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Wave velocity profiles are significant for various fields, including rock engineering,
petroleum engineering, and earthquake engineering. However, direct
measurements of wave velocities are often constrained by time, cost, and site
conditions. If wave velocity measurements are unavailable, they need to be
estimated based on other known proxies. This paper proposes machine
learning (ML) approaches to predict the compression and shear wave velocities
(VP and VS, respectively) in Japan. We utilize borehole databases from two
seismograph networks of Japan: Kyoshin Network (K-NET) and Kiban Kyoshin
Network (KiK-net). We consider various factors such as depth, N-value, density,
slope angle, elevation, geology, soil/rock type, and site coordinates. We use three
ML techniques: Gradient Boosting (GB), Random Forest (RF), and Artificial Neural
Network (ANN) to develop predictive models for both VP and VS and evaluate the
performances of the models based on root mean squared errors and the five-fold
cross-validation method. The GB-based model provides the best estimation of VP

and VS for both seismograph networks. Among the considered factors, the depth,
standard penetration test (SPT) N-value, and density have the strongest influence
on the wave velocity estimation for K-NET. For KiK-net, the depth and site
longitude have the strongest influence. The study confirms the applicability of
commonly used machine-learning techniques in predicting wave velocities, and
implies that exploring additional factors will enhance the performance.
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1 Introduction

Compression and shear wave velocities (VP and VS, respectively) are often employed to
assess the properties of underground rock environments and to design geotechnical projects.
VP and VS are significant in various fields such as rock mechanical property calculations
(Chang et al., 2006; Ameen et al., 2009; Jamshidi et al., 2018; Rahman and Sarkar, 2021), pore
structure identification (Eberli et al., 2003; Panza et al., 2019), lithology determination
(Pickett, 1963; Deng et al., 2017), fluid saturation (Si et al., 2016; Roy et al., 2017; Ding et al.,
2019), seismic liquefaction (Samui et al., 2011; Karthikeyan and Samui, 2014; Jena et al.,
2023), seismic site responses, and ground motion predictions (Fiorentino et al., 2019;
Harmon et al., 2019; Kim, 2019). Such wave velocities are measured by invasive tests such as
down-hole test, cross-hole test, and suspension PS logging, as well as non-destructive tests
such as Multichannel Analysis of Surface Wave (MASW), Spectral Analysis of Surface Wave
(SASW), and Multichannel Simulation with One Receiver (MSOR). However, these tests are
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often constrained by time, cost, and site conditions (Hasancebi and
Ulusay, 2007; Anemangely et al., 2019; Xiao et al., 2021).

To address the problems mentioned in the prior paragraph,
numerous researchers have proposed indirect methods to estimate
VP or VS. For instance, several studies have presented the
relationships between VP and the mechanical properties of rock
materials, such as uniaxial compressive strength (Pappalardo, 2015),
density (Yasar and Erdogan, 2004), and porosity (Sousa et al., 2005).
Various correlation models between VS and standard penetration
test (SPT) resistance (N-value) have also been suggested (e.g., Ohta
and Goto, 1978; Andrus et al., 2004; Akin et al., 2011; Sil and Haloi,
2017; Bajaj and Anbazhagan, 2019). For example, Kwak et al. (2015);
Tsai et al. (2019) inferred VS using empirical equations conditioned
on the N-value and other independent variables such as vertical
effective stress and soil type. Rahimi et al. (2020) presented the effect
of soil aging on SPT-VS correlations. Furthermore, researchers have
predicted the time-averaged shear-wave velocity in the upper 30 m
of soil deposits (VS30) based on various proxies, such as topographic
slope, surface geology, elevation, and terrain type (e.g., Kottke et al.,
2012; Parker et al., 2017; Kwok et al., 2018; Heath et al., 2020).

The demand for Machine learning (ML) applications has been
increasing as huge volumes of data are accessible over a computer
network. ML algorithms are well suited for making regression
models on complex data-driven problems. Researchers have
studied VP or VS estimation based on ML (e.g., Singh and Kanli,
2016; Paul et al., 2018; Anemangely et al., 2019; Dumke and Berndt,
2019; Wang and Peng, 2019; Zhang et al., 2020). In particular,
Dumke and Berndt (2019) used the Random Forest (RF) regression
algorithm to estimate VP as a function of depth on global marine
locations. They used data from 333 boreholes and considered
38 geological variables, such as site coordinates, sediment
thickness, and depth below the seafloor. They validate the ML
model using 10-fold cross-validation (CV). Paul et al. (2018)
used an Artificial Neural Network (ANN) algorithm on data
from five wells in India to estimate the VP. Singh and Kanli
(2016) used an ANN to estimate VS in an oil field located in
southeastern Turkey. Anemangely et al. (2019) adopted the least
square version of the support vector machine (LSSVM) algorithm
combined with three optimization algorithms to predict VS using
data from two oilfields located in the southwest of Iran.

This study aims to train the three ML algorithms (i.e., gradient
boosting, random forest, and artificial neural network) to estimate
both VP and VS in Japan. We utilize borehole databases, covering all
of Japan from two seismograph networks: Kyoshin Network
(K-NET) and Kiban Kyoshin Network (KiK-net). We consider
various factors such as depth, N-value, density, slope angle,
elevation, geology, soil/rock type, and site coordinates. We
quantitatively evaluate the prediction performances of the ML-
based algorithms based on five-fold cross-validation and evaluate
the relative importance of the factors.

2 Data

In this study, we obtained site data from two seismograph
networks of Japan, Kyoshin Network (K-NET) and Kiban
Kyoshin Network (KiK-net), where the National Research
Institute for Earth Science and Disaster Resilience (2019) has

operated since 1996. Each site of these two networks has profiles
of VP, VS, and soil/rock types. In addition, the K-NET site has
profiles of standard penetration test (SPT) resistance values
(N-values) and density with a depth interval of 1 m. The energy
efficiency is unknown for the borings at the K-NET sites (Kwak et al.,
2015). Therefore, we utilized unnormalized N-values. Because of the
inconsistent datasets between the two seismograph networks, we
considered training the ML models for each network.

For the datasets, the velocity profile data were resampled to a
depth interval of 1 m. For all of the K-NET sites, a minimum depth
interval is 1 m. Furthermore, approximately 43% of KiK-net sites
have minimum depth intervals of 1 m or shorter. Therefore, we
consider that resampling the profile data into a depth interval of 1 m
is reasonable. We also screen the suspicious profile data such as
those with the velocity of zero. In addition to the depth-dependent
variables provided by the networks, we also considered the following
five depth-independent variables: site latitude, site longitude,
geology, topographic slope angle, and elevation. The geology map
was obtained from the seamless digital geological map of Japan (1:
200,000) (Geological Survey of Japan, 2015), and the slope angle and
elevation were obtained from the digital elevation map (DEM) of the
Shuttle Radar Topography Mission (SRTM) with a resolution of
30 m. We then used the nine independent variables (i.e., site
longitude, site latitude, geology, slope angle, elevation, N-value,
density, depth, soil/rock type) for the K-NET, and seven (i.e., site
longitude, site latitude, geology, slope angle, elevation, depth, and
soil/rock type) for the KiK-net sites, as summarized in Table 1.

We considered all sites where all of the variables were available:
996 K-NET sites with 15,253 data samples for each of VP and VS and
677 KiK-net sites with 136,315 data samples for VP and 132,855 data
samples for VS. The dataset information is summarized in Table 1.
The considered sites (i.e., recording stations) covering Japan are
shown in Figure 1.

The distributions of the numerical variables for the K-NET and
KiK-net datasets are shown in Figure 2 and Figure 3, respectively.
The depth to the bottom of the borehole (Dbh) at the K-NET sites
ranges from 5 to 20 m, with 83% concentration at 10 m and 20 m
(Figure 2A). The elevation ranges from −3 m to 1,502 m, 75% of
which are positioned under 179 m, as shown in the boxplot above
the histogram (Figure 2B). The slope angle ranges from 0° to 30.87°,
with 75% below 5.26° (Figure 2C). The 96 outliers are observed as
circular forms in each boxplot (Figures 2B, C). The N-value with
depth ranges from 0 to 500 with 69% below 90, where the four
outliers are observed: three of which are 375, and one is 500
(Figure 2D). The density with depth is distributed from 0.69 g/
cm3 to 2.82 g/cm3 with 75% under 1.98 g/cm3, in which 306 outliers
are detected (Figure 2E). The VS is distributed from 37 m/s to
2,350 m/s with 75% slower than 450 m/s (Figure 2F). The VP

ranges from 140 m/s to 5,270 m/s with 75% slower than 1,800 m/
s (Figure 2G). For categorical variables in K-NET sites in our dataset,
12 unique soil/rock types according to depth and 110 unique types of
geology are observed.

Figure 3A depicts the Dbh of the KiK-net sites ranging from 92 m
to 2,000 m, with 75% under 199 m, where 46 outliers are observed.
Figure 3B presents the site elevation ranging from −5 m to 1,302 m
with 75% below 330 m, where 34 outliers are detected. Figure 3C
shows the slope angle that ranges from 0° to 36.23° with 75% under
10.42°, where 12 outliers are observed. Figure 3D shows the VS
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TABLE 1 Datasets used in this study.

Seismograph network Dependent variables Independent variables Description

K-NET VP Site longitude 1) 996 sites (VP)

VS Site latitude 2) 996 sites (VS)

Geology 3) 15,253 data samples (VP)

Slope angle 4) 15,253 data samples (VS)

Elevation 5) Velocity profiles were sampled at every 1-m depth interval

N-value

Density

Depth

Soil/rock type

KiK-net VP Site longitude 1) 677 sites (VP)

VS Site latitude 2) 675 sites (VS)

Geology 3) 136,315 data samples (VP)

Slope angle 4) 132,855 data samples (VS)

Elevation 5) Velocity profiles were sampled at every 1-m depth interval

Depth

Soil/rock type

FIGURE 1
Locations of K-NET and KiK-net recording sites used in this study.
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ranging from 20 m/s to 3,500 m/s with 75% slower than 1,720 m/s.
Figure 3E presents the VP that ranges from 50 m/s to 6,100 m/s with
75% slower than 3,830 m/s. For categorical variables, soil/rock type
with depth has 588 unique features, among which the features
include the various combinations of several soil types, such as
‘sand and gravel’, ‘shale with gravel’, and ‘sandstone and
mudstone’. Furthermore, 119 unique geological classes are observed.

3 Machine learning (ML) models

The ML model uses the following variables: the depth and
depth-related information (i.e., N-value, density, soil/rock type),
and site information (i.e., coordinates, slope angle, elevation,

geology) described in Table 1 to infer VP or VS on a specific
depth (e.g., 15 m) of the site. This section describes the ML
algorithms utilized for VP and VS prediction. We illustrated them
using all K-NET data samples for VS as an example. We used Scikit-
learn (Pedregosa et al., 2011) for the implementation of Gradient
Boosting (GB) and Random Forest (RF) algorithms and the
Tensorflow (Abadi et al., 2016) for the Artificial Neural Network
(ANN) algorithm. Note that comparing these three algorithms is a
popular practice in the field of machine learning-based studies (e.g.,
Krauss et al., 2017; Kim et al., 2020; Jun, 2021; Seo et al., 2022). These
methods represent different types of machine learning algorithms
and have been proven effective in handling complicated
relationships within various datasets. Given their proven
reliability, we employed such methods to assess the

FIGURE 2
Variables distribution for K-NET dataset used in this study: (A) depth to the bottom of the borehole (Dbh), (B) elevation, (C) slope angle for the sites
(i.e., 996 sites), and (D) N-value, (E) density, (F) VS, (G) VP for data samples (i.e., 15,253 data samples). In the boxplot above the histogram, the blue line
represents a median value, and the box represents 25 and 75 percentiles of the data.
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FIGURE 3
Variables distribution for KiK-net dataset used in this study: (A) depth to the bottomof the borehole (Dbh), (B) station elevation, (C) station slope angle
for the sites of VP dataset (i.e., 677 sites), and (D) VS, (E) VP for data samples (i.e., 132,855 and 136,315 data samples, respectively). In the boxplot above the
histogram, the blue line represents a median value, and the box represents 25 and 75 percentiles of the data.

FIGURE 4
Example of the decision tree using the variables of the K-NET dataset.
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FIGURE 5
Architecture of ensemble learning methods (Random Forest and Gradient Boosting).

FIGURE 6
Architecture of the ANN-based model consists of an input layer, two hidden layers with 200 nodes (N), and an output layer. The weights between
nodes (w) are illustrated.
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generalization performance in predicting velocities on the dataset
utilized in this study. Furthermore, the hyperparameters used in this
study were taken from the suggestions mentioned in the following
subsections to present the results of baseline solutions, serving as a
fundamental benchmark for assessing their effectiveness in
predicting velocities.

3.1 Gradient boosting (GB)

Before we start explaining the GB, we describe the decision tree
algorithm, which is the main concept of GB and RF. The decision
tree consists of nodes, where a tree is grown on the training dataset.
The tree contains three types of nodes: root node, internal node, and
leaf node, where the root and internal nodes play a role in splitting
the data samples, and the leaf node makes the final decision for the
prediction value.

We presented an example tree using the independent variables
of the K-NET, as shown in Figure 4 to explain the internal structure.
First, the root node splits 15,253 independent data samples into two
internal nodes by asking if the N-value ≤ 45.5. If the condition is
true, the internal node condition (i.e., N-value ≤ 14.75) works to
further divide the allocated data samples into a leaf node (R1) and
another internal node. If the root node condition is false, the data
samples are further divided by the internal node (i.e., depth ≤
4.5 m) into a leaf node (R4) and another internal node. Following the

if-else rules, the model finally creates a tree that consists of a root
node, four internal nodes, and six leaf nodes (R1, R2, . . ., R6).

One may wonder how the decision tree model creates the
splitting criterion of the node. The model grows a tree by
splitting the data samples into two groups by finding the
threshold that minimizes the mean of squared errors (MSE),
which is calculated as

MSE � 1
n
∑J
j�1
∑n
i�1

VS
mea
i − VS

est
Rj

( )2

(1)

where VS
mea
i is the measured VS associated with ith data sample of

the K-NET (i.e., i = 1, 2, . . ., n; n = 15,253), andVS
est
Rj

is the estimated
VS determined by a specific leaf node, Rj, where j is the leaf node
index (j = 1, 2, . . ., J).

The estimated VS (Vest
S ), which is an output of the trained tree

model (T), can be expressed by the following equation:

Vest
S � T xi( ) � ∑J

j�1
cjI xi ∈ Rj( ) (2)

where xi represents the independent variables of the ith data sample
of the K-NET, j and J are the specific leaf node number and the total
number of leaf nodes (i.e., six leaf nodes for the example tree in
Figure 4), respectively, cj is the predicted dependent variable decided
by the specific region Rj, and I is an indicator function that takes a
value of 0 or 1 (i.e., I � 1 if x ∈ Rj and 0 otherwise).

FIGURE 7
Measured velocity values (i.e., Vmea

P and Vmea
S ) versus velocity values estimated by the threeML-basedmodels (i.e., Vest

P and Vest
S ) for the K-NET. The 1:

1 lines are depicted as red dashed lines. The color bar on the right side represents the data density. The data were aggregated from five test folds from the
five experiments (i.e., five derived ML models).
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However, a single decision tree model is prone to overfitting on a
training dataset, resulting in a high variance in new data samples
(Geurts et al., 2009; Czajkowski and Kretowski, 2019). The GB
algorithm, proposed by Friedman (2001); Friedman (2002), is an
ensemble of weak models (i.e., decision trees) and provides robust
model performance over the overfitting problem. GB grows many
decision trees and connects them in order like links in a chain, where
each new tree is grown to modify a mistake made by a previous tree.
An example of a GB architecture is presented in Figure 5.

The trees in the GB estimate the residuals between Vmea
S and Vest

S

instead of the VS itself and are trained to minimize the residuals. The
specific steps for training the GB model are as follows. Step 1: The GB
has a constant value (F0(x)), which is Vmea

S from the training dataset.
Step 2: From b � 1 to B, where B is the last tree index, the GB repeats
the following steps (3–5) for successive trees (T1, T2, . . . , TB). Step 3:
An individual tree (Tb(x)) calculates the residual data for each data
sample as:

rib � Vmea
Si

− Fb−1 xi( ) (3)

where rib is a residual associated with data sample i in the dataset
(i.e., i � 1, 2, . . . , 15, 253) and tree index b, and Fb−1(xi) is the
prediction value of the previous GB model (Vest

Si,b−1 ). Step 4: After the
residual dataset (r1,b, r2,b, . . . , r15253,b) for Tb(x) is developed, Tb(x) is
trained on the dataset, (xi, rib){ }15253i�1 , instead of (xi,Vmea

Si
){ }15253

i�1 . The
leaf node (Rjb) is determined during training, where j is the leaf node
index of the tree,Tb(x). Themean residual value predicted inRjb is rjb.

The rjb is subsequently reduced by a learning rate (v), which is a
constant value to reduce the contribution of each tree. Therefore, the
tree (Tb(x)) can be described as follows:

Tb x( ) � v∑Jb
j�1
rjbI x ∈ Rjb( ) (4)

where Jb is the number of leaf nodes in Tb(x). The equation returns
the v*rjb according to independent data (x). Step 5: After a tree is
built, it is added to the previous tree. The updated GBmodel (Fb(x))
can be described as follows:

Fb x( ) � Fb−1 x( ) + Tb x( ) � F0 x( ) + T1 x( ) + . . . + Tb x( ) (5)
After the GB finishes developing the last tree (TB(x)), we finally

obtain the FB(x), which is the complete GB model ready to use for
predicting VS (Vest

S ). In this study, we set the number of trees (b) to
100 and the learning rate (v) to 0.1, as suggested by Pedregosa et al.
(2011).

3.2 Random forest (RF)

The RF algorithm, proposed by Breiman (2001), is a bootstrap
aggregation (bagging) ensemble algorithm that grows many decision
trees using a random subset of the data. Unlike GB, RF trains many
weak trees in a parallel manner, where the trees are not affected by
each other while being trained. Each tree in the GB predicts the

FIGURE 8
Measured velocity values (i.e., Vmea

P and Vmea
S ) versus velocity values estimated by the three ML-based models (i.e., Vest

P and Vest
S ) for the KiK-net. The

1:1 lines are depicted as red dashed lines. The color bar on the right side represents the data density. The data were aggregated from five test folds from
the five experiments (i.e., five derived ML models).
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residual value, but the tree in the RF directly returns VS
est. An

example of an RF architecture is presented in Figure 5. From b � 1 to
B, each tree (T1, . . . , TB) is grown on bootstrap samples
(D1, . . . , DB), where Db is the randomly sampled subset data
from the training dataset.

While Tb is trained on Db, the number of variables (p*) in Tb is
randomly chosen from the total number of independent variables
(p) to minimize the MSE. The node is further split into two child
nodes after choosing the best split points among p* number of
variables.

After RF completes training all trees, it makes a final decision of
VS

est at a new data sample x by averaging the multiple results of Tb,
which can be described as

VS
est � 1

B
∑B
b�1
Tb x( ) (6)

In this study, we set the number of trees (b) to 100 and p* � p
(i.e., all variables are considered), as suggested by Pedregosa et al.
(2011).

3.3 Artificial neural network (ANN)

The ANN model comprises a collection of nodes grouped in
layers, where each node in a layer is connected to the nodes in the

next layer. The ANN model includes three types of layers: input
layer, hidden layer, and output layer. Figure 6 presents an ANN
model containing the two hidden layers used in this study. The
number of input variables is nine for K-NET and seven for KiK-
net, as described in Table 1. However, we applied the binary
encoding method to categorical variables. The total number of
variables was increased to 18 for the K-NET and 22 for the KiK-
net to train ML models (i.e., GB, RF, and ANN). A detailed
explanation of this is provided in the subsequent section.
Therefore, the number of input nodes is 18 for K-NET and
22 for KiK-net. We set the number of nodes in the hidden
layers to 200, as inspired by Kim et al. (2020). In Figure 6, the
values of each node for hidden layer 1 (h(1)j ), hidden layer 2 (h(2)k ),
and output layer (Vest

s ) can be described as

h 1( )
j � f 1( ) ∑18

i�1
wjixi + bj( )⎛⎝ ⎞⎠,

h 2( )
k � f 2( ) ∑200

j�1
wkjh

1( )
j + bk( )⎛⎝ ⎞⎠,

Vest
S � ∑200

k�1
wnkh

2( )
k + bn( ) (7)

where xi is the input value of the ith node in the input layer, wji is
the weight between ith node in the input layer and jth node in the
hidden layer 1, wkj is the weight between jth node in hidden layer

FIGURE 9
REC curves for individual models: (A) VP and (B) VS for K-NET, and (C) VP and (D) VS for KiK-net. Each curve represents the average accuracy across
the five test folds from the five experiments (i.e., five derived ML models), with the specified deviation.
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1 and kth node in hidden layer 2, andwnk is the weight between kth

node in hidden layer 2 and nth node in the output layer
(i.e., n � 1). bj, bk, and bn are the biases of jth node in hidden
layer 1, kth node in hidden layer 2, and nth node in the output
layer, respectively.

Each node in an input layer receives an independent variable
(e.g., the N-value). At each node, the value (x) is multiplied by the
corresponding weight (w), which is summed with other values
multiplied by other weights in the same layer. A bias (b) is then
added to the sum of all values multiplied by each weight in the
layer. The bias provides a better generalization ability to the
model by enhancing the fitting flexibility. Then, the activation
function (f) is applied to the sum of (x × w + b), where f gives a
non-linear property to help the ANN model capture the complex
data patterns. The activation function outputs a value that
becomes the input value of the node for the next layer.

We applied a rectified linear unit (ReLU) to f(1) and f(2), where
the ReLU is a widely used non-linear activation function (Boob et al.,
2020). Specifically, the ReLU is defined as f(X) � max(0,X), where
f(X) � 0 if X< 0 or f(X) � X if X≥ 0.

4 Model training strategy

Before training the model, the categorical variables (i.e., geology
and soil/rock type) needed to be transformed into numerical
variables. We mapped the variables into integers, which were
then encoded in a binary format. This method is called binary
encoding, which has been popularly utilized in applications (e.g.,
Jackson and Agrawal, 2019; Yousef et al., 2019). Here is an example
using the soil/rock type in the K-NET dataset, which includes
12 unique features (i.e., 12 IDs). First, the length of the encoding
vector was determined as [log2(12)] � 4. Second, each ID is
converted into binary format, e.g., ‘sandy soil’ (ID = 1) to [0, 0,
0, 1], ‘fill soil’ (ID = 6) to [0, 1, 1, 0], and ‘volcanic ash clay’ (ID = 12)
to [1, 1, 0, 0]. Each bit number in the vector, for example, 1, 1, 0, and
0 in ‘volcanic ash clay’ (ID = 12) work as independent variables.
Using this method, the total number of input variables was increased
from 9 to 18 for the K-NET dataset and from 7 to 22 for the KiK-net
dataset.

We applied the five-fold cross-validation (CV), which has been
widely utilized in model evaluation (Berrar, 2019). This approach

FIGURE 10
Maps for RMSE values of the GB-based model for (A) VP and (B) VS of all of the K-NET sites, and those for (C) VP and (D) VS of all of the KiK-net sites.
The data for the sites were aggregated from five test folds of the five experiments (i.e., five derived ML models). The count numbers of the color-coded
RMSE ranges are presented inside each of the panels.
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assesses the generalization ability of models and prevents overfitting.
The five-fold CV divides the entire dataset randomly into five
roughly equal folds. Then, the model uses four folds for training
and the remaining one fold for testing (i.e., 80% for training and 20%
for test dataset). We repeated for five times: i.e., we developed five
ML models. The test results from these five experiments were
aggregated to evaluate the general performance of theML algorithm.

This study aims to train ML models using the data for some sites
and evaluate the model performance using the data for new sites.
Therefore, all data samples were split based on site locations and not on
whole data samples. Each fold is allocated 20% of the total sites but may
not be divided exactly. With our case as an example, the K-NET sites
were divided into training and testing parts as follows: 797:199 (for four

experiments), and 796:200 (for one experiment). For the KiK-net
dataset, the VP data were divided into 541:136 (for two experiments)
and 542:135 (for three experiments), andVS data were separated equally
for all experiments: 540 for training and 135 for testing.

5 Validation

5.1 Comparison between predictions and
measurements

The three ML-based models developed in this study were
evaluated for each test fold after training. Figure 7 presents the

FIGURE 11
Measured wave velocity profiles (Vmea

P and Vmea
S ) versus the velocity profiles predicted by the GB-based model (Vest

P and Vest
S ) at the nine K-NET sites

(A–I) from five test folds.
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measured wave velocities (i.e., Vmea
P and Vmea

S ) versus the estimated
values (Vest

P ; Vest
S ) using the three models for the entire K-NET test

data samples. Note that these data were aggregated from five test
folds from the five experiments (i.e., five derived ML models). As a
performance indicator for VS prediction, we calculated the root
mean squared error (RMSEVS) as:

RMSEVS m/s( ) �

1
n
∑n

i�1 Vmea
Si − Vest

Si( )2√
(8)

where Vest
Si

is the estimated VS value for the ith data sample, Vmea
Si

is
the corresponding measurement, and n is the data sample size. The
RMSE values calculated for each of the five test folds were averaged.
The RMSEVP was computed in the same manner. The RMSEVS and

RMSEVP are the smallest for the GB-based model and the largest for
the ANN-based model.

Figure 8 presents the measured wave velocities (i.e., Vmea
P and

Vmea
S ) versus the estimated values (Vest

P ; Vest
S ) using the three models

for the KiK-net dataset. RMSEVS and RMSEVP are the smallest for
the GB-based model indicating a stronger alignment along the 1:
1 line, and the largest for the RF-based model. The results for
individual experiments are included in Supplementary Appendix Ⅰ
of the Electronic Supplement.

The RMSE depends on the study area and data features
including the number of sites and velocities distribution. Many
previous studies have utilized varying ranges of VS to make
predictions for different geological regions, resulting in varied

FIGURE 12
Measured wave velocity profiles (Vmea

P and Vmea
S ) versus the velocity profiles predicted by the GB-basedmodel (Vest

P and Vest
S ) at the nine KiK-net sites

(A–I) from five test folds.
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RMSEs. For example, Ataee et al. (2019) utilized uncorrected and
corrected SPT-N with 88 boreholes to predict VS. The results using
uncorrected SPT-N and VS under approximately 1,200 m/s
presented that the RMSEs of the models ranged from 94.512 to
104.149 m/s. Those using corrected SPT-N and VS under
approximately 600 m/s presented RMSEs ranging from 59.423 to
67.473 m/s. Ghorbani et al. (2012) utilized corrected SPT blow
counts, and effective overburden stress to predict VS. They used
80 boreholes, where the VS ranges from 66 to 363 m/s. The RMSE of
the predictionmodel is 37.2 m/s. Sun et al. (2013) used tip resistance,
sleeve friction, pore pressure, and overburden effective stress to
establish the correlation with VS. They utilized 17 sites, where the
measured VS is under approximately 400 m/s. The RMSEs of the
correlation forms are from 30.42 to 38.57 m/s. Furthermore, Dumke
and Berndt (2019) used 38 types of variables (e.g., depth below
seafloor, surface heat flow, and distance to nearest spreading ridge)
to predict VP. They used 333 sites containing VP above 4,000 m/s,
where the velocity range is not mentioned. The RMSEs vary
approximately between 400 and 500 m/s depending on the
considered variables. The RMSE presented in this paper may be
reasonable, given that the prediction models were made and tested
for the larger number of sites distributed throughout Japan, which
includes various study areas and a wider range of velocities than

other studies. However, discrepancies have been observed, especially
for the KiK-net: VP dataset, implying that more region-specific
depth-related variables may be needed to infer the velocity
profiles better.

We further investigated the relationship between the measured
and estimated velocities by employing the Regression Error
Characteristic (REC) curve (Bi and Bennett, 2003). The REC
curve depicts the relationship between the specified deviation
tolerance on the x-axis, which is the error tolerance, and the
y-axis for the proportion of data with prediction deviations
smaller than the corresponding deviation. The resulting curve
provides an estimation of the cumulative distribution function of
the error. Furthermore, the REC curve quantifies the performance of
the model by computing the area under the curve (AUC). A higher
AUC value indicates better model performance. Figure 9 illustrates
the REC curves for each model. The curves were individually
computed for the five test folds from the five experiments and
were then averaged to make a single curve. The AUC was
subsequently calculated based on the single curve, representing
the general performance of each model on the dataset. The
results for K-NET and KiK-net, both at VP and VS, reveal that all
AUCs are above 0.702 for the specified deviations ranging from 0 to
1.0. Notably, the GB-based model has the highest AUC across all

FIGURE 13
Residuals of the VS estimated by the GB-basedmodel for the K-NET stations with respect to all the continuous variables: (A) depth; (B) elevation; (C)
slope angle; (D) N-value; and (E) density. The data were aggregated from five test folds from the five experiments (i.e., five derived ML models).
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cases, indicating its relatively strong predictive performance within
the deviation range.

Figure 10 presents maps of RMSEs for the GB-based model for
all the sites considered in this study, which were aggregated from five
test folds from the five experiments (i.e., five derived ML models).
Overall, the models for VP and VS of the K-NET sites (Figures 10A,
B) indicate that almost 80% of the sites have RMSE values within the
range of (0, 500] for VP, and almost 99% are within the same range
forVS. In contrast, for KiK-net (Figures 10C, D), approximately 46%
of the sites have RMSE values within the (500, 1,000] range for VP,
and about 63% are within the (0, 500] range for VS. It can be noticed
that the RMSE values larger than 1,000 m/s for the estimated VP

values at the K-NET sites are concentrated in the area around 139 °E
and 35.5 °N (Figure 10A). Furthermore, the RMSE values greater
than 1,500 m/s and 1,000 m/s for the estimated VP and VS values,
respectively, at the KiK-net sites are mainly clustered in the region
around 137 °E and 35 °N (Figures 10C, D). The RMSEs for the KiK-
net sites show a certain pattern along the east coast (from 140 to
142 °E and from 36 to 40 °N) (see Figure 10D). These observations
imply that there could be factors that can affect theVS and VP values,
other than those considered in this study.

Figure 11 shows examples of the wave velocity profiles predicted
by the GB-based model compared with the measured profiles at the

nine K-NET sites. The eight and one sample profiles were randomly
selected from theVS RMSE bands of (0, 500] m/s and (500, 1,000] m/
s, respectively, from the entire test folds from five experiments. The
wave velocities predicted for the HKD024, FKO015, and
KNG008 sites (Figures 11A–C, respectively) are in good
agreement with the measured profiles when compared to the
other illustration, producing RMSE values ≤186 m/s. In contrast,
there are some discrepancies between the measured and predicted
profiles at certain depth ranges for the rest of the sites. At GNM014,
VP is overestimated at depths of up to 9 m (Figure 11D). At
NGN025, the wave velocities are underestimated at depths
greater than 13 m (Figure 11E). At EHM012, VP is
underestimated at depths from 2 to 6 m (Figure 11F). There are
also some discrepancies in the VP profiles at the YMT006, IBR009,
and KGW008 sites (Figures 11G–I, respectively). In detail, the VP is
consistently overestimated across the entire depth range at the
YMT006 site (Figure 11G). At the IBR009 site, VP is
underestimated up to a depth of 5 m (Figure 11H). Similarly, the
KGW008 site demonstrates underestimation up to 3 m and
overestimation at depths beyond 10 m (Figure 11I).

Figure 12 presents examples of the wave velocity profiles
estimated by the GB-based model compared with the measured
profiles at the nine KiK-net sites. The six, two, and one sample

FIGURE 14
Residuals of the VP estimated by the GB-basedmodel for the K-NET stations with respect to all the continuous variables: (A) depth; (B) elevation; (C)
slope angle; (D) N-value; and (E) density. The data were aggregated from five test folds from the five experiments (i.e., five derived ML models).
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profiles were randomly selected from theVS RMSE bands of (0, 500],
(500, 1,000], and (1,500, 2000], respectively, from the entire test
folds from five experiments. The estimated wave velocities for the
HRSH15, KOCH11, IBRH12, and TCGH15 sites (Figures 12A–C, E,
respectively) comparatively match well with the measured profiles,
producing RMSE values ≤388 m/s. Some discrepancies are observed
at specific depth ranges for the other sites. At IBRH07, the wave
velocities are overestimated at depths from 51 m to 650 m and
underestimated at depths from 651 m to 1,050 m (Figure 12D);
however, the estimated wave velocities show relatively close
agreement beyond 1,050 m. At SITH03, the velocities are
overestimated almost throughout the depth (Figure 12F). At
AICH12, the velocities are underestimated at depths greater than
49 m (Figure 12G). Overestimations are observed at the ISKH06 site
for depths greater than 44 m (Figure 12H). For the YMTH08 site,
velocities are overestimated for depths exceeding 18 m, while the VP

is underestimated for depths up to 6 m (Figure 12I).
Some discrepancies were observed in relation to a certain depth

and profile patterns, as shown in Figure 11 and Figure 12. It is
possible that the model could not well predict velocities for sites that
have unusual profile patterns or for those that have not been
frequently used when training or are not included in the training

dataset. The model was trained to reduce the overall error for the
entire sites used in training, so it might not well generalize the
unseen patterns. As seen in the samples in Figure 11 and Figure 12,
the model was trained to predict slower velocities near the ground
surface and faster velocities at greater depths. Furthermore, model
predicts velocities gradually increasing, and does not predict well the
abrupt velocity changes (e.g., Figure 11E; Figure 12G). There are
velocity reversals at depths greater than 44 m at ISKH06
(Figure 12H), and the VP values are unusually faster near the
ground surface at YMTH08 (Figure 12I). It turned out that the
model was not able to capture these profiles.

For the systematic evaluation of discrepancies between
measured and estimated wave velocities, we computed the
residuals for all the continuous variables as

ResVS � ln Vmea
S( ) − ln Vest

S( )
ResVP � ln Vmea

P( ) − ln Vest
P( ) (9)

where ResVS and ResVP are the residuals for VS and VP, respectively.
We also calculated the standard deviations of the residuals and
biases (i.e., mean values of the residuals) for all trained models.

Figure 13 shows the ResVS of the GB-based model for the K-NET
stations, which were aggregated from five test folds from the five

FIGURE 15
Relative variable importance (VI) for the GB-based models for (A) K-NET (VP), (B) K-NET (VS), (C) KiK-net (VP), and (D) KiK-net (VS). The variables are
presented in an order of descending relative VI.
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experiments. The ResVS ranges from −1.798 to 1.677 and is aligned
along zeros with respect to all continuous variables with a small bias
(i.e., −0.066). Figure 14 shows the ResVP of the GB-based model for the
K-NET stations, whichwere aggregated from five test folds from the five
experiments. The ResVP ranges from −1.765 to 1.396 and is also aligned
along with zeros with a bias value of −0.059. The standard deviation
values for ResVS are 0.354, 0.358, and 0.374 for the GB-, RF-, and ANN-
based models, respectively. The standard deviation values for ResVP are
0.360, 0.361, and 0.383 for the GB-, RF-, and ANN-based models,
respectively. The residuals do not show any trend with the considered
variables, indicating that all the variables have certain contributions to
the model, or that some of the variables do not have influence on wave
velocities. Moreover, the results seem reasonable when compared to
those of Kwak et al. (2015), who presented the range of standard
deviation of residuals for VS prediction models made using K-NET for
each soil/rock type, which was from 0.245 to 0.462. Because the ResVS

and ResVP of the GB-based model for KiK-net stations show the same
aspects, we describe the results in Supplementary Appendix Ⅱ of the
Electronic Supplement.

5.2 Variable importance

We examined the contribution levels of the independent
variables to the prediction accuracy of the best model, the GB-
based model. The method is called variable importance (VI), which
is computed as the sum of the decrease in error when a variable splits
a tree node (e.g., a node split by an N-value ≤ 14.75). The variable
importance for variable x (i.e., VI(x)) is calculated as follows:

VI x( ) � 1
B
∑B
b�1

∑
t ∈ Tb,v st( )�x

p t( )Δi t( ) (10)

where b is the tree index (b � 1 to B), t is the node in a specific tree
model (Tb), and v(st) is the variable used for splitting the node in
which st is the splitting criterion (s) at note t. p(t) is the proportion
(Nt
N ) of data samples reaching t, where N is the number of total
training data samples, andNt is the number of data samples at node
t. Δi(t) is the impurity reduction at node t, which can be expressed
as follows:

Δi t( ) � i t( ) − Ntl

Nt
i tl( ) − Ntr

Nt
i tr( ) (11)

where i(t) is the MSE at node t, i(tl) and i(tr) are the MSEs at the
left child node (tl) and right child node (tr), respectively, split from
node t. Ntl and Ntr are the numbers of data samples at tl and tr,
respectively.

Figures 15A, B show the relative VIs for the K-NET independent
variables for the GB-basedmodels. The relative VI was computed by VI
for each variable divided by the total VI for all variables. The VI was
calculated on each test fold, and the VIs for all the five test folds were
averaged. The VIs computed for binary codes were summed for the
categorical variables. Three depth-dependent variables (i.e., depth,
N-value, and density) have the highest VIs for both VP and VS

models. The depth is ranked at the top for the VP model, whereas
the N-value is ranked at the top for the VS model. Figures 15C, D
present the relative VIs for the KiK-net dataset. The depth turned out to
be themost critical variable for bothVP andVSmodels. The effect of the

site location is more significant for the KiK-net model than for the
K-NET model. The slope angle and elevation have a certain influence
on the models, whereas the soil/rock type and geology have the least
influence. Although the influence of the geology turned out to be
insignificant, the performance of the GB-based model was enhanced by
including it. The RMSEs of the model were reduced from 615 m/s to
597 m/s for VS, and from 979 m/s to 961 m/s for VP, implying that it is
also related to wave velocities at a deeper depth.

The confining pressure increases with depth, leading to an
increase in the density, N-value, and wave velocities. Therefore,
the depth and associated variables were determined to be most
strongly correlated, as revealed by VI. The slope and elevation are
related with shear stiffnesses, which eventually affect wave velocities.
The site coordinates are relatively high VI, implying that they may
be associated with site conditions that were not captured by other
variables. The geology has the lowest VI, as it is for the ground
surface. However, we included it in the model because of its certain
effect in enhancing the predictive performance.

6 Conclusion

This paper presented three ML-based models (i.e., GB-, RF-, and
ANN-based models) predicting VP and VS in Japan. We used
borehole databases from the two seismograph networks, K-NET
and KiK-net. We considered various factors such as depth, N-value,
density, slope angle, elevation, geology, soil/rock type, and site
coordinates. The number of trees was designated as 100 to train
the RF- and GB-based models. We developed an ANN-based model
with four layers, where each hidden layer included 200 nodes.

The models were trained and evaluated on the datasets using the
five-fold cross-validation. The average RMSEs across all test folds
showed that the GB-based model provided the best estimation
among the other models for both K-NET and KiK-net sites. The
RMSEs of the GB-based model for VS and VP of the K-NET sites
were 146 and 437 m/s, respectively, and those of the KiK-net sites were
597 and 961 m/s, respectively, while those of the other models ranging
from 150 to 462 m/s for K-NET and from 659 to 1,116 m/s for KiK-net.
Furthermore, the REC curve indicated that the GB-based model
revealed relatively high performance within the deviation range. We
also validated the GB-based model by checking the residuals between
the measured and estimated wave velocities with respect to various
variables. The variable importance of the model for K-NET indicated
that depth, N-value, and density were the essential variables in
predicting the VP and VS of the K-NET sites. Note that we used the
unnormalized N-values for the K-NET sites, which might lower the
prediction capability. For KiK-net sites, depth was the most influential
variable. The site longitude also had a high relative variable importance
value, indicating the roles of factors other than those considered in this
study. The geology has the smallest VI values, as shown in Figure 15.
However, it turned out that including the geology can improve the
model performance, decreasing the RMSE values. In addition, we
consider that including latitude and longitude is necessary because
these improved prediction performances of the models, capturing the
effects that were not captured by other variables.

This paper proposed a model for predicting wave velocities
based on various factors, which can be used for site exploration in
various fields, including rock engineering and petroleum
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engineering. The key findings of this study highlight that common
machine learning algorithms can reasonably predict the wave
velocity profiles across the region of Japan as an example. The
results from cross-validation present the general performances of
models on the dataset and site-specific performances specifically for
the GB-based model. The study reveals the importance of input
variables contributing to predicting accuracy. Moreover, it suggests
that considering more region-specific variables including site
coordinates can assist the models in interpreting complicated
relationships.

As for the limitations of this study, the models are limited by
their reliance on borehole databases exclusively obtained from
specific seismograph networks in Japan. This approach may
present a bias towards the conditions within these networks.
Consequently, predictive performance could be constrained when
extending the applications to regions with different geological
attributes. In this context, ensuring the consistency of the
environmental and experimental conditions, and the employed
measured data is crucial to guarantee the validity of results
beyond the area considered in this study. Additionally, even
though the various variables were included, an incomplete
representation remains for specific regions. This implies the
presence of intricate geological properties that necessitate analysis
to understand their influence on the prediction of wave velocities in
a particular area. Furthermore, the study reveals that incorporating
site coordinates can influence predictive performance. Nevertheless,
the specific contributions of these variables to predictive
performance concerning geological characteristics remain subject
to consideration. While this study confirmed that the most
commonly used machine-learning techniques could be
successfully applied for predicting wave velocities, exploring more
advanced techniques and investigating additional factors in the
future will enhance the prediction performance.
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