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Fault slip rates are critical parameters for assessing regional strain accumulation
and seismic hazards. Previous investigations on fault slip rates primarily
concentrated on shallow depths or along the strike of the fault, neglecting the
variation with depth. This study focuses on listric normal faults, commonly
observed in tectonic extensional zones, and investigates the variation of slip
rates with depth. The relationships between slip rates along different fault
segments are derived based on the inclined shear geometric models. The
study finds that slip rates on different segments of listric normal faults are
generally not equal and depend on the type of bend (concave or convex), the
dip angles of the fault segments and axial surfaces. Inferring regional horizontal
extension solely from shallow segment displacements or growth strata thickness
may lead to inaccurate conclusions. In accordance with the methodology
outlined in this paper, slip rates at various depths along the Chengnan Fault for
the three time intervals: 24.6–33 Ma, 33–43.5 Ma, and 43.5–65 Ma, are estimated.
The results of this study offer valuable insights into the kinematics of listric normal
faults, facilitating a better comprehension of the discrepancy between slip rates
measured at surface and slip rates measured at depth.
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1 Introduction

The fault slip rate could be calculated by dividing the accumulated displacement by the
timing of the displacement. Displacement is measured from geomorphic markers, trenching,
gravity modeling and interpretation of seismic reflection data, whilst the timing of the
displacement is determined by radiocarbon dating, tephrachronology, fission track dating
and identification of fossils. The fault slip rate is a very important kinematic parameter of
active faults, as it can be applied to evaluate regional strain accumulation and estimate
seismic hazards (Anderson et al., 1996; Nicol et al., 1997; Galadini and Galli, 2000; Nicol
et al., 2005; Nicol et al., 2006; Mouslopoulou et al., 2009; Blakeslee and Kattenhorn, 2013).

Listric normal faults are commonly observed in tectonic extensional zones. There have
been numerous studies on fault slip rates of listric normal faults by previous researchers,
revealing that fault slip rates vary with lateral position and time (Mitchell et al., 2001;
Benedetti et al., 2002; Friedrich et al., 2003; Bull et al., 2006; Nicol et al., 2006; McClymont
et al., 2009; Schlagenhauf et al., 2010; Schlagenhauf et al., 2011). Previous investigations
indicate many listric normal faults show curvature in plan view, and slip rate is larger in the
center along a fault trace than it is at the ends of a fault (Nicol et al., 2010; Zhang et al., 2020).
However, how fault slip rates vary at different depths has been poorly studied. The variation
of slip rate with depth in listric normal faults is an essential aspect to consider when studying
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the mechanics of faulting and earthquake generation, as it influences
the overall seismic behavior and deformation pattern within the
fault zone. When using fault slip rates to estimate the average
earthquake frequency, it is necessary to assume that surface
measurements of slip rate represent slip rates at seismogenic
depths (Youngs and Coppersmith, 1985). Understanding this
variation is crucial for assessing seismic hazards and for
developing accurate models of fault behavior in tectonically
active regions. Therefore, the objective of this study is to
investigate whether there are differences between surface fault
slip rates and those at subsurface levels of listric normal faults
based on geometric models, as well as to identify the factors
controlling these differences.

2 Methods

The inclined shear model is employed to analyze the relationship
between slip rates at different depths in listric normal faults, as this
model is the predominant deformation mode for listric normal
faults (Dula, 1991; Xiao and Suppe, 1992). Forward modeling and
geometric analysis methods were extensively employed in this study.
The following introduces the inclined shear model of listric normal
faults.

Assuming the presence of a normal fault with a single concave
bend, as the hanging wall moves, if the hanging wall has a
significantly high strength, it will remain undeformed and a gap
will develop between the hanging wall and the footwall (Figure 1A).
However, in reality, the hanging wall does not possess sufficient

strength, resulting in its collapse and subsequent filling of the
gap. Extensive research has demonstrated that antithetic normal
faulting is a prevalent mechanism for the collapse deformation of the
hanging wall (Figure 1B; White et al., 1986; Groshong, 1989; Dula,
1991; White and Yielding, 1991; Kerr andWhite, 1992; White, 1992;
Xiao and Suppe, 1992; Withjack and Peterson, 1993; Withjack et al.,
1995; Hauge and Gray, 1996; Withjack and Schlische, 2006). The
collapse of the hanging wall of a fault induces tilting deformation of
the strata, giving rise to a kink band comprising dipping beds. This
kink band is delineated by two axial surfaces aligned in the direction
of hanging wall collapse. Axial surface AB is located at the inflection
point of the fault. Although it remains stationary relative to the

FIGURE 1
A model for a normal fault with a single concave bend. (A)
Development of a gap during rightward sliding of hanging wall with
high strength. (B) Antithetic simple shear deformation of the hanging
wall.

FIGURE 2
Amodel for a normal fault with a single convex bend. (A)Overlap
region development during rightward sliding of hanging wall with
undeformed hanging wall. (B) Antithetic simple shear with reverse
shear sense applied to the convex bend, contradicting the
extensional characteristics of the deformation. (C) Synthetic simple
shear with normal shear sense indicates a more plausible mechanism
for the convex bend.
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footwall and the fault, it is an active axial surface. This is because as
the slip distance of the fault increases, the strata of the hanging wall
pass through this surface and undergo tilting deformation. The
initial position of axial surface A′B′ coincides with axial surface AB.
As the fault slips, axial surface A′B′ moves along with the fault
displacement. Axial surface A′B′ is an inactive axial surface because
its position remains fixed relative to the hanging wall, and no new
strata undergo deformation by passing through this surface when
the fault slips.

Assuming the presence of a normal fault with a single convex bend,
as the hanging wall moves, an overlap region will emerge between the
hanging wall and the footwall if the former remains undeformed
(Figure 2A). In order to prevent overlap, deformation of the hanging
wall is necessary. However, if antithetic normal faulting is applied to
convex bends, a reverse shear sense in the hanging wall would be
required (Figure 2B), which contradicts the extensional characteristics of
the deformation. Therefore, for convex bends, synthetic normal faulting
represents a more plausible mechanism for the collapse deformation of
the hanging wall (Figure 2C; Xiao and Suppe, 1992).

3 Results

3.1 Fault slip rates calculation with one fault
bend

3.1.1 Concave fault bend
Consider the simple case of one concave fault bend, as shown in

Figure 3. The angle ∠ECD, representing the dip of the upper fault
segment, is equal to θ1. The angle ∠HAI, representing the dip of the
lower fault segment, is equal to θ2. The angle ∠FGB, representing the
dip of the axial surface, is equal to ψ.

If the hanging wall undergoes a displacement AA′ along the
lower fault segment, the position of point C will be relocated to point
C′. Thus, we have

CC′‖ AA′andCC′ � AA′ (1)
∴ ∠EEC′ � ∠FC′C � ∠HAI � θ2 (2)

∴ ∠DCC′ � ∠ECD − ∠ECC′ � θ1 − θ2 (3)

Throughout the deformation of the hanging wall, the
displacement of point C′ results in its relocation to point D,
while the displacement of point G leads to its relocation to point
B. Thus, we have

C′D ‖ GB (4)
∴ ∠FC′D � ∠FGB � ψ (5)

∴ ∠CC′D � ∠FC′D + ∠FC′C � ψ + θ2 (6)
Applying the law of sines to ΔCDC′, we have

CD

sin∠CC′D � CC′
sin∠CDC′ �

AA′
sin ∠DCC′ + ∠CC′D( )

(7)

∴ sin ψ + θ1( )·CD � sin ψ + θ2( )·AA′ (8)
If we only know the displacement of slip along the upper

segment of the fault CD. Given the knowledge of the duration of
fault slip, we obtain

r1 � CD

t
(9)

where r1 is the slip rate along the upper segment, t is the duration of
fault slip.

Combining Eqs 8, 9, we obtain

r2 � AA′
t

� sin ψ + θ1( )
sin ψ + θ2( )

· CD
t

� sin ψ + θ1( )
sin ψ + θ2( )

r1 (10)

where r2 is the slip rate along the lower segment.

3.1.2 Convex fault bend
Consider the simple case of one convex fault bend, as shown in

Figure 4. The angle ∠ECD, representing the dip of the upper fault
segment, is equal to θ1. The angle ∠HAI, representing the dip of the
lower fault segment, is equal to θ2. The angle ∠FGB, representing the
dip of the axial surface, is equal to ψ.

If the hanging wall undergoes a displacement AA′ along the
lower fault segment, the position of point C will be relocated to point
C′. Thus, we have

FIGURE 3
Geometric schematic diagram used in deriving the relationship
between the slip rates of the upper and lower fault segments with a
single concave bend.

FIGURE 4
Geometric schematic diagram used in deriving the relationship
between the slip rates of the upper and lower fault segments with a
single convex bend.
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CC′‖ AA′andCC′ � AA′ (11)
∴ ∠EEC′ � ∠FC′C � ∠HAI � θ2 (12)

∴ ∠DCC′ � ∠ECC′ − ∠ECD � θ2 − θ1 (13)
Throughout the deformation of the hanging wall, the displacement

of point C’ results in its relocation to point D, while the displacement of
point G leads to its relocation to point B. Thus, we have

C′D ‖ GB (14)
∴ ∠FC′D � ∠FGB � ψ (15)

∴ ∠CC′D � ∠FC′D − ∠FC′C � ψ − θ2 (16)
Applying the law of sines to ΔCDC′, we have

CD

sin∠CC′D � CC′
sin∠CDC′ �

AA′
sin ∠DCC′ + ∠CC′D( )

(17)

sin ψ − θ1( )·CD � sin ψ − θ2( )·AA′ (18)
In the majority of cases, we only know the displacement of slip

along the upper segment of the fault CD. Given the knowledge of the
duration of fault slip, we obtain

r1 � CD

t
(19)

where r1 is the slip rate along the upper segment, t is the duration of
fault slip.

Combining Eqs 18, 19, we obtain

FIGURE 5
Geometric schematic diagram used in deriving the relationship between the slip rates of different fault segments with multiple fault bends. (A) Initial
state of a fault with a concave bend and a convex bend. (B) The hangingwall slips along the lower fault segment with a displacement of CC’ during the first
stage. (C) The polygon A’B’C’F’ of the hanging wall deforms to form the polygon A1′B1’CC’F’G1 during the second stage. (D) The polygon
A1′B1’CC’F’G1 deforms to form the polygon HBCC’F’G1JI during the final stage.
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r2 � AA′
t

� sin ψ − θ1( )
sin ψ − θ2( )

· CD
t

� sin ψ − θ1( )
sin ψ − θ2( )

r1 (20)

where r2 is the slip rate along the lower segment.

3.2 Fault slip rates calculation with multiple
fault bends

Now that we have established the slip rate law for a fault with a
single fault bend, we shall proceed to investigate the slip rate law for
faults with multiple fault bends. In the case of continuously curved
listric normal faults, we can treat them as a large number of fault
bends between arbitrarily small, straight, fault segments.

Consider a fault with one concave fault bend and one convex
fault bend, as depicted in Figure 5A. The dip of the upper fault
segment is θ1. The dip of the middle fault segment is θ2. The dip of
the lower fault segment is θ3. The dip of the synthetic upper axial
surface is ψ1. The dip of the antithetic lower axial surface is ψ2.

For the convenience of calculation, we partition the deformation
into three steps.

Firstly, the hanging wall undergoes displacement CC’ along the
lower fault segment. Consequently, points A, B, C, D, E, and F move
to points A′, B′, C′, D′, E′, and F′, respectively (Figure 5B). Thus, we
have

AA′
���→ � BB′

��→ � CC′
���→

(21)
Secondly, the collapse deformation of the polygon A’B’C’F’ of

the hanging wall forms the polygon A1′B1’CC’F’G1 (Figure 5C).
Applying the law of sines to ΔBB′B′1, we have

BB1
′

sin∠BB′B1
′ �

BB′
sin∠B1

′B′ �
CC′

sin ∠B1
′BB′ + ∠B1

′B′B( )
(22)

∴ sin ψ2 + θ2( )·BB1
′ � sin ψ2 + θ3( )·CC′ (23)

Finally, the polygon A1′B1′CC′F′G1 undergoes deformation to
form the polygon HBCC′F′G1JI (Figure 5D). Applying the law of
sines to ΔAHA′1, we have

AH

sin∠AA1
′H

� AA1
′

sin∠AHA1
′ �

BB1
′

sin ∠HAA1
′ + ∠HA1

′A( )
(24)

∴ sin ψ1 − θ1( )·AH � sin ψ1 − θ2( ) · BB1
′ (25)

Based on the aforementioned analysis, it can be readily inferred
that the displacement relationship on both sides of a fault bend is
solely determined by the type of bend (concave or convex), the
individual dip angles of the respective fault segments, and the dip
angle of the axial surface at the bend, independent of other factors.

Therefore, for a fault with n segments and n-1 bends, the
following relationships hold:

if i − th bend is concave: sin ψi + θi( ) · xi � sin ψi + θi+1( ) · xi+1
(26)

if i − th bend is convex: sin ψi − θi( ) · xi � sin ψi − θi+1( ) · xi+1
(27)

where θi represents the dip angle of the i-th fault segment, θi+1
represents the dip angle of the (i+1)-th fault segment, ψi is the dip

angle of the i-th axial surface, xi is the displacement on the i-th fault
segment, xi+1 is the displacement on the (i + 1)-th fault segment.

Based on Eqs 26, 27, if the dip angles of each fault segment, the
properties of each fault bend, the dip angles of each axial surface, and
the displacement on one of the fault segments are known, then the
displacements on the remaining fault segments can be derived.
Furthermore, if the duration of motion is also known, the slip
rates on each segment can be obtained.

It is noteworthy that if each bend in the fault is either convex or
concave in shape, and the dip angles of the axial surfaces are
identical, the following relationships hold:

if all the bend are concave: sin ψ + θi( ) · xi � sin ψ + θj( ) · xj

(28)
if all the bend are concex: sin ψ − θi( ) · xi � sin ψ − θj( ) · xj (29)

where θi represents the dip angle of the i-th fault segment, θj
represents the dip angle of the j-th fault segment, ψ is the dip
angle of the axial surface, xi is the displacement on the i-th fault
segment, xj is the displacement on the j-th fault segment.

FIGURE 6
A geometric model with three concave bends used in deriving
the relationship between slip rates at shallow and deep depths when
the slip distance is long. (A) Initial state of a fault with three concave
bends. (B)Orange growth strata deposit as the hanging wall slips
along the DE segment with a displacement of DD1 during the first
stage. (C) Yellow growth strata deposit as the hanging wall slips along
the DE segment with a displacement of DD2 during the second stage.

Frontiers in Earth Science frontiersin.org05

Zhang 10.3389/feart.2023.1266454

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1266454


Eqs 28, 29 indicate that if the dip angle of the axial surface and
the displacement on one of the fault segments are known,
determining the displacement on another fault segment only
requires knowledge of its corresponding dip angle. This implies
that once the dip angles of two fault segments are determined,
regardless of the number of intervening fault segments or their dip
angles, it will not alter the relationship between the displacements of
these two fault segments.

This conclusion is highly useful because in most cases, bends of
listric normal faults tend to be concave in shape. If the mechanical
properties of the hanging wall are similar, the dip angle of the axial
surface remains relatively constant. So even if we only have access to
fault displacements and rates at the surface or shallow depths, we can
infer the displacements and slip rates along the deeper fault
segments. Furthermore, the horizontal extension rate can be
inferred since listric normal faults tend to flatten at depth:

re � rd � sin ψ + θs( )
sin ψ + θd( )

rs (30)

where θs represents the dip angle of the shallow segment of the fault,
θd represents the dip angle of the deepest horizontal segment of the
fault, ψ is the dip angle of the axial surface, re is the horizontal
extension rate, rd is the slip rate along the deepest horizontal
segment of the fault. rs is the slip rate along the shallow segment
of the fault.

3.3 Long slip distance of faults

Previously, we only discussed the case where the slip distance
was limited to a small segment of the fault. Now, we will analyze the
scenario where the slip distance is longer and spans across multiple
fault segments.

Consider a fault with three concave fault bends, as depicted in
Figure 6A. The dip of the fault segment AB is θ1. The dip of the fault
segment BC is θ2. The dip of the fault segment CD is θ3. The dip of
the fault segment DE is θ4. The dip of the axial surface BF is ψ1. The
dip of the axial surface CG is ψ2. The dip of the axial surface DH is
ψ3.

If Figure 6C represents the final state after deformation, the
deformation process can be divided into two stages. During the first
stage, the hanging wall slides a distance of DD1 along the DE
segment. At this point, the sliding distance along the AB segment is
AA1 (Figure 6B). Based on the Eqs 26, 27, we have

sin ψ1 + θ1( )·AB � sin ψ1 + θ2( )·BB1 (31)
sin ψ2 + θ2( )·BB1 � sin ψ2 + θ3( )·CC1 (32)
sin ψ3 + θ3( )·CC1 � sin ψ3 + θ4( )·DD1 (33)

Combining Eqs 31–33, we obtain the relationship between AB
and DD1:

DD1 � sin ψ1 + θ1( ) · sin ψ2 + θ2( ) · sin ψ3 + θ3( )
sin ψ1 + θ2( ) · sin ψ2 + θ3( ) · sin ψ3 + θ4( )

·AB (34)

Subsequently, the hanging wall slides a distance of DD2 along
the DE segment, while the sliding distance along the AB segment is
AA2 (Figure 6C). Based on the Eqs 26, 27, we have

sin ψ1 + θ1( )·AA2 � sin ψ1 + θ2( )·BB2 (35)
sin ψ2 + θ2( )·BB2 � sin ψ2 + θ3( )·CC2 (36)
sin ψ3 + θ3( )·CC2 � sin ψ3 + θ4( )·DD2 (37)

Combining (Eqs 36, 37), we obtain the relationship between
BB2 and DD2:

DD2 � sin ψ2 + θ2( ) · sin ψ3 + θ3( )
sin ψ2 + θ3( ) · sin ψ3 + θ4( )

·BB2 (38)

If we know the lengths of AB and BB1 in the final state, as well as
the duration of time elapsed from the initial state to the final state,
we can obtain the fault slip rate along the DE segment during this
time period by utilizing (Eqs 34, 38):

rDE � DD1 +DD2

t

� sin ψ1 + θ1( ) · sin ψ2 + θ2( ) · sin ψ3 + θ3( )
sin ψ1 + θ2( ) · sin ψ2 + θ3( ) · sin ψ3 + θ4( )

· AB
t

+ sin ψ2 + θ2( ) · sin ψ3 + θ3( )
sin ψ2 + θ3( ) · sin ψ3 + θ4( )

· BB2

t
(39)

where rDE represents the fault slip rate along the DE segment, t
represents the duration of time elapsed from the initial state to the
final state.

If the dip angles of axial surfaces are equal to ψ, then Equation 39
can be simplified to

rDE � DD1 +DD2

t
� sin ψ + θ1( )
sin ψ + θ4( )

· AB
t

+ sin ψ + θ2( )
sin ψ + θ4( )

· BB2

t
(40)

If orange and yellow growth strata were sequentially deposited
during the first and second stages of fault slip, it may be feasible to
deduce the duration of each stage (Figure 6C). This information can
be used to determine the slip rate of the fault along segment DE for
each stage period:

rDE1 � sin ψ1 + θ1( ) · sin ψ2 + θ2( ) · sin ψ3 + θ3( )
sin ψ1 + θ2( ) · sin ψ2 + θ3( ) · sin ψ3 + θ4( )

· A2B

t1

+ sin ψ2 + θ2( ) · sin ψ3 + θ3( )
sin ψ2 + θ3( ) · sin ψ3 + θ4( )

· BB2

t1
(41)

rDE2 � sin ψ1 + θ1( ) · sin ψ2 + θ2( ) · sin ψ3 + θ3( )
sin ψ1 + θ2( ) · sin ψ2 + θ3( ) · sin ψ3 + θ4( )

· AA2

t2
(42)

where rDE1 represents the fault slip rate along the DE segment
during the deposition of the orange growth strata in the first
stage, rDE2 represents the fault slip rate along the DE segment
during the deposition of the yellow growth strata in the second
stage, t1 represents the duration of the deposition of the orange
growth strata during the first stage. t2 represents the duration of
the deposition of the yellow growth strata during the second
stage.

If the dip angles of axial surfaces are equal to ψ, then Eqs 41, 42
can be simplified to

rDE1 � sin ψ + θ1( )
sin ψ + θ4( )

· A2B

t1
+ sin ψ + θ2( )
sin ψ + θ4( )

· BB2

t1
(43)

rDE2 � sin ψ + θ1( )
sin ψ + θ4( )

· AA2

t2
(44)
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4 Geological example

A seismic section from the Bohai Bay Basin is presented as an
illustrative example of how slip rates at various depths during
different time intervals are calculated (Figure 7). In the seismic
section, the Chengnan Fault is identified as a listric normal fault
characterized by a combination of concave and convex bends.
During the Paleogene period, the Bohai Bay Basin underwent
substantial extensional tectonics, leading to pronounced activity
along the Chengnan Fault within this geological epoch (Qi and
Yang, 2010; Li et al., 2012; Zhao et al., 2016). Three sequences of

FIGURE 7
Seismic section of a listric normal fault from the Bohai Bay Basin
characterized by a combination of concave and convex bends.

TABLE 1 Dip angles and lengths of each fault segment.

Fault segments Dip angles (°) Lengths (m)

A1A2 52.56 -

A2A3 52.56 -

A3A4 41.45 1329

A4A5 33.50 1657

A5A6 23.10 1348

A6A7 14.17 1656

A7A8 8.26 1414

A8A9 3.09 2847

A9A10 7.99 1180

A10A11 13.95 2211

A11A12 13.78 -

A12A13 10.59 -

A13A14 7.18 -

A14A15 5.13 -

A15A16 3.69 -

A16A17 0.00 -
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growth strata (Growth Strata 1, Growth Strata 2, Growth Strata 3)
were deposited on the hanging wall of the fault, each delimited by
reflection boundaries T1, T2, T6, and Tr. The corresponding ages for
these reflection boundaries are 24.6 Ma, 33 Ma, 43.5 Ma, and 65 Ma,
respectively (Ren, 2004; Yao et al., 2007a; Yao et al., 2007b). Growth
strata 1 is constrained by seismic reflection boundaries T1 and T2,
indicating sedimentation occurred between 24.6 Ma and 33 Ma.
Growth strata 2 is defined by seismic reflection boundaries
T2 and T6, suggesting sedimentation took place between 33 Ma
and 43.5 Ma. Lastly, Growth strata 3 is delimited by seismic
reflection boundaries T6 and Tr, indicating sedimentation
occurred between 43.5 Ma and 65 Ma. In the following, the
calculation of slip rates for the Chengnan Fault at various depths
during the intervals of 24.6–33 Ma, 33–43.5 Ma, and 43.5–65 Ma are
estimated.

Initially, it is necessary to replace the curved Chengnan Fault with
multiple straight segments (from A1A2 to A16A17) and measure the
dip angle of each segment (Table 1). It is worth noting that to calculate
the true dip angle of the fault, it is necessary to adjust the lateral and
vertical scales of the seismic profile to be consistent.

Subsequently, the lengths of the fault segments involved in the
growth strata (from A3A4 to A10A11) are measured (Table 1).
Utilizing Eqs 26, 27 to convert the lengths of segments fromA3A4 to
A10A11 into lengths at different dip angles (Table 2). For example,
the length of segment A3A4 is 1329 m, with a dip angle of 41.45°.
When converted to a dip angle of 52.56°, which is the angle for
segment A2A3, the length becomes 1410 m.

Finally, sum the results of the converted segments involved in
different time intervals and divide by the time intervals to obtain the slip
rates of the Chengnan Fault at different fault segments, or different
depths, during different time periods. For instance, during the
deposition of Growth Strata 2, which corresponds to the time
interval of 33–43.5 Ma, the fault segments involved are A4A5,
A5A6, and A6A7. To determine the slip rate of the fault at segment
A2A3 during the 33–43.5 Ma period, the lengths of A4A5, A5A6, and
A6A7 are converted to a 52.56° dip angle, resulting in lengths of 1791m,
1449m, and 1726m, respectively. These lengths are then summed to
obtain 4966 mand divided by the time interval of 10.5 Ma, resulting in a
calculated slip rate of 473 m/Ma. The slip rate results for each fault
segment within the three time intervals: 24.6–33Ma, 33–43.5 Ma, and
43.5–65Ma, are presented in Table 3; Figure 8.

From Figure 8, it can be observed that the fault slip rate along the
Chengnan Fault decreases gradually from segment A2A3 to A4A5.
However, from segment A4A5 onwards and all the way to segment
A16A17, the slip rate gradually increases. The maximum slip rate
occurs at segment A16A17, while the minimum is observed at
segment A4A5, resulting in a ratio of 1.45 between the two. The
following discussion section will analyze the patterns of slip rate
variations along different segments.

5 Discussion

5.1 Concave fault bend

For a fault with only one concave fault bend, the relationship
between the slip rates along the upper segment and the lower
segment can be determined based on Equation 10:TA
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r1
r2

� sin ψ + θ2( )
sin ψ + θ1( )

(45)

where r1 is the slip rate along the upper fault segment, r2 is the slip
rate along the lower segment, ψ is the dip angle of axial surface, θ1
representing the dip of the upper fault segment, θ2 representing the
dip of the lower fault segment.

Previous studies have suggested that the angle ψ is
approximately around 60° ± 10° (Xiao and Suppe, 1992; Hauge
and Gray, 1996). Here, we take ψ as 60° as an example to investigate
the proportional relationship between r1 and r2 under different
values of θ1 and θ2.

Figure 9 depicts the values of r1/r2 corresponding to different θ1
when θ2 is respectively set at 0°, 10°, 30°, 50°, 70°, and 80°. Based on
the results, θ2 can be divided into two cases. In the first case, when θ2
ranges from 0° to 30°, the r1/r2 values initially decrease with
increasing θ1, reaching a minimum value at θ1 � 30°.
Subsequently, the r1/r2 values increase with increasing θ1, and
the magnitude of the increase is greater than the decrease. In the
second case, when θ2 ranges from 30° to 90°, the r1/r2 values
consistently increase with increasing θ1. Furthermore, the result
reveals that the minimum value of r1/r2 occurs at θ1 � 30° and
θ2 � 0°, approximately 0.866, while the maximum value of r1/r2
occurs at θ1 � 90° and θ2 � 30°, equaling 2.

FIGURE 8
Line plot of fault slip rates along segments of the Chengnan Fault during the periods 24.6–33 Ma, 33–43.5 Ma, and 43.5–65 Ma.

FIGURE 9
Graph of relationships between the value of r1/r2, the dip of the upper fault segment θ1 and the dip of the lower fault segment θ2 for a normal fault
with a single concave bend.
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Furthermore, it can be observed that as the value of θ2 decreases,
the probability of r1/r2 being less than 1 increases. For instance,
when θ2 is set to 0°, r1/r2 values are less than 1 for θ1 ranging from 0°

to 60°. Similarly, when θ2 is 10°, r1/r2 values are less than 1 for θ1
ranging from 10° to 50°. Additionally, it can be noted that when θ2
exceeds 30°, regardless of the value of θ1, r1/r2 values are greater than

1. Similarly, when θ1 exceeds 60°, regardless of the value of θ2, r1/r2
values are greater than 1.

The above analysis reveals that, in most cases, the slip rates on
different segments of a listric normal fault are not equal. If the
surface or shallow segments of the listric normal fault exhibit a large
dip angle, the slip rate along these segments is often greater than that

FIGURE 10
Comparative diagram of concave normal faults with equal extensional rates but varied dip angles of upper segment. (A) A concave normal fault
model with 30° dip of upper segment. (B) A concave normal fault model with 80° dip of upper segment.

FIGURE 11
Graph of relationships between the value of r1/r2, the dip of the upper fault segment θ1 and the dip of the lower fault segment θ2 for a normal fault
with a single convex bend.
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of the deeper segments, with a maximum ratio of two times. For the
listric normal fault, as it tends to be nearly horizontal at greater
depths, the slip rate obtained on the shallow fault segment with a
large dip angle is generally larger than that at deeper depths,
potentially up to twice as large. It should be noted that listric
normal faults may also exhibit flexure at the kilometer scale due
to the rheology of the crust. However, due to the limited variation in
dip angles, the impact on fault slip rates can be considered negligible
according to Eq. 45.

Conversely, if the surface or shallow segments of the listric normal
fault have a small dip angle, the slip rate along these segments tends to
be smaller than that of the deeper segments, but the difference
between the two is relatively close. In the latter case, the minimum
ratio is approximately 0.866 times that of the deeper segments.

Another noteworthy observation is that for two faults with the
same dip angle in the deep segment, even if their actual slip distances
at depth are equal, significant differences in the displacement
exhibited in the shallow segment can arise if the dip angles of
the shallow segments are different.

For instance, consider fault ABC and fault A′B′C′, where the dip
angles of segments BC and B′C′ are both 0°, the dip angle of segment
AB is 30°, and the dip angle of segment A′B′ is 80° (Figure 10).
Assuming the axial surface orientation of 60°, if the hanging wall
undergoes a horizontal slip distance of x, the displacement AD in the
shallow segment of fault ABC is 0.87x, while the displacement A′D′
in the shallow segment of fault A′B′C′ is 1.35x. Based on the results
obtained from the shallow segments, one might conclude that fault
A′B′C′ exhibits greater activity than fault ABC. However, this
conclusion is erroneous when considering the deep segments.

Furthermore, if one were to infer the regional horizontal
extension based on the calculation of horizontal displacement in
the shallow segment of the fault, it would result in conclusions that
deviate from the actual scenario. The horizontal displacement of AD
measures 0.75x, while the horizontal displacement of A′D′ amounts
to 0.23x. Based on these values, onemight perceive fault ABC to have
a greater extension rate compared to fault A′B′C′. However, in
reality, both faults exhibit equal extension rates.

When there is deposition of growth strata, previous researches
(Huang et al., 2014; Zhang et al., 2020) attempt to estimate the
strength of tectonic extension based on the thickness of the growth
strata. However, such an approach sometimes is problematic. For
fault ABC, the thickness of the growth strata, which is equivalent to
the vertical displacement AD, is 0.43x. For fault A′B′C′, the
thickness of the growth strata, equivalent to the vertical
displacement A′D′, is 1.33x. Based on the thickness of the
growth strata, fault A′B′C′ appears to exhibit a stronger tectonic
extension than fault ABC. Nevertheless, in reality, the extension
rates of these two faults are equal because BE is equal to B′E′.

5.2 Convex fault bend

For a fault with only one convex fault bend, the relationship
between the slip rates along the upper segment and the lower
segment can be determined based on Eq. 11:

r1
r2

� sin ψ − θ2( )
sin ψ − θ1( )

(46)

where r1 is the slip rate along the upper fault segment, r2 is the slip
rate along the lower segment, ψ is the dip angle of axial surface, θ1
representing the dip of the upper fault segment, θ2 representing the
dip of the lower fault segment.

Similarly, we take ψ as 60° as an example to investigate the
proportional relationship between r1 and r2 under different values
of θ1 and θ2.

Figure 11 depicts the values of r1/r2 corresponding to different
θ1 when θ2 is respectively set at 10°, 20°, 30°, 40°, 50°, and 59°. Unlike
concave bends, for convex bends, regardless of the value of θ2, the
ratio r1/r2 continuously increases with the increase of θ1, and its
maximum value is limited to 1. This implies that for convex bends,
the slip rate along the upper segment of the fault is always smaller
than that along the lower segment.

FIGURE 12
Models of convex normal faults with high dip angles of the lower
segment. (A) A convex normal fault model with 55° dip of lower
segment. (B) A convex normal fault model with 60° dip of lower
segment. (C) A convex normal fault model with 70° dip of lower
segment.
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It is noteworthy that when θ2 approaches the dip angle of axial
surface, the value of r1/r2 becomes very small (Figures 11, 12A).
This implies a significant reduction in the activity of the upper
segment of the fault, with a substantial portion of the fault
displacement being absorbed by the shear zone. Consequently,
this may lead to the transformation of the shear zone into a new
fault and cause the cessation of activity in the upper segment of the
fault.

When θ2 equals the dip angle of axial surface, the value of r1/r2
becomes 0, and the width of the shear zone also becomes 0
(Figure 12B). This implies the complete cessation of activity in
the upper segment of the fault, transforming the shear zone into a
new fault.

This model is incapable of predicting scenarios where θ2 exceeds
the dip angle of axial surface since, in such instances, a reverse offset
would occur along the upper segment of the fault (Figure 12C). This
discrepancy clearly contradicts the extensional characteristics of the
deformation. When θ2 exceeds the dip angle of axial surface, we
hypothesize that two potential scenarios could arise. In the first
scenario, the hanging wall of the fault undergoes deformation
following alternative patterns, whereas in the second scenario, the
lower segment of the fault directly propagates upward, inducing a
transformation of the formerly convex fault into a planar fault.

6 Conclusion

The study derived relationships between fault slip rates at
different depths based on the inclined shear model. The
following conclusions were obtained:

(1) For the listric normal fault, if the fault dip angles differ at two
different depths, their slip rates generally vary. The extent of variation
primarily depends on the fault dip angles at the respective depths, the
type of fault bend, and the dips of the axial surfaces.

(2) In the case of a concave fault bend, when the dip of the lower
fault segment is between 0° and 30°, the ratio of slip rates
between the upper and lower segments initially decreases
with an increase in the dip of the upper fault segment.
Subsequently, the ratio increases with an increase in the dip
of the upper fault segment, but the magnitude of decrease is not
as significant as the magnitude of increase. If the dip of the lower
fault segment exceeds 30°, the ratio of slip rates between the
upper and lower segments continually increases with an
increase in the dip of the upper fault segment.

(3) For a convex fault bend, regardless of the dip of the lower fault
segment, the ratio of slip rates between the upper and lower
segments continually decreases with an increase in the dip of the
upper fault segment.

(4) For the listric normal fault, as it tends to be nearly horizontal at
greater depths, the slip rate obtained on the shallow fault
segment with a large dip angle is generally larger than that at
deeper depths, potentially up to twice as large. Conversely, if the
shallow fault segment has a small dip angle, the slip rate
obtained there is slightly smaller than that at deeper depths.

(5) Based on the dip-slip and horizontal displacement of shallow faults,
as well as the thickness of the growth strata, to infer the strength of
regional horizontal extension is prone to yielding erroneous

conclusions. To achieve a more accurate assessment, a
comprehensive analysis integrating the geometric configuration
of the fault and deformation pattern of the hangingwall is necessary.

(6) Between 24.6 and 33Ma, the Chengnan Fault exhibited slip rates
of 155–206 m/Ma, which increased to 438–581 m/Ma from 33 to
43.5 Ma, and subsequently remained in the range of 305–404 m/
Ma from 43.5 to 65Ma. The calculation of slip rates for the
Chengnan Fault at various depths indicates a decreasing trend
from segment A2A3 to segment A4A5, followed by an increasing
trend from segment A4A5 to segment A16A17.
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