the previous step: as the input dimension
Z ∈ RC×1×(H×W), after two Swin Transformer Block calculations,
the output Z′ ∈ RC×1×(H×W) is the same as the input dimension, and
Z′ is a row vector with C channels and size [1, (H ×W)]. Finally, Z′
is restored to a feature mapM ∈ RC×H×W according to the number of
channels C and the size of [C, H, W] as the output of L-CAFSFM.

As shown in Figure 5, the characteristic diagram is not processed
by the L-CAFSFM and is calculated by the L-CAFSFM.

2.3 Meticulous feature fusion module

After the iterative calculation of the L-CAFSFM by the
bidirectional feature pyramid network, fusing the outputs of two
opposite paths is necessary. Inspired by the article (Zhu, et al., 2018),
we propose the Meticulous Feature Fusion module (MFFM). The
module structure is shown in Figure 6.

For the outputs Mi ∈ RC×H×W and Mj ∈ RC×H×W of the two
opposite paths, use a 1 × 1 convolution operation to connect the two
outputs to obtain the meticulous feature L1.

L1 � Concat Fc Mi( ), Fc Mj( )[ ] (7)

where Concat (·) represents the connection operation, and Fc(·) is
the 1 × 1 convolution operation.

After connectingMi andMj, the channel of the feature map is 2C,
and the size is [H, W]. Input it into this paper’s improved SE Attention
(Fusion-SE), and then use the Sigmoid operation. The output is a
meticulous feature L2 with channel two and size [H, W]. It is:

FIGURE 3
The structure of coordinate attention.
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FIGURE 4
Structure of feature optimization module.

FIGURE 5
Figure 1 is the input image. Figure 2 shows the feature map the L-CAFSFM still needs to calculate. The distinction between the building area and the
trees and roads in the red circle needs to be more apparent, and the overall brightness value of the feature map is close to the building area. Figure 3
shows the featuremap calculated by L-CAFSFM. In Figure 3, the building area’s features differ fromother features, suppressing the other features. It shows
that after L-CAFSFM calculation, the model can extract more accurate and rich building features.

FIGURE 6
The structure of MFFM.
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L2 � ϕ FSE{ Concat Mi,Mj( )[ ]} (8)

where ϕ(·) represents the sigmoid operation, and FSE(·) represents
the Fusion-SE attention. It is the Fusion-SE attention module
diagram, as shown in Figure 7.

In Figure 7, GAP stands for global average pooling. After
inputting K ∈ RC×H×W into the SE attention module, the output
of K′ ∈ RC×H×W is consistent with the input dimension and size.
After convolution transformation, batch normalization and linear
activation, the output is J ∈ R2×H×W. The fusion-SE attention
module reduces the dimension C of the input K to 2, which is
convenient for calculation with the meticulous feature L1 of the
previous step.

The final output of building a prediction map is:

P � Sum L1 × L2( ) (9)
Dense CRF optimizes the prediction map to improve the

correlation between different pixels in the prediction map. It can
be seen from Figure 7 that after Dense CRF optimization of the

prediction map, the building edge details have been further
optimized, which is closer to the label map. Thus, the final
building detection map of our method is obtained, as shown in
Figure 8.

3 Experiments and results

3.1 Dataset and experimental settings

In order to evaluate the method proposed in this paper, we
selected the public building dataset (WHU) of Wuhan University.
WHU is an aerial image dataset. This dataset consists of aerial
images obtained in April 2012 and covers an area of 20.5 km2

12,796 buildings. The aerial image data comes from the
New Zealand Land Information Service website, with a ground
resolution of 0.3 m after low sampling, selected from approximately
22,000 buildings in Christchurch. This dataset contains
8,188 remote sensing images and has a resolution of 512 ×

FIGURE 7
The structure of fusion-SE attention.

FIGURE 8
Figure 1 is the label image, Figure 2 shows the extraction results without Dense CRF optimization, and Figure 3 shows the extraction results with
Dense CRF optimization. Comparing objects of the red circle box in Figure 2 and Figure 3, it is clear that the extracted edges of the buildings are clearer
and more regular after the Dense CRF optimization of the predicted maps.
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512 pixels, covering residential, factory, urban, rural, etc. buildings
in the area. The training set size is 4,736 images, the validation set
size is 1,036 images, and the test set size is 2,416.

The training platform used in this paper has a 24G GPU and an
8-core CPU. Train the model using the training set from the WHU
dataset. The training batch size is 4, the number of training times is
15w, and the initial learning rate is 0.005. The entire training
network is optimized using Stochastic Gradient Descent (SGD)
with a weight decay 0.0005. We use a deep supervision method
(Lee, et al., 2014) to set a branch classifier on the output of each
L-CAFSFM to supervise the quality of the output, thus facilitating

the dissemination of helpful information. The loss of the L-CAFSFM
in each direction in the bidirectional feature pyramid network is
calculated, and the total loss is the sum of the losses in the two
directions.

3.2 Comparative test

We use the test set in the WHU dataset to test our model. The
test set has 2,416 remote sensing images and has a resolution of
512 × 512 pixels. The experiment in this paper is compared with that

FIGURE 9
Comparison of the accuracy of our method and BDRAR in extracting building shape. The parts circled in red in the picture show significant
differences in comparison. In the above figure, the first column is the inputmap, the second column is the label map, the third column is the experimental
result map of the BDRAR model (Zhu, et al., 2018), and the fourth column is the experimental result map of this paper.
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in the original paper (Liu, et al., 2021), and some results are shown in
Figure 9.

As we can see from the first and second rows of Figure 9. The
results of the BDRAR model showed some missing inspections,
cavities, or missing corners, resulting in an incomplete building
shape. The shapes of the buildings detected in this paper are
relatively regular and complete. In the third row, the BDRAR
model identifies multiple buildings with close distances into one,
while this paper can clearly display the boundaries of multiple
buildings. It can be seen from the fourth and fifth rows that
when BDRAR model distinguishes buildings and open spaces in
front of doors, it mistakenly detects open spaces as buildings, and
some buildings are not detected under the shelter of trees. This
method can distinguish buildings from their adjacent open spaces
and can still identify buildings in the case of tree interference.

4 Discussion

In order to quantitatively analyze the detection effect of our
method and other excellent networks, we select the building
detection network or semantic segmentation network in recent
3 years as the comparison network of this paper, namely,
BOMSC-Net (Zhou, et al., 2022), BMFR-Net (Ran, et al., 2021),
STT (Chen, et al., 2021a), SRI-Net (Liu, et al., 2019), DR-Net (Chen,
et al., 2021b), RSR-Net (Huang, et al., 2022)and B-FGC-Net (Wang,
et al., 2022).

4.1 Evaluation and comparisons

BOMSC-Net proposes a Multi-Scale Context Awareness Module
(MSCAM) and a Direction Feature Optimization Module (DOM) by
combining boundary optimization and multi-scale context awareness
for problems such as tree and shadow occlusion and complex building
roof materials. BMFR-Net combines Continuous Atrous Convolution
Pyramid (CACP) module and Multi-scale Output Fusion Constraint
(MOFC) for building detection. The two-way path conversion module
is proposed in the Self-Service Terminal (SST) network, which can learn
the long-term dependence features in space and channel dimensions
and obtain more accurate building features. Spatial Residual Inception
Network (SRI-Net) introduces deeply separable convolution and
convolution decomposition, significantly reducing the number of
model parameters while retaining global morphological features and
local details. It makes the model lighter and more accurate in extracting
building features. Dual-Rotation Network (DR-Net) combines densely
connected convolutional neural network (DCNN) and residual network
(ResNet) structures to extract buildings. RSR-Net improves the model’s
performance by introducing the SE attention module to reduce the
noise effect of shallow features in feature fusion. B-FGC-Net optimizes
network training by introducing residual learning and spatial attention
units, highlighting the spatial information representation of features.

As mentioned above, the networks use feature pyramids and
attention mechanism fusion methods, which are close to our
method, so they are selected as the comparative experimental
method in this paper. The experimental evaluation indicators are
Precision, F-score, Recall, and IoU. Four indicators judge the ability
of the network model from different aspects. Precision and Recall

can measure the ability of the network to distinguish between false
and correct targets. IoU and F-score can evaluate the overall
accuracy of the network model.

The above four indicators data are from the original paper for
fairness. “-” indicates that the data of this indicator is not provided in
the article. The bolded indicator data indicates that the indicator is
the highest, and the underline indicates that the indicator is the
second. Quantitative evaluations are shown in the table below.

As shown in Table 1, our method’s Precision, IoU, Recall, and
F-score are 95.17%, 90.18%, 94.51%, and 94.83%, respectively. The
accuracy of our method is lower than that of SRI-Net, indicating that
the ability to detect the correct target is slightly lower than that of
SRI-Net. However, the remaining three indicators in this paper are
higher than that, indicating that our method is better than SRI-Net
in distinguishing between correct and incorrect targets. Except for
SRI-Net, the four indicators in this paper are higher than the above
networks, which is enough to prove the advantages of our method in
building detection. Therefore, our proposed method can more
accurately detect buildings in remote sensing images.

4.2 Ablation studies

In order to verify the effectiveness of the L-CAFSFM and MFFM in
this paper, ablation experiments are designed in this paper. The
experimental models are divided into BDRAR (Hou, et al., 2022), the
network with only the L-CAFSFM, the network with only the MFF
module, and the network in this paper. For fairness, all training and
testing data configurations are the same. This paper evaluates the four
networkmodels from two aspects of qualitative analysis and quantitative
calculation. Qualitative analysis and results are shown in Figure 10.

In the above Figure, it can be seen from the second column that
the missed detection rate of the BDRAR model is high. In the third
column, it can be seen that after adding only the MFF module, the
missed detection area decreases. It can be seen from the fourth
column that after only adding the L-CAFSFM, the missed detection
area is greatly reduced, but at the same time, the false detection area
also increases. In the fifth column, that after adding L-CAFSFM and
MFFM, compared with using the BDRAR model, the false detection
area is slightly increased, but the missed detection area is greatly
reduced.

TABLE 1 Comparison of experimental results.

Precision (%) F-score (%) Recall (%) IoU (%)

BOMSC-Net 95.14 94.80 94.50 90.15

BMFR-Net 94.31 93.95 94.42 89.32

RSR-Net 94.92 - 92.63 88.32

B-FGC-Net 95.03 94.76 94.49 90.04

STT - 94.13 - 89.01

SRI-Net 95.21 94.23 93.28 89.09

DR-Net - 93.80 - 88.30

Ours 95.17 94.83 94.51 90.18

The bolded text in table is meant to highlight the maximum values for each of the evaluation

indicators.
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The quantitative assessment of the ablation experiments is
shown in Table 2.

It can be seen from Table 2 that after adding only the L-CAFSFM,
the prediction accuracy and F-score are greatly improved, and the recall
rate and IoU are only slightly improved. After only adding the MFF, all
four indicators are improved, but the recall rate and IOU are greatly
improved. After adding L-CAFSFMandMFFM, the four indicators have
been greatly improved, consistent with the conclusions in the above
experimental results. Therefore, it can be proved that L-CAFSFM and
MFFM proposed in this paper have sound effects.

5 Conclusion

In this article, we propose a building extraction method of
combining L-CAFSFM, MFFM with a bidirectional feature pyramid
network. L-CAFSFM calculates and fuses the feature maps of two
adjacent levels to extract finer building details. The bidirectional feature

pyramid network iteratively calculates L-CAFSFM and gradually learns
multi-level feature information from two different directions to obtain
fine features at different levels. MFFM integrates outputs from two
directions to complement building feature information. The results are
optimized using a dense conditional random field. Through the above
improvements, the ability of the method to obtain rich and specific
spatial features is further enhanced. Our method achieves state-of-the-
art performance compared to other advanced models on the WHU
dataset. The combination of L-CAFSFM and MFFM still has excellent
potential to be applied in the field of computer vision, and we will
continue to learn how to better apply L-CAFSFM and MFFM to
building detection in the future.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: http://study.rsgis.whu.edu.cn/pages/download/.

FIGURE 10
Results of ablation experiments. The first column is the label map, the second column is the resulting map of the BDRARmodel, the third column is
the resulting map of only MFFM, the fourth column is the resulting map of only the L-CAFSFM and the fifth column is the experimental results of the
method. The red part in the Figure is themissed detection area, the blue part is the false detection area, and the other parts are the same as the label map,
which is the positive detection area.

TABLE 2 Results of ablation experiments.

Precision (%) F-score (%) Recall (%) IoU (%)

BDRAR 93.91 93.67 93.42 88.09

Only L-CAFSFM 94.94 94.32 93.70 89.25

Only MFFM 94.64 94.13 94.13 89.37

L-CAFSFM+ MFFM 95.17 94.83 94.51 90.18

The bolded text in table is meant to highlight the maximum values for each of the evaluation indicators.
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