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Elastic wave attenuation in partially saturated porous rock is primarily due towave-
induced fluid flow, which arises from the contrast in compressibility between air
andwater and is influenced by thewater distributionwithin the rock.We propose a
method for constructing a numerical model that predicts mesoscopic dispersion
and attenuation. Initially, we use fluid distribution data sourced from 3D X-ray
Computed Tomography images to construct the numerical model, utilizing Biot’s
poroelastic equations as the governing equations. Subsequently, we implement
the finite element method to derive solutions for the numerical model. Our focus
is centered on two key challenges: 1) reducing memory cost, and 2) efficiently
handling element intersection during themeshing process. The solutions illustrate
the evolution of fluid pressure distribution and the frequency-dependent
advancement of the elastic moduli, coupled with their corresponding
attenuation. Ultimately, we compare these numerical predictions with
previously published experimental data from a study on partially saturated
Indiana limestone. The considerable agreement between our numerical results
and the experimental data confirms the validity of our method, which crucially
incorporates the actual fluid distribution (captured from 3D CT images) as a vital
input.
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1 Introduction

Characterization of fluid distribution in a reservoir is essential in several scenarios, such
as monitoring CO2 geological storage and gas and oil production exploration (Klimentos,
1995; Tester et al., 2007). Seismic waves are known to be affected by fluid; therefore, it is a
valuable tool for detecting in situ fluid properties (Adelinet et al., 2011; Anwer et al., 2017; He
et al., 2020). At the mesoscopic scale, for a biphasic saturated rock, like gas and water, seismic
waves induce a pore pressure gradient due to the difference in the fluid bulk moduli, causing
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diffusion between the different fluid phases and, thus, energy
transfer (Pride et al., 2004; Wang Y. et al., 2022b). This diffusion
process causes attenuation and dispersion of seismic waves, known
as patchy-flow or mesoscopic-wave-induced fluid flow (Müller et al.,
2010). The mesoscopic scale refers to heterogeneities in the fluid
distribution and rock fabric (e.g., Ba et al., 2015; 2017; Sun, 2017;
Zhao Luanxiao et al., 2021b) greater than the pore size but smaller
than the wavelength. The mesoscopic scale serves as a crucial bridge
between the microscopic and macroscopic levels, enabling the
significant upscaling of properties from the pore level to a
broader, macroscopic perspective. The effect of mesoscopic flow
on the dispersion and attenuation has been reported in a lot of
experiments (e.g., Cadoret et al., 1998; Tisato and Quintal, 2013;
Chapman et al., 2016; 2021; Mikhaltsevitch et al., 2016; Cavallini
et al., 2017; Zhao Liming et al., 2021a; Sun et al., 2022). If we focus on
fluid heterogeneity at the mesoscale, many analytical and numerical
models can quantitatively assess its effect. One classical analytical
model is the White model (e.g., White, 1975; White et al., 1975;
Dutta and Odé, 1979; Monachesi et al., 2020). It assumed that fluid
patches are composed of periodic layers or spheres. The layer’s
thickness or the sphere’s radius, i.e., the so-called patchy size,
determines the critical frequency for dispersion and attenuation.
A second kind of analytical model is to assume a random
distribution of the fluid (e.g., Müller and Gurevich, 2004; 2005;
Toms et al., 2007; Müller et al., 2008; Toms-Stewart et al., 2009; Qi
et al., 2014; Zhang et al., 2022). It assumed that the fluid distribution
is stochastic and characterized by a correlation length, which can be
used to predict the critical frequency of dispersion and attenuation.
However, the prediction of the correlation length, the key parameter
in this model, is not straightforward. Another way to predict the
effect of mesoscopic flow on dispersion/attenuation is to use
numerical models. It usually takes the fluid distribution as an
input, and uses the finite element method to obtain the solution
(e.g., Santos et al., 2005; Rubino et al., 2009; 2016; Quintal et al.,
2011; Santos et al., 2021). The numerical model is computationally
expensive compared to the analytical model. However, there is no
assumption regarding the fluid distribution, making it more widely
applicable. Fluid distribution can be obtained, for instance, from CT
scan techniques (e.g., Cadoret et al., 1995; Toms-Stewart et al., 2009;
Zhu et al., 2017; 2023; Lin et al., 2021; Wang S. et al., 2022a). In a
recent study, Chapman et al. (2021) measured the velocity
dispersion and attenuation in a biphasic saturated sandstone
(water and CO2 gas) and obtained the 3D fluid distribution
using CT images. Their results indicate that the majority of the
gas is situated towards the end of the sample, resembling a two-layer
fluid distribution. Thus, they used an effective 1D numerical model
and did not have to consider the cost of a 3D numerical simulation.
More recently, Sun et al. (2022) measured the velocity dispersion
and attenuation in a partially saturated (air/water) Indiana
limestone. Sun et al. (2022) also obtained the 3D fluid
distribution using the micro-CT image, and used the finite-
element method to predict dispersion and attenuation. However,
their numerical simulation was conducted in a 2D space due to
unresolved memory consumption issues within the 3D numerical
simulation. In addition, they observed a discrepancy between the 2D
simulations and the experimental data, which they attributed to the
difference between a 2D and 3D numerical simulation. Amethod for
computing dispersion and attenuation in fully saturated rocks was

presented by Lissa et al. (2021) to predict squirt flow using a 3D CT
image as input. As Lissa et al. (2021) focused on squirt flow, the
simulation was done on a cube containing several cracks leading to a
cube size of (~300 μm3), using 0.8 TB of RAM. This approach works
perfectly for a local prediction, as for squirt flow; however, it is
infeasible for mesoscopic flow: i) a very fine mesh would be needed
to represent the distribution and geometry of the two fluid phases, ii)
the simulation should be done at a larger scale (~cm3).

The study describes a new and detailed method for numerically
predicting dispersion and attenuation due to mesoscopic flow using
a 3D fluid distribution obtained by a micro-CT image as an input.
The finite element method solves the frequency-domain Biot’s
equations to predict the fluid diffusion process. We present a
method to overcome the problems of the element intersections in
meshing and memory cost in solving Biot’s equations. Finally, the
3D numerical predictions are compared and discussed with
experimental data published by Sun et al. (2022).

2 Methods

Our proposed method consists of five steps: 1) reconstruct the
fluid distribution to make the numerical model; 2) mesh the
numerical model; 3) apply Biot’s equations as the governing
equations; 4) set the boundary condition; 5) solve the numerical
solution using the finite element method. These steps are tested on
an Indiana specimen (Figure 1A). This carbonate rock has a porosity
of 10.8% and a permeability of 2x10−17 m2. The dispersion of elastic
wave velocity under confining pressure was investigated under dry
and water saturation by Borgomano et al. (2019) and under partial
saturation (air/water) by Sun et al. (2022). Additionally, X-ray
images under dry, fully water-saturated, and partially saturated
conditions were obtained by Sun et al. (2022).

2.1 Fluid distribution reconstruction

The estimation of fluid distribution is the first step of the
method. For an homogenous dry sample, the fluid distribution
dominates the heterogeneity of the partial saturated sample.
Following Cadoret et al. (1995), recent studies like Chapman
et al. (2021), Sun et al. (2022), and Wang S. et al. (2022a), the
3D fluid distribution can be estimated using the CT gray image of
dry, partially and fully saturated sample. The distribution of the fluid
is obtained following two steps.

(i) The gray image of partially and fully saturated samples should be
normalized, referring to the gray value of two reference
materials, for example, aluminum and sleeve. The rescaled
image for the fully water-saturated sample can be obtained
following Eq. 1, which is adapted from Lin et al. (2017) and
Wang S. et al. (2022a):

Icor � I − Iref1 water( ) p
Iref2 dry − Iref1 dry

Iref2 water − Iref1 water
+ Iref1 dry (1)

where Icor is the normalized gray value, I is the gray value of the raw
image, Iref1 water and Iref2 water are the average gray value of the two
reference materials measured during the scan of the water-saturated
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sample. Iref1 dry and Iref2 dry are the average gray value of the two
reference materials measured during the scan of the dry sample.

(ii) The images for the water-saturated sample IWater and partially
saturated sample Iwater+air are rescaled referring to the dry sample
IAir using Eq. 1. Then, the air saturation SAir is calculated as:

SAir � Iwater − Iwater+air
Iwater − Iair

(2)

We use the CT data from Sun et al. (2022) obtained on an
Indiana limestone partially saturated by the drainage method
to calculate the fluid saturation distribution according to Eq. 1
and Eq. 2. The air saturation SAir is shown in Figure 1B. In this
sample, the global water saturation obtained by drainage is
88%. In Figure 1B, white zones correspond to full air saturation
while blue zones to pure water saturation. Air patches are
distributed over the entire sample with sizes in the range of
0.5 mm–10 mm.

2.2 Numerical model meshing

The second step of the method is to mesh the fluid
heterogeneities (Figure 1B). Lissa et al. (2021) converted the CT
images into a surface format in AVIZO to create triangular elements
on every surface between solids and pores and on the boundaries of
the investigated volume. Then, they imported the mesh ‘*.stl’ in
COMSOLMultiphysics. However, this procedure cannot be used for
partial saturation, as shown in Figure 1B. Indeed, Figure 1B shows
that the volume contains many air patches with complex geometries;
in particular, the meshing process in AVIZO leads to too many
intersections or overlap elements, which are difficult to remove.

We use a method presented by Cepeda et al. (2013) to overcome
the limitation. This method was developed first for medical CT scan
images and allows incorporating complex geometries with non-
uniform material properties in COMSOL Multiphysics. It is a
practical alternative, as no intersections or overlapping elements
occur, and thus, it avoids the need for critical geometry

FIGURE 1
(A) Picture of the sample. The red dashed square indicates the volume that is investigated under the CT scan. The overall saturation is 88% obtained
by the drainage method. More details can be found in Sun et al. (2022); (B) fluid distribution: blue zones represent regions of full water saturation. The
white zones correspond to full air saturation; (C) Positions for strain gauges at 1/4 (blue), 1/2 (red), and 3/4 (green) of the sample’s length; (D) the YZ
section of the fluid distribution; (E) mesh scale versus the space coordinate; (F) the adaptive mesh calculated according to (E).
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simplifications that may compromise the accuracy of the simulation.
In our case (Figure 1B), the non-uniform property is the fluid
saturation SAir. The mesh must be refined at the water-air
interfaces. We thus define an adaptive mesh using the following
steps: first, a uniform 3D cylinder is constructed according to the size
of the CT image and then divided with a coarse mesh; afterward, we
refine the mesh at the water-air interfaces using a function Airarea:

Airarea�

S
x−d,y,z( )

Air +S x+d,y,z( )
Air +S x,y−d,z( )

Air +S x,y+d,z( )
Air +S x,y,z−d( )

Air

+S x,y,z+d( )
Air

⎛⎜⎜⎝ ⎞⎟⎟⎠
6

(3)
where, y, and z are the space coordinates, d is the fine mesh size, that
is fixed. S(x,y,z)Air denotes the air saturation at a given spatial coordinate
(x,y, z). For example, S(x−d,y,z)Air signifies the air saturation at the
location (x − d, y, z), while S(x+d,y,z)Air denotes the air saturation at the
location (x + d, y, z), and so forth. The function Airarea is 1 for the
air-saturated zones and 0 for the water-saturated zones and varies in
the partially saturated zones. Finally, considering the 5% uncertainty
in the fluid distribution, the mesh size is defined as:

Mesh size � d, 0.05≤Airarea≤ 0.95
C,Airarea> 0.95 and Airarea< 0.05{ (4)

where d and C are the fine and coarse mesh sizes, respectively.
Figure 1E shows the mesh size in the YZ section (Figure 1D) for
the 3D fluid distribution given in Figure 1B according to Eq. 4,
with C=3.5 mm and d=0.35 mm. Finally, a tetrahedral mesh is
created and shown in Figure 1F. As expected, the mesh is coarse
in the pure water saturation zone and refined in the partially
saturated zone.

2.3 Governing equations

We use Biot’s equations (Biot, 1956a; 1956b; 1962; Rubino et al.,
2009; 2016) in the frequency-space domain:

−ω2 ρb −
ρ2f

ρc ω( )( )us − ∇ · σ � ρf
ρc ω( )∇Pf (5)

∇ · − 1
ρc ω( ) ∇Pf − ω2ρfu

s( )[ ] − ω2Pf

M
� αω2∇ · us (6)

where ∇ is the Hamiltonian operator, ω is the angle frequency, α �
1 − Kd

Kg
is Biot-Willis coefficient, Kd is the drained bulk modulus, Kg

is the bulk modulus of the grain. The density of the saturated
sample is:

ρb � 1 − ϕ( )ρs + ϕρf (7)

where the ρf and ρs are the densities of fluid and grain, respectively.
ϕ is the porosity. The complex density is:

ρc ω( ) � τρf
ϕ

+ η

îωκ
(8)

where τ is the tortuosity of the pore and can be estimated roughly by
τ � 1

2 (1 + 1
ϕ) according to Berryman (1982) and Rubino et al. (2009).

η is the fluid viscosity, κ is the permeability, and î is the
imaginary unit.

The displacement vector of the rock matrix is us � (usi ), and the
corresponding strain tensor is defined as εij � 1

2 (usi,j + usj,i), where
i, j � 1, 2, 3 are Euclidean space dimensions.

The stress tensor σ is related to the displacement of the matrix
and fluid pressure Pf, and:

σ ij � 2μεij + δij λm∇ · us − αPf( ) (9)

where the λm � Kd − 2
3 μ, and the μ is the shear modulus, δij �

1 i � j
0 i ≠ j

{ is Kronecker (delta) tensor. The so-called pore-space

modulus (Gurevich et al., 2009) is defined as:

M � ϕ

Kf
+ α − ϕ

Kg
( )−1

(10)

For a biphasic saturated sample (air/water), the effective fluid
bulk modulus Kf, density ρf and viscosity η are defined
respectively as:

Kf � SAir
KAir

+ 1 − SAir
Kw

( )−1
(11)

ρf � ρAirSAir + ρw 1 − SAir( ) (12)

η � ηAir
ηw
ηAir

( )1−SAir
(13)

where KAir and Kw are the bulk modulus of water and air,
respectively, SAir is the air saturation. ρAir and ρw are the
densities of air and water, respectively. Eq. 13 for the mixed-fluid
viscosity η follows the work of Teja and Rice (1981), where ηAir and
ηw are the viscosities of air and water, respectively.

2.4 Oscillatory relaxation test

The third step is the oscillatory relaxation test (e.g., Rubino et al.,
2009; 2016; Chapman and Quintal, 2018; Santos et al., 2021).

For computing the P-wave modulus, the boundary conditions
are defined as follows: i) an axial oscillation stress σ33 is loaded at the
top boundary of the sample, with an amplitude of 0.1 MPa; ii) the
vertical displacement at the bottom boundary of the sample is set to
zero; iii) for the side boundaries, the normal displacement is set to
zero, i.e., u1 � u2 � 0; iv) all the boundaries are impermeable for the
fluid (no flow across the boundaries). The initial conditions for
displacements are set to zero. The P-wave modulus MP and P-wave
attenuation Q−1

P are obtained using the following:

MP � σ33/ε33 (14)
Q−1

P � Imag MP( )/Real MP( ) (15)
where ε33 and σ33 are the axial strain and stress, respectively.

To compute the shear modulus (directly related to the
S-velocity), the boundary conditions are defined as follows: i) an
oscillation stress σ32 is loaded at the top boundary of the sample,
with an amplitude of 0.1 MPa; ii) the horizontal displacement at the
bottom boundary of the sample is set to zero; iii) for the side
boundaries, the axial displacement is set to zero, i.e., u3 � 0; iv) all
the boundaries are impermeable for the fluid (no flow across the
boundaries). The initial conditions for displacements are set to
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zero. The shear modulus μ and attenuation Q−1
S are obtained

using:

μ � σ32/ 2ε32( ) (16)
Q−1

S � Imag MS( )/Real MS( ) (17)
where ε32 and σ32 are the shear strain and stress along the y direction,
respectively. For both oscillatory relaxation tests, the physical
properties of the rock sample and fluids used are deduced from
Borgomano et al. (2019) and Sun et al. (2022) and shown in Table 1
and Table 2.

Finally, the complex bulk modulus (K) can be deduced from the
complex P-wave modulus MP and shear modulus μ by:

K � MP − 4
3
μ (18)

Q−1
K � Imag K( )/Real K( ) (19)

2.5 Numerical solution

The method’s fourth step is to solve Biot’s equations numerically
(Eq. 5 and Eq. 6). We adopt a hybrid method (Halimi Bin Ibrahim
and Skote, 2013), i.e., Newton iteration method (NIM) and LU
matrix factorization method (LUM). Eq. 5 and Eq. 6 are rewritten in
the following form:

L X( ) �
L1 u1, u2, u3, Pf( )
L2 u1, u2, u3, Pf( )
L3 u1, u2, u3, Pf( )
L4 u1, u2, u3, Pf( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0 (20)

where the variable X �
u1
u2
u3
Pf

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, is composed of the solid

displacement vector us � [u1, u2, u3] and fluid pressure Pf. Here
we drop the superscript s for the solid displacement vector to leave a
space for a new superscript i counting the iteration number. We use
a hybrid method to solve Equation 20: the displacement vector
[u1, u2, u3] is solved using the NIM method, and the fluid pressure
Pf is solved by the LUM method. The detailed steps for the hybrid
method are as follows:

Step A: Set the initial condition, Xi�0 �
ui�01
ui�02
ui�03
Pi�0
f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0,
Do loop on iteration number i:

Step B: Update the calculated variable ui1 (u
0
1 =0 for i=0). u

i+1
1 is

achieved using the NIMmethod: The Jacobian of the linear equation
L1 with respect to the independent variable u1 is J1 � ∂L1

∂u1; then
ui+11 � ui1 + Δu1, where the updated term is Δu1 � −L1

J1
(Ben-Israel,

1966).
Step C:Update the calculated variable ui2. u

i+1
2 is estimated using

the NIM method: Take the updated ui+11 into L2, then calculate
Jacobian J2 � ∂L2

∂u2
; and finally ui+12 � ui2 + Δu2 where updated term

Δu2 � −L2
J2
.

Step D: Update the calculated variable ui3. u
i+1
3 is also estimated

by the NIM method: Take the updated ui+11 and ui+12 into L3, the
corresponding Jacobian is J3 � ∂L3

∂u3; then ui+13 � ui3 + Δu3, where the
updated term Δu3 � −L3

J3
.

Step E: Update the calculated variable Pi
f. Take u

i+1
1 , ui+12 and

ui+13 into L4, then Pi+1
f is obtained using the LU matrix

decomposition method (e.g., Bartels and Golub, 1969;
Abbasbandy et al., 2006).

Step F: Xi+1 �
ui+11
ui+12
ui+13
Pi+1
f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, if |Xi+1 − Xi|< ϵ, end the loop;

Otherwise, go back to step B and i � i + 1. ϵ is a relative error,
defined as 10–3, which is a measure of the error relative to the size of
each solution component.

TABLE 1 Rock properties and the elastic parameters for the numerical
prediction. Pc is the confining pressure.

Properties Indiana

Porosity ϕ(%) 10.8

Permeability-κ(m2) 2x10−17

Drained Bulk modulus-Kd (GPa) 24 (Pc = 5 MPa)

Bulk modulus of grain-Kg (GPa) 77

Undrained Bulk modulus -Ku (GPa) 32.5 (Pc = 5 MPa)

Shear modulus-μ (GPa) 15.2 (Pc = 5 MPa)

Biot-Willis coefficient-α 0.688

Skempton’s coefficient-B 0.38

Density ρ (kg/m3) 2,369.2

TABLE 2 Fluid properties for the numerical prediction.

Properties Water Air

Bulk modulus-Kd (GPa) 2.25 1x10−4

Density ρ (kg/m3) 1,000 1

Viscosity-η (Pa*s) 10–3 2x10−5

FIGURE 2
Relative error versus iteration number during the solving process.
The blue line is the fluid pressure. The green, red, and black lines
correspond to displacement components along x, y, and z,
respectively.
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Figure 2 shows the evolution of the relative error for displacements
and fluid pressure as a function of the iteration number during the
solving process. After ten iterations, Eq. 20 is solved with a relative error
below 10–3. In the case of the hybrid method, only one independent
variable is considered in every step, thus reducing the memory cost and
calculation time. For comparison, we solved Eq. 20 using the hybrid
method and the classical LU decomposition method and show the
results in Figure 3: With the hybrid method (see the black line in
Figure 3A), the memory cost is divided by a factor of 3 in comparison
with the conventional LU method (see the red line in Figure 3A), and
the computation time is reduced by a factor of 5 (Figure 3B).

3 Results and discussion

3.1 Axial strain ε33, fluid pressure Pf and local
bulk modulus evolution

Using the physical properties (Table 1; Table 2) and the patchy air-
water distribution (Figure 1B), we conducted an oscillatory-
compressibility test (Section 2.4) to calculate the strain and fluid
pressure as a function of the frequency oscillation. The distribution
of the i) pore fluid pressure normalized to axial stress σ33 and ii) axial
strain are shown in Figure 4 and Figure 5, respectively, for different
frequencies. It can be observed that pore pressure gradients take their
highest values at the air-water interfaces with higher values for
frequencies above 10 Hz. However, at the low frequency of 1Hz, air
andwater pressures are equilibrated to a very low value (Figure 4A).We
can refer to this state as a ‘relaxed state’ under undrained conditions.
Indeed, during an axial oscillation of 1Hz, the pressure of the water
increases due to the Skempton effect (Kümpel, 1991), but the frequency
is sufficiently low to give time for water to diffuse in the air-saturated
zone, as air is much more compressible than water. At the highest
frequency of 1 kHz (Figure 4D), water is pressurized and has no time to
flow in the air-saturated zone, i.e., the distribution of the overpressure

(red color in Figure 4D) is close to the distribution of the water
saturation zones. We refer to this state as an “unrelaxed state”
under undrained conditions. To estimate the increase of water
pressure at 1 kHz, we recall that under the P-wave boundary
condition (ε11 � ε22 � 0), the ratio Pf

σ33
in a representative elementary

volume (REV) fully saturated with water is deduced as

Pf

σ33
� B

Ku

Ku + 4μ/3 (21)

where B � 1−Kd
Ku
α is the Skempton’s coefficient (Kümpel, 1991), μ is the

shear modulus.Ku is the undrained bulk modulus obtained by Biot-
Gassmann’s equation (Gassmann, 1951):

Ku � Kd + α2
ϕ

Kf
+ α − ϕ

Kg
( )−1

(22)

Using the parameters given in Table 1, the Skempton’s
coefficient B =0.38 and Pf

σ33
� 0.38 p 32.5

32.5+4p15.2/3 � 0.23, which is
consistent with values shown in the water-saturated zones (red
color in Figure 4D). For the air-saturated zones, as the
compressibility of air is large, Ku ≈ Kd (Eq. 22 using air bulk
modulus for Kf) and no pressurization is expected in agreement
with the blue color in Figure 4D. Figure 4B and Figure 4C give the
results of the water pressurization at the intermediate frequencies of
10 Hz and 100 Hz and illustrate the evolution of the pore pressure
gradient in the sample as the frequency increases.

The distribution of axial strain at different frequencies is given in
Figure 5. At the low frequency of 1 Hz (Figure 5A), there is no
pressurization of the pore fluid (Figure 5A), and the axial deformation
is homogeneous and can be approximately estimated (Ku ≈ Kd) as:

ε33| | � σ33| |
Kd + 4μ/3 ≈ 2.3 × 10−6 (23)

which is consistent with the value predicted by the numerical simulation
in Figure 5A. On the other hand, in the case of an unrelaxed state at a
REV scale, the axial strain is approximately given by:

FIGURE 3
(A)Memory cost and (B) Calculation time cost. The degrees of freedom are determined by the product of the number of nodes in the mesh and the
number of dependent variables (4 in our case). The black and red lines represent the hybrid method and the classical LU decomposition method,
respectively.
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ε33| | � σ33| |
Ku + 4μ/3 ≈ 1.8 × 10−6 (24)

As a result, the axial strain varies from 2.3×10−6 to 1.8×10−6 with an
increase in frequency. This signifies that the behavior of porous rock
shifts from a relaxed to an unrelaxed regime at the Representative
Elementary Volume (REV) scale. With the rising frequency, the spatial
distribution of the axial strain undergoes changes, which align with the
evolution of the pore pressure (see Figure 4; Figure 5). Specifically, areas
saturated with water exhibit less deformation compared to those
saturated by air. Additionally, as the frequency increases, the count
of less deformable patches escalates.

Finally, we performed an oscillatory-shear test to assess the
influence of frequency on pore pressure, shear strain, and shear
attenuation. As anticipated, the numerical simulations indicate that
oscillatory-shear stress does not induce fluid pressurization.
Furthermore, shear strain is found to be independent of
frequency, and there is no observable shear attenuation. This

corroborates the foundational assumption in poroelasticity
theory: the fluid has no effect on the shear modulus.

3.2 Global P-wave, bulk, and shear moduli

We determined the global P-wave modulus and its corresponding
attenuation (represented by black curves in Figure 6A; Figure 6B), shear
modulus and its corresponding attenuation (black curves in Figures
6C,D), and bulk modulus with its associated attenuation (black curves
in Figure 6E; Figure 6F) by the entire specimen. These are collectively
referred to as the global modulus. The four frequencies (1, 10, 100, and
1,000 Hz) highlighted in Figure 4 and Figure 5 are illustrated as red lines
in Figure 6A and Figure 6B.

Our initial observation revealed that the shear modulus (see
Figure 6C) is independent of frequency, and there is no associated
attenuation (indicating no water effect) (refer to Figure 6D). On the
other hand, the bulk modulus (represented by the black curves in

FIGURE 4
The normalized fluid pressure at frequencies of (A) 1Hz, (B) 10 Hz, (C) 100 Hz, and (D) 1,000 Hz. Total water saturation is 88% (Figure 1). The
predictions are conducted using the fluid distribution shown in Figure 1 and the numerical model.
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Figure 6E) ranges from 24.2 GPa to 31.3 GPa. This span corresponds
to the bulk modulus in both the relaxed and unrelaxed states under
the undrained boundary condition (see Figure 6).

At lower frequencies, the fluid pressure has ample time to
equilibrate, yielding a homogeneously mixed fluid. Consequently,
the bulk modulus of this mixed fluid can be treated as a single-phase
effective fluid bulk modulus by applying Wood’s law (1946):

KLF
f � 1 − S

Kair
+ S

Kwat
( )−1

(25)

Here, S represents the water saturation. S=0.88,
Kair =10–4 GPa, and Kwat =2.25 GPa. This results in KLF

f �
8x10−4 GPa, which is approximately equal to Kair. By
extending Gassmann’s theory (as per Eq. 22) with KLF

f , we
infer a bulk modulus (24.2 GPa) that closely mirrors the
drained bulk modulus (24 GPa). This represents the minimum
value for the bulk modulus, often referred to as the low-frequency
limit or the Gassmann-Wood limit.

At higher frequencies, there is insufficient time for fluid flow and
pressure equalization. Under these conditions, individual fluid
phases are effectively isolated, allowing for the use of Eq. 22 to
define an undrained bulk modulus for each region saturated by its
respective fluid. Following this, Hill’s law (1963) can be used to
define an effective bulk modulus for the entire sample:

KHF � S

Ku + 4/3μ + 1 − S

Kd + 4/3μ( )−1
− 4/3μ (26)

Here, Kd represents the drained bulk modulus and Ku is the
undrained bulk modulus fully saturated with water (Mavko and
Mukerji, 1998). This upper limit, referred to as the Gassmann-Hill
limit, results in KHF � 31.3 GPa in our case, which is less than Ku �
32.5 GPa. Both the drained bulk modulus and the Gassmann-Hill limit
are depicted as dashed grey lines in Figure 6E.

In a short summary, the bulkmodulus of the entire sample escalates
from the Gassmann-Wood limit to the Gassmann-Hill limit with
increasing frequency. The dispersion is associated with an

FIGURE 5
Distribution of axial strain at frequencies of (A) 1Hz, (B) 10 Hz, (C) 100 Hz and (D) 1,000 Hz. Simulations are done using the numerical test combing
with the fluid distribution shown in Figure 1B.
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attenuation (represented by the black curve in Figure 6F) peaking at
0.075 at 20 Hz. Lastly, we plot the P-wave modulus and its
corresponding attenuation as functions of frequency in Figures 6A,B.
As the P-wave modulus is a linear amalgamation of the shear and bulk
moduli, its behavior closely mirrors that of the bulk modulus.
Specifically, the P-wave modulus increases from 44 GPa to 52 GPa,
accompanied by a peak attenuation of 0.045 at 20 Hz.

3.3 Numerical prediction vs experimental
measurements

In numerous laboratory experiments (e.g., Batzle et al., 2006;
Adelinet et al., 2010; Mikhaltsevitch et al., 2015; Sun et al., 2018),
researchers measure the strain’s evolution with frequency under
oscillatory stress using local strain gauges. This approach yields a
locally measured bulk modulus. To emulate such experiments, we
average strain over a span of 6 mm—the typical length of a strain

gauge—and simulate four strain gauges that are averaged. These
gauges are situated at the sample’s half-length (represented by red
lines in Figure 1C), a quarter-length from the bottom (blue lines in
Figure 1C), and a quarter-length from the top (green lines in
Figure 1C). The results are presented in Figure 6E: In general, the
local bulk modulus and attenuation measured at the midpoint (50%,
red curve) and three-quarters (75%, green curve) of the sample length
closely align with the bulk properties of the entire sample (black
curve). However, the frequency-dependent evolution of the local bulk
modulus at one-quarter (25%, blue curve) of the sample deviates
significantly from the evolution of the global bulk modulus (black
curve). Furthermore, the high-frequency limit of local measurements
differs from the Gassmann-Hill limit, as the strain gauges only capture
the effects of local saturation. Consequently, high-frequency results
may approach the undrained bulkmodulus fully saturated with water,
which surpasses the Gassmann-Hill limit. Interestingly, the disparity
between local and global measurements in our study is not as marked
as in Chapman and Quintal (2018). This reduced difference can likely

FIGURE 6
Elastic moduli of the entire sample and corresponding attenuation versus frequencies. (A) P-wave modulus; (B) P-wave attenuation; (C) shear
modulus; (D) shear attenuation; (E) bulk modulus; (F) bulk attenuation. Experimental data from Sun et al. (2022) are plotted (square dots and diamond
dots). The uncertainty of the measured bulk modulus is 6.4% in the seismic band and 2% at the ultrasonic frequency. In (E) and (F), in addition to the bulk
modulus of the entire sample, we simulate the local bulkmodulusmeasured by strain gauges located at themiddle of the sample (red dashed line), at
a quarter length from the bottom (blue dashed line) and at a quarter length from the top (green dashed lines). The Gassmann-Hill and Gassmann-wood
limits are shown in (E) as dashed lines. Finally, we add a 2D numerical simulation (grey lines in (E) and (F)) to highlight the mismatch between a 2D (grey
curve) and a 3D (black curve) numerical simulation.
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be attributed to i) our approach of consolidating local results from
four strain gauges, which serves to lessen the discrepancy between
local and global responses, and ii) a comparatively uniform air/water
distribution in our experiment, as opposed to the more varied
distribution seen in Chapman and Quintal’s work (2018).

The progression of the moduli with frequency for the Indiana
sample, saturated to 88% (Figures 1A,B), was studied by Sun et al., 2022.
We chose the Indiana sample for this investigation due to its lack of
micro-cracks, thus eliminating the squirt-flowmechanism (Borgomano
et al., 2019). In these tests, strainmeasurements were taken by averaging
readings from four strain gauges situated in the half-length of the
specimen. We have represented the experimental data in Figure 6 with
black square dots. Figures 6C,D juxtapose the projected and observed
values of the shear modulus and attenuation. The frequency-
independent shear modulus (depicted by the black curve in
Figure 6C) aligns with the measurements (square dots in Figure 6C)
spanning the seismic bands (0.1–100 Hz) and ultrasonic frequency
(1MHz). Additionally, the predicted shear attenuation (black curve in
Figure 6D) aligns with the measurement (square dots in Figure 6D),
given that the measurement error range for attenuation is within 0.02.

Figures 6E,F juxtapose the anticipated and actual measurements
of the bulk modulus and attenuation. Generally, there’s an excellent
agreement between the measurements and the numerical
predictions, as illustrated by the black square dots and red
curves. The numerical simulation, based on the CT-scan images,
accurately replicates i) the dispersion of the modulus and ii) both the
low and high-frequency limit. There’s also a strong correspondence
between the measured attenuation and the numerical simulation.
This comparison between the numerical simulation and
experimental data confirms the efficacy of the method detailed in
this paper in predicting mesoscopic dispersion and attenuation.

3.4 2D model vs 3D model

We now turn to comparing the results derived from 2D and 3D
numerical simulations. Utilizing the YZ section of the CT image
(Figure 1D), the bulk modulus and attenuation for the 2D model
were computed. The global response of the 2D model is
determined by averaging the strain across the entire section. As
shown by the solid gray line in Figure 6F, the prediction using the
2D model exhibits a higher critical frequency (100 Hz) and peak
attenuation (0.08) compared to the 3D model (black curve in
Figure 6F). Furthermore, the bulk modulus derived from the 2D
model (solid gray line in Figure 6E) deviates from the one obtained
from the 3D model (black curve in Figure 6E). The discrepancy
between the 2D and 3D results is attributed to the fluid flow in the
ZX and ZY direction, which is not accounted for in the 2D
numerical simulation. This finding elucidates the mismatch
observed by Sun et al. (2022) between experimental data and
numerical simulation, which can be attributed to their use of a
2D model.

4 Conclusion

In this paper, we introduce a novel method aimed at predicting
velocity dispersion and attenuation attributable to mesoscopic flow,

leveraging actual fluid distribution data derived from CT images. The
numerical model is initially established by meshing CT images through
a technique adept at handling intricate geometries and non-uniform
material properties, thus effectively bypassing element intersections, a
common issue associated with AVIZO. To find the solution for the
numerical model governed by Biot’s equations, we use a hybrid method
that significantly curtails memory cost compared to the LU matrix
factorization method.

The solution from the numerical model forecasts the evolution of
pore pressure distribution with frequency, thereby anticipating the
advancement of the elastic moduli and their attenuation. We also
model the development of the moduli for the entire sample (global
moduli) as well as those measured by a strain gauge (local moduli). The
discrepancies observed between local and global responses can be
attributed to the heterogeneity in fluid distribution. Importantly, the
3Dmodel’s predictions are validated by experimental data collected from
Indiana limestone.

The presented method successfully addresses issues pertaining
to memory consumption and calculation time, thereby setting the
stage for quantifying the relationship between fluid distribution and
seismic attenuation. This innovative approach holds the potential to
serve as a robust tool for upscaling at the reservoir scale.
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