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An arid climate is a unique condition that has a significant impact on the growth of
crops and natural vegetation. The normalized difference vegetation index (NDVI) is
a crucial remotely sensedmeasurement of greenness due to its strong correlation
with crop and vegetation growth and productivity. In the present study, the
spatiotemporal dynamics of NDVI were analyzed from 2000 to 2021 in the
segment of the arid western plain zone of Rajasthan, India. NDVI time-series
data, as well as data related to climatic factors, viz., precipitation, soil moisture,
evapotranspiration, and 2-m air temperature, were collected from Giovanni, the
Goddard Earth Science dataset. The Mann–Kendall (MK) trend test and Sen’s slope
depicted the long-term continuous time–frequency trend, while Karl Pearson’s
correlation analysis depicted the significant relationship between all the factors
except 2-m air temperature. The seasonal and mean monthly results of all the
factors except 2-m air temperature showed considerable coherence with NDVI.
The multiscale time–frequency decomposition or wavelet analysis depicted the
fifth to the seventh month and the ninth to the 15th month of the cycle, showing
the significance of the cropping pattern and the natural vegetation growth cycle.
The cross-wavelet analysis further depicted important coherence, leading, and
lagging phases among climatic factors and NDVI. Our research provided
significant insights into the long-term variability and coherence of various
climatic factors with NDVI that are applicable on regional and global scales.
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1 Introduction

Plants are essential primary producers in terrestrial ecosystems
(Sha et al., 2022). They play a significant role in regulating
biogeochemical cycles and complex global ecosystems at regional
and global scales (Liu et al., 2015; Zhou et al., 2022). Thus, vegetation
dynamics over a long time period can be considered a good indicator
of environmental change (Kong et al., 2018; Deng et al., 2019). The
growth of plants depends upon a range of determinants, and among
them, meteorological and climatic factors are considered to be the
most significant (Currier and Sala, 2022; Shen et al., 2022). Changing
patterns of climatic andmeteorological factors resulted in significant
variations in vegetation growth and distribution (Kalisa et al., 2019;
Luo et al., 2020). Hence, continuous monitoring of the vegetation
phenology is of utmost importance for understanding the present
environmental scenario and necessary future actions (Zhang et al.,
2022; Pei et al., 2023).

Geospatial technology can be used to collect, process, and
analyze remotely sensed data to support a variety of applications,
such as land use planning, natural resource management, climate
change monitoring, and vegetation dynamics (Meresa and
Gebrewhid, 2019; Hussain et al., 2022). The NDVI obtained from
remotely sensed data is a popular proxy for identifying vegetation
greenness and crop health in regional to global-scale investigations.
(Fensholt et al., 2009; Vrieling et al., 2013; Huang D et al., 2021). The
variability of NDVI has been analyzed from different perspectives by
different scholars, and a wide range of climatic parameters have been
found to have a synergic effect on it (Martiny et al., 2006; Sha et al.,
2020; Moussa Kourouma et al., 2021). NDVImeasures the greenness
of the land surface and verifies the density of vegetation (Thakur
et al., 2022) and can be articulated through the following
expression (1):

NDVI � NearIR − Red

NearIR + Red
, (1a)

where IR represents the infrared band (0.841–0.876 µm) and
Red denotes the red band of red color (0.620–0.670 µm). The value
of NDVI ranges between +1 and −1. Values near zero (−0.1 to 0.1)
represent sand and snow cover. Negative values represent water
bodies. Values between 0.2 and 0.4 signify vegetation and plant cover
(Yan et al., 2022; Zhao et al., 2023). Most studies focused on the
understanding of vegetation and crop health depiction in relation to
NDVI and climatic factors using geographically weighted regression
(Georganos et al., 2017) in the field of ecology or land use and land
cover change (Radočaj et al., 2023). Guha and Govil (2021) worked
on changing the pattern of land surface temperature (LST) and
NDVI in Raipur, India, from 2002 to 2018. The results showed that
when the NDVI was high, the LST–NDVI relationship was strong to
moderately negative, but when the NDVI was low, the relationships
were positive and not always the same. The study concluded that the
relationship was stronger in the past and weaker in the present
scenario.

A similar approach was adopted by several scholars to establish
the relationship between NDVI and LST (Garai et al., 2022;
Thanabalan et al., 2023). Monsoon variability and the pattern of
climate change have a definite and significant impact on plant
dynamics at global and local scales and have been addressed by
many scholars (Dutta Dey and Singh, 2021; Gao et al., 2022; Sun

et al., 2022). Multiscale time–frequency decomposition or wavelet
transformation is a technique that helps determine the complex
coherence of different parameters in long-term time series (Sreedevi
et al., 2021; Wu et al., 2022). The application of wavelet is widely
employed in the fields of meteorology (Barik et al., 2020; Barik and
Mishra, 2021), geophysics (Yin et al., 2022; Li et al., 2023), and
oceanography (Simon et al., 2020; Buttay et al., 2022), to name a few.

The application of wavelet analysis in the evaluation of NDVI is
reported in a number of studies. Dastour et al. (2022) studied
monitoring spatiotemporal climate and vegetation change around
the Athabasca River Basin in Canada. In order to investigate trend,
coherency, and time lag estimates between climate and vegetation
time series, the authors constructed a least-squares wavelet
(LSWAVE) program. The authors used the NDVI time series
from the Terra satellite (Tian et al., 2020) and the composite
climate time series. The study depicted that the seasonal cycles of
climate and NDVI are time-delayed coherent. The annual cycle was
the most coherent component of the complete Athabasca River
Basin (ARB), with 84% annual coherency between vegetation and
temperature and 46% annual coherency between vegetation and
precipitation. Galford et al. (2008) applied wavelet methods on
MODIS time series to estimate the intensification of agricultural
production and the growth of row crops in Comodoro, Mato
Grosso. The study incorporated 5-year data, and MODIS EVI
data were wavelet-smoothed using a 90% power wavelet
transform. The authors inferred the distinctive phenology of
single- and double-harvest crops from this wavelet-smoothed
data record. The study revealed that more than 3,200 km2 were
transformed from natural vegetation and grazing to row-crop
cultivation between 2000 and 2005. A group led by Rhif et al.
(2022) focused on improving trend analysis for non-stationary
NDVI time series in different segments of Tunisia based on
different meteorological data, statistical tests, and wavelet
transform for the time span of 2001–2017. In this work, different
types of mother wavelets were analyzed for the most suitable one.
The study depicted that a combination of Daubechies and Symlets
MWs (db9 and sym4) mother wavelets performed best in this
context. The study reported the degradation of forests (Li W
et al., 2021) and the increase in vegetation area and croplands in
different segments of the study area. Ghasempour et al. (2021)
worked on spatiotemporal variation of drought and incorporated
remote sensing and wavelet transformation in the northwest part of
Iran. Maximal overlap discrete wavelet transform (MODWT) was
adopted for extracting temporal features of time series. The study
considered several satellite-based indices like NDVI, the vegetation
condition index, the vegetation health index, and the temperature
condition index. The study evaluated the coherence between
ground-based drought indices and satellite-based indices. It was
concluded that there was a significant association between selected
variables and drought.

Hence, there is great potential for the application of multiscale
time–frequency decomposition or wavelet transformation in the
observation of long-term NDVI responsiveness to meteorological
factors but is still limited to few studies (Sebastian et al., 2019;
Ghasempour et al., 2021; Naga Rajesh et al., 2023). An arid
environment has typical characteristics of limited resources and
presents a challenging environment for the growth of plants and
crops. Hence, it is significant to study the synergic effect of climatic
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factors on the vegetation dynamics in this unique ecosystem.
Presently, there is a considerable research gap in the context of
the arid western plain zone of Rajasthan, India. The major objectives
of the present study were to evaluate the spatial and temporal trend
of NDVI and climatic factors like precipitation, 2-m air temperature,
evapotranspiration, and soil moisture over 2 decades (2000–2021) in
the segment of the arid western plain zone (ACZ-II) of Rajasthan,
India. In addition, the study analyzed the magnitude of coherence of
NDVI to other climatic factors to evaluate the responsiveness of
NDVI to meteorological factors using multiscale time–frequency
decomposition or wavelet transform.

2 Materials and methods

2.1 Study area

The present study area is located in the segment of the arid
western plain zone (ACZ-II) of western Rajasthan, India. The
geographical extension of the study region is between 74°3′6.316″E
and 74°39′9.247″E and 27°47′53.022″N and 28°40′21.049″N
encompassing an area of 4,500 km2 (Figure 1). There are four main
agro-climatic zones in western Rajasthan: (1) irrigated north-western
plain (ACZ-I), (2) arid western plain (ACZ-II), (3) transitional plain of
inland drainage (ACZ-III), and (4) transitional plain of Luni Basin
(ACZ-IV). A negligible fraction of the arid western zone is covered by

vegetation (Kar, 2014). The extreme range of temperature (–1°C–49°C)
and low rainfall (350 mm) are some of the significant climatic
characteristics of this region (Census of India, 2011).

2.2 Database and methodology

In the present study, 21 years of mean monthly continuous data
(2000–2021) for NDVI, precipitation (mm/day), soil moisture (kg
m–2), evapotranspiration (kg m–2), and 2-m air temperature (oC)
were downloaded from NASA-supported Giovanni datasets. A
NASA Goddard Earth Science Data and Information Services
Center (GES DISC) Distributed Active Archive Center (DISC)
web application (https://giovanni.gsfc.nasa.gov/giovanni/) was
used for accessing, visualizing, and analyzing considerable
volume geospatial data. The details of the data are shown in Table 1.

Karl Pearson’s coefficient of correlation “r” is a widely used
technique for determining correlation among variables (Zeren Cetin
et al., 2023). In the present study, multiple correlations between the
variables were established and are portrayed in Figure 2 using the
following expression (1) in RStudio using the metan package
(Olivoto and Lúcio, 2020):

rxy � ∑n
i�1 xi −X′( ) yi − Y′( )[ ]������������������������∑n

i�1 xi −X′( )2∑n
i�1 yi − Y′( )2√ , (1)

FIGURE 1
Location map of the study area (Source: Kar, 2014).
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where n is the total number of samples, X′ and Y’ are the
respective means of x and y, and rxy is the correlation coefficient
between variables x and y.

To determine the trend in the time series of the selected
variables, Mann–Kendall (MK) statistics and Sen’s slope were
performed in RStudio (Team R. C., 2020) using the Kendall
(McLeod, 2016) and trend (Pohlert, 2023) packages. The MK test
is a widely used tool for the depiction of monotonic trends in time-
series data (2 and 3):

S � ∑n−1
i−1 ∑n

j�i+1sgn yj − yi( ), (2)

where

sgn yj − yi( ) � sgn Rj − Ri( ) � f y( ) � −1, if yj <yi,
0, if yj � yi,
+1, if yj >yi,

⎧⎪⎨⎪⎩ (3)

where S is the MK statistics or Kendall’s tau (MK-tau) and Rj and Ri

are the ranks of time series observation of yj and yi, respectively. The

TABLE 1 Details of NDVI, precipitation, soil moisture, total evapotranspiration, and 2-m air temperature data used for analysis.

Dataset Spatial
resolution

Source

NDVI: MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05o x 0.05° Giovanni, Goddard Earth Science (https://giovanni.gsfc.nasa.gov/
giovanni/)

Precipitation: TRMM_3B42RT7: Precipitation (Daily data converted into
Monthly), L3

0.25o x 0.25°

Soil moisture: Area-averaged soil moisture content (0–10 cm underground)
Monthly [GLDAS]

0.25o x 0.25°

Total evapotranspiration: NLDAS Noah Land Surface Model L4, Monthly 0.125° x 0.125°

2-m air temperature: Area-Averaged, Monthly [MERRA-2] 0.5° x 0.625°

FIGURE 2
Correlation among the selected parameters.
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test assumes that data are independent and identically distributed.
The following expressions (4 and 5) can be used for the denervation
of mean E(s) and variance var(s):

E s( ) � 0, (4)

Var s( ) � n n − 1( ) 2n + 5( ) − ∑q
p�1tp tp − 1( ) 2tp + 5( )
18

, (5)

where tp is the number of ties for the pth extent and q is the
number of tied groups. The second part represents the tuning for
tied observations. It is assumed that with a significant number of
observations, S tends to follow a normal distribution. The Z
significance test (ZMK) with a p-value <0.05 was computed by
Eq. 6:

ZMK �

S − 1�������
Var S( )√ , if S> 0,

0, if S � 0,

S + 1�������
Var S( )√ , if S< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(6)

Here, the null hypothesis (Ho), that is, no trend, is tested against
the alternative hypothesis (H1), having a trend in the time-series
data. In addition, Sen’s slope was estimated using the following
expression:

Qi � Xj −Xk

j − k
for i � 1 . . . . . . . . .N, (7)

where Qi is the estimated slope for each pair of observations; j
and k denote time steps where j>k.

The time-series data for all the variables were represented in
Origin software. The collected data were categorized in two ways.
The entire dataset was initially organized according to the seasons
(winter, pre-monsoon, monsoon, and post-monsoon) and
represented through a box plot in RStudio using the tidyverse
package (Wickham et al., 2019). In addition, the entire dataset
was organized in mean monthly results and represented using a
boxplot. A continuous wavelet converts a time-series signal into the
time–frequency domain. It depicts the magnitude and periodicity of
the time-series data [Xt] in the time domain (Mahasa et al., 2023).
The Morlet wavelet transform of a time series (Xt) is defined as the
convolution of the series with a set of “wavelet daughters” generated
by the mother wavelet by time translation and scale factors (8):

Wave τ, s( ) � ∑
t
xt

1
√s

Ψ* t − τ
s

( ), (8)

where s is the wavelet scale, τ defines the position of the wavelet
window in the time or the translated time index, andΨ is the mother
Morlet function with * denoting the complex conjugate. In the
present study, the Morlet wavelet function (Ψ) as a basis of the
wavelet function is used through the following expression (9):

Ψ t( ) � π−1/4eiωte−t
2/2, (9)

where ω is the rotation rate or angular frequency per unit time in
radians and t is the time step. One revolution is equal to 2π (radians);
therefore, the period (or inverse frequency) measured in time units
equals 2π/6. The wavelet power can be expressed through the
following expression (10):

Power τ, s( ) � 1
s
Wave τ, s( )| |2. (10)

A cross-wavelet transformation (CWT) function was applied to
measure the relationship between NDVI and individual climatic
variables using a similar time step. The cross-wavelet [Wxy (τ,s)] is
expressed in the following way (11):

Wxy τ, s( ) � wx τ, s( ).wy* τ, s( ), (11)

where * denotes the complex conjugate of the y time series. The
following expressions can be used for the determination of the
power of cross-wavelet, which is the measure of coherence between
pairs of time-series data (12 and 13):

Coherence � s.Wave.xy
∣∣∣∣ ∣∣∣∣2

sPower.x . sPower.y
, (12)

Power.x � 1
s
Wave τ, s( )| |2;Power.y � 1

s
Wave τ, s( )| |2. (13)

The difference in phase between two time-series data depicts an
in-phase oscillation pattern of two time-series data if they are
matched with each other; in contrast, the difference in phase
depicts an out-of-phase pattern if the two time-series data do not
match (Grinsted et al., 2004). The lagging or the leading tendencies
of the variables are indicated through the arrows (Schmidbauer and
Roesch, 2018). The coherence between the variables was evaluated at
the p-value of 0.05 and was incorporated in the cone of influence
(Pal and Devara, 2012). The entire process of wavelet analysis and its
graphical expression was performed in RStudio using the
WaveletComp package (Schmidbauer and Roesch, 2018). To
detect the presence or absence of multicollinearity among
climatic variables, the variance inflation factor (VIF) was
obtained in RStudio using the faraway package (Faraway, 2022).
The spatial distribution of NDVI was depicted in the Google Earth
Engine (GEE) code editor. The Landsat 5 TM dataset was used for
the depiction of the year 2000 NDVI data, and the Landsat 7 ETM+
dataset was adopted for the recent year. In the cases of 2000 and
2021, the mean annual time frame was considered for the depiction
of NDVI. Finally, the results were downloaded and represented in
ArcGIS 10.5.

3 Results

3.1 Relationship of mean NDVI to climatic
factors

The relationship of mean NDVI to the climatic factors was
determined by using Karl Pearson’s coefficient of correlation.
Precipitation showed a positive and moderate correlation with
mean NDVI (r = +0.50). Soil moisture and precipitation are
important climatic factors that have a direct impact on the
growth of plants and crops (Chen et al., 2023; Yang et al., 2023).
Evapotranspiration depicted a higher positive correlation with all
the factors including mean NDVI (r = +0.71). On the other hand, a
relatively insignificant correlation was observed between the 2-m air
temperature and mean NDVI (r = +0.03). Soil moisture and NDVI
depicted a high positive correlation of +0.81 (Figure 2). The positive
correlation between the mean NDVI and climatic factors depicted
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the definite influence of climatic factors on the growth of plants and
crops (Tian et al., 2019; Wang et al., 2022).

Before further assessing the relationship between climatic
factors with NDVI, it is crucial to evaluate if any kind of
multicollinearity exists between climatic factors (Li M et al.,
2021; Zhang et al., 2021). The presence of multicollinearity
can result in unstable estimations as it enhances the variance
of the coefficient of regression (Chan et al., 2022; Zhu et al.,
2023). VIF is a widely used method adopted by scholars of
different disciplines for depicting multicollinearity among
variables (Chan et al., 2022; Park et al., 2022). The VIFs for
the climatic factors were 2.43, 4.85, 7.06, and 2.12 for
precipitation, soil moisture, evapotranspiration, and 2-m air
temperature, respectively, with a p-value of <2.2×10−16. All the
VIFs showed values less than 10 with a very low p-value, which
indicated the absence of any significant collinearity among
climatic factors (Akinwande et al., 2015).

3.2 Spatiotemporal dynamics of vegetation

Figure 3 depicts the spatial dynamics of NDVI from 2000 to
2021. The illustration clearly shows a significant change in
vegetation cover over the last 2 decades. In recent years, the
greener segments, which are mostly associated with agricultural
activities, have expanded in the northern and eastern segments. In
previous years, the concentration of crops/vegetation was mostly
observed in the central segment.

The linear trend of mean NDVI showed a clear upward trend
(Figure 4A) for the period 2000–2021. The range of mean NDVI
from 2000–2021 was between 0.12 and 0.49 as minimum and
maximum, respectively, with a mean of 0.07. The monthly
minimum NDVI value was observed during May 2000 (pre-
monsoon), while the maximum NDVI value was observed during
September 2011 (monsoon). The standard deviation of 0.08 showed
relatively a small deviation in the entire time span with a positive
skewness (+1.17). MK trend analysis depicted a positive trend at the
95% confidence level with a Sen’s slope of 3.3×10−4.

3.3 Temporal trend of climatic factors

The precipitation rate varies between 0 mm/day and
287.41 mm/day in the entire time span. The maximum
precipitation was observed during August 2012 (monsoon). The
mean precipitation value was as high as 46.17 mm/day, the standard
deviation was as high as 63.18 mm/day, and skewness indicated a
high positive value (+2.06). The MK trend test and Sen’s slope
indicated a downward trend in the time frame (z = −2.46 and Sen’s
slope −6.88×10−3, respectively) (Figure 4B). Soil moisture ranged
between 47.95 kg m–2 and 86.97 kg m–2 with a mean of 6.52 kg m-–2

(Figure 4C). The standard deviation was as high as 8.29 kg m–2,
while skewness was 0.71. The MK trend test and Sen’s slope
indicated an upward trend in the time frame (z = 2.71 and Sen’s
slope 1.72×10−2, respectively). Evapotranspiration ranged between
8.73×10−7 kg m–2 and 4.22×10−5 kg m–2 with a mean of

FIGURE 3
NDVI dynamics from 2000–2021.
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8.88×10−6 kg m–2 (Figure 4D). The standard deviation and skewness
were 1.09×10−5 kg m–2 and 1.09, respectively, while the MK trend
and Sen’s slope were 1.42×10−8. Figure 4E shows the trend of 2-m air
temperature on NDVI. The range of 2-m air temperature from
2000 to 2021 was 12.52°C (minimum) and 37.21°C (maximum)
(Figure 4E). The standard deviation was high, at 7.30, while the
skewness was −0.34. The minimum temperature was observed
during January 2020 (winter), and the maximum temperature
was observed during June 2002 (pre-monsoon). MK trend
statistics showed a downward trend (z = −1.16) with a Sen’s
slope of−5.66×10−3.

3.4 Mean monthly and seasonal
characteristics of NDVI and other climatic
factors

Themeanmonthly characteristics ofNDVI depicted some important
facts and complex relationships with other climatic factors. The months

of May and June showed the lowest means (0.14 and 0.15, respectively)
and minimum inter-quartile ranges (IQRs) (0.02 and 0.02, respectively)
(Figure 5A). On the other hand, August and September depicted the
highest means (0.37 and 0.36, respectively) and highest IQRs (0.13 and
0.13, respectively). The maximum NDVI values can be observed in July,
August, and September. Precipitation (Figure 5B), soil moisture
(Figure 5C), and evapotranspiration (Figure 5D) confirm a similar
pattern; 2-m air temperature is an exception (Figure 5E). During
June, 2-m air temperature reached its zenith with a mean and IQR of
35.54 and 1.75, respectively.

Figure 5E depicts the mean monthly temperature pattern of the
entire time span. In the selected study area, the winter season spans
betweenmid-November and February, and the pre-monsoon season or
summer prevails from April to June. The monsoon season ranges
between July and September. The characteristics of the post-monsoon
season can only be observed during October and early November
(Dhakar et al., 2013). Seasonal characteristics were depicted by
observing the behavior of all the variables in the four major seasons,
viz., winter, pre-monsoon, monsoon, and post-monsoon. During

FIGURE 4
(A) Temporal trend of NDVI from 2000 to 2021. (B) Temporal trend of precipitation from 2000 to 2021. (C) Temporal trend of soil moisture from
2000 to 2021. (D) Temporal trend of evapotranspiration from 2000 to 2021. (E) Temporal trend of 2-m air temperature from 2000 to 2021.
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winter and pre-monsoon, NDVI showed relatively low IQRs (0.04 and
0.05, respectively) (Figure 6A) (Table 2) with a very low standard
deviation (0.03) and depicted a significant associationwith soil moisture
in particular (Figure 6B). During the monsoon season, IQR showed the
highest value of 0.20 and depicted the maximum association with the

climatic factors. During monsoon, the IQRs of related climatic factors
like precipitation (Figure 6C), soil moisture (Figure 6D), and
evapotranspiration (Figure 6C) were 119.69 mm/day, 16.41 kgm–2,
and 1.7×10−5 kgm–2, respectively. At the same time, the IQR of the
2-m air temperature was at a minimum during the monsoon season

FIGURE 5
(A) Mean monthly variation of NDVI (2000–2021). (B) Mean monthly variation of precipitation (2000–2021). (C) Mean monthly variation of soil
moisture (2000–2021). (D)Meanmonthly variation of evapotranspiration (2000–2021). (E)Meanmonthly variation of 2-m air temperature (2000–2021).
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(3.51) (Figure 6E). In post-monsoon, the IQR of the mean NDVI was
0.13, while at the same time, the IQR of precipitation was 44.80 with a
considerably lower mean value. Soil moisture also follows a similar
pattern as precipitation in terms of IQR. In the case of NDVI, the
standard deviation was relatively smaller in all seasons exceptmonsoon.
In contrast, all of the climatic variables showed a higher standard
deviation. Table 2 summarizes the descriptive statistics of NDVI and all
the climatic factors.

3.5 Cross-wavelet analysis

The precipitation time series and NDVI time series depicted some
significant results. A continuous segment of coherency among the
factors can be observed in the eighth to the 16th month period. The
highest cross-wavelet power (CWP) level can be observed after 2010 in
the 12th month segment period (Figure 7A). Another discrete segment
of coherency was observed in the fourth to the seventh month period.

FIGURE 6
(A) Seasonal variation of NDVI (2000–2021). (B) Seasonal variation of precipitation (2000–2021). (C) Seasonal variation of evapotranspiration
(2000–2021). (D) Seasonal variation of soil moisture (2000–2021). (E) Seasonal variation of 2-m air temperature (2000–2021).
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The direction of the arrows confirms that in these segments, the factors
were associated with an in-phase condition. Results obtained from the
cross-wavelet analysis of evapotranspiration and NDVI depicted some
significant facts. The CWP level ranged between below 0.3 to above 1.5.
A continuous segment of coherency with a longer periodicity of the
evapotranspiration time series and NDVI time series can be observed
from the ninth to the 12th month period throughout the temporal
dimension. A segment of periodicity can also be observed between the
fifth and the seventhmonth period (Figure 7B). In this case, the segment
was discrete before 2010, while it is relatively continuous afterward. The
maximum CWP level was observed after 2010 and in the period
segment of the 11th to the 12th month period in a discrete manner.
The arrows in the segments toward the right (fifth to the seventhmonth
period) and top-right (ninth to the 12th month period) directions
indicate the in-phase cyclicity of evapotranspiration and NDVI
(Schmidbauer and Roesch, 2018; Liu et al., 2023). In the case of the
ninth to the 12th month period, the segment was associated with the
situationwhen themeanNDVIwas leading and evapotranspirationwas
lagging. Soil moisture and NDVI showed a similar pattern of coherency
and phase condition except for CWP level. In this context, most of the
area was associated with a relatively lower CWP level, with only a few
patches with a higher CWP level. An in-phase condition can be
observed during the fourth to seventh month period and the ninth
to the 16th month period (Figure 7C). In the case of 2-m air temperate

and NDVI, only a single segment of coherency can be observed in the
eighth to the 16th month period with the highest CWP level between
2010 and 2015. The direction of the arrow indicates a slight in-phase
condition (Figure 7D).

4 Discussion

The relationship of NDVI to the other climatic factors in the
temporal dimension suggested several significant points and showed
considerable alignment with seasonal patterns. Soil moisture plays a
crucial role in the entire life span of plants and crops and has a strong
relationship with evapotranspiration (Huang T et al., 2021). A high
positive correlation exists between NDVI and soil moisture (r = +0.81).
The result is further supported by the study of Saco and Morenode las
Heras (2013). In this study, the development of vegetation patterns
through the interaction of biotic and abiotic processes was evaluated,
and it was concluded that the distribution of vegetation patches is
fundamentally associated with soil moisture in the semi-arid region.
Another study by Dang et al. (2022) incorporated temperature and soil
moisture to measure global ecosystem production. According to the
study, temperature variation played a significant role in influencing the
degree of solar-induced chlorophyll fluorescence as an indicator of
global ecosystem productivity in most humid segments.

TABLE 2 Seasonal descriptive statistics of NDVI and climatic factors.

Season Mean Min Max SD Skewness IQR

NDVI Winter 0.21 0.15 0.28 0.03 0.11 0.04

Pre-monsoon 0.17 0.12 0.26 0.03 0.81 0.05

Monsoon 0.26 0.12 0.47 0.11 0.34 0.20

Post-monsoon 0.31 0.16 0.49 0.08 0.30 0.13

Precipitation (mm/day) Winter 3.99 0.00 36.44 7.59 2.87 3.51

Pre-monsoon 18.57 0.00 115.87 21.52 2.26 21.85

Monsoon 113.37 0.00 287.41 80.15 0.39 119.69

Post-monsoon 33.77 0.00 212.99 45.11 1.95 44.80

Soil moisture (kg m–2) Winter 60.71 49.50 70.96 4.21 −0.34 5.83

Pre-monsoon 56.89 47.96 69.50 4.56 0.43 5.91

Monsoon 69.76 48.08 86.97 9.65 −0.32 16.41

Post-monsoon 68.25 54.03 84.55 6.35 0.47 7.21

Evapotranspiration (kg m–2) Winter 4×10−6 1×10−6 1×10−5 2×10−6 1.19 2.48×10−6

Pre-monsoon 7×10−6 1×10−6 1.8×10−5 4×10−6 0.64 5.63×10−6

Monsoon 2.4×10−5 5×10−6 4.2×10−5 1×10−5 2.32×10−3 1.7×10−5

Post-monsoon 1.8×10−5 2×10−6 4×10−5 1×10−5 0.42 1.55×10−5

2-m air temperature (oC) Winter 17.21 12.52 22.54 2.87 0.31 4.83

Pre-monsoon 29.47 21.11 36.03 4.53 −0.27 8.59

Monsoon 33.43 29.75 37.21 2.05 0.07 3.51

Post-monsoon 28.48 25.19 32.68 1.93 0.23 3.69

Source: Calculated by authors; Min, minimum, Max, maximum, SD, standard deviation, IQR, inter-quartile range.
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Soil moisture, on the other hand, was critical in influencing
ecosystem production in semi-arid and arid regions. During the
monsoon season, higher soil moisture and 2-m air temperature
played a positive role in the photosynthesis process of plants and
crops. In the pre-monsoon season, the 2-m air temperature was higher,
but soil moisture was lower. In the study area, in association with the
climatic constraints, agricultural activities are mostly concentrated
during the kharif (monsoon) season, where precipitation plays a
significant role. Furthermore, it was observed that the enhanced
spatial and temporal dimensions of the NDVI in recent years are
primarily due to the contribution of agricultural activities. This result is
supported by several studies. The inferences depicted by Zheng et al.
(2018) showed that from 1999–2016, one of the significant contributors
to increasing the NDVI was cropland in the semi-arid basin of the
Chinese loess plateau. The study also concluded that climate change is
another driving force. The study by Huang et al. (2010) found that
MODIS-NDVI-based crop classification in China classified crop
growth into three classes, viz., better than usual, usual, and worse
than usual (Huang et al., 2010). The study by Lu et al. (2021), concluded
that in the recent years, intensive agricultural management led to
increasing yields and further resulted in an increased NDVI. The
study concluded that in recent years, intensive agricultural

management led to increasing yields and further resulted in an
increased NDVI. The results from our study also indicated that in
recent years, there has been a considerable increase in the spatial extent
of agriculture along with increased yield. The MK trend test and Sen’s
slope showed no significant variation was observed in the recent time
span. The wavelet analysis indicates that the coherency of NDVI to
other climatic factors was stronger in two periods. The result can be
related to the cropping pattern and the plant growth cycle. The result is
supported by several studies with a similar approach. Fayech and
Tarhouni (2021) worked in the arid region of Gabes to depict the
relationship betweenNDVI and rainfall. The linear regression showed a
positive relationship between annual NDVI and annual rainfall, while
the relationship was negative between LST and NDVI.

Ramos et al. (2018) associated a remotely sensed leaf area index in
hydrological modeling to evaluate maize development. The leaf area
index shows the variability of crops and soils in different phases of the
cycle of plants. The present study showed that during the post-monsoon
season, theNDVIwas associatedwith the highestmean value compared
to the wet season (Ramos et al., 2018). During monsoon, the solar
radiation is relatively lesser, which may cause a lesser rate of
photosynthesis and a relatively smaller NDVI (Yin et al., 2023). The
result is supported by the work of Chen et al. (2004). The study reported

FIGURE 7
(A) Precipitation and NDVI. (B) Evapotranspiration and NDVI. (C) Soil moisture and NDVI. (D) 2-m air temperature and NDVI.
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that the presence of clouds can result in lower NDVI. Soil moisture and
evapotranspiration also showed a close relationship and coherence with
the NDVI (Schultz and Halpert, 1993). During the pre-monsoon
season, the soil moisture and evapotranspiration showed
considerable coherence with NDVI. Furthermore, higher LST and
lower soil moisture during the pre-monsoon season may lead to
lower levels of NDVI. The work of Sharma et al. (2022)
substantiates this result. The wavelet analysis showed the prevalence
of periodicity between climatic factors and NDVI during the pre-
monsoon and post-monsoon seasons, viz., the fourth to the seventh
month and the ninth to the thirteenth month.

Coherence is clearly visible between climatic factors and NDVI
except for 2-mm air temperature. Longer periodicity with an in-phase
condition indicates the strong sensitivity and responsiveness of NDVI
to climatic factors. The work of Huang T et al. (2021) confirms the
results obtained in the present study. The orientation of the arrows
shows the phase conditions between the specific climatic factor and
NDVI. A significant in-phase conditionwas observedwith aminor shift
indicated by the angle of the arrow (Huang D et al., 2021). This kind of
shift showed the influence of other climatic factors on the overall
dynamics of NDVI (He et al., 2012; Sebastian et al., 2019). In contrast,
the lower periodicity of smaller patches of coherence showed different
behavior. These smaller patches indicated the influence of smaller-scale
seasonal variation and local circulation (Sebastian et al., 2019). In most
situations, the arrows in the smaller patches of significant coherence
showed an in-phase condition except for 2-m air temperature. The
angles of the arrow also indicated the impact of other climatic factors.
One important finding from the cross-wavelet analyses was that after
2010, the periodicity of the fourth to the seventh month was more
continuous than before, which may be attributed to better irrigation in
the entire region in recent years (Hussain and Mohammad, 2018). The
work of Kaur and Singh (2023) also supports the present work. The
authors reported that in recent years, the Indira Gandhi Canal and oil
schemes have been major driving forces behind enhanced agricultural
activities in significant segments of Rajasthan, including the present
study area (Kaur and Singh, 2023).

5 Conclusion

In the present study, the impact of climatic factors like precipitation,
soil moisture, 2-m air temperature, and evapotranspiration was
considered for evaluating the long-term mean NDVI response. The
seasonal characteristics of the components were found to have a strong
relationship with mean NDVI. According to the findings, the pre- and
post-monsoon seasons are characterized by intricate coherence among
climatic elements, which has a major impact on NDVI. All the climatic
factors except 2-m air temperature showed strong coherence and in-
phase conditions in these two seasons. One important inference that can
be deduced from the analysis is that agricultural activities in recent years
were relatively intense and spatially extended with better inputs and are
responsible for the increased NDVI. From the CWP level, it was
observed that in two major geographic segments of the study area,
the coherence between the climatic factor and the mean NDVI was
strong, which is further related to the agricultural activities and
vegetation growth cycle. The present study also showed that tools
like wavelet transform can play a significant role in explaining long-
term complex time series and its coherence to other variables and in-

phase or out-of-phase conditions. The present study is limited to a
specific time and space by specific climatic factors. The application of
the present study is not only restricted to the study area but rather is
applicable at the global scale with similar climatic conditions. Recent
techniques like machine learning algorithms could be applied to extend
the present study by including more climatic factors with a wider
regional scope so that the importance of each variable on the response
variable can be understood.
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