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The accurate prediction of the trend of natural gas production changes plays an
important role in the formulation of development planning plans. The
conventional gas exploration and development in Sichuan Basin has a long
history. Based on the development of conventional natural gas production, the
article uses the Hubbert model, Gauss model, and GM (1, N) model to predict
conventional natural gas production, and then the Shapley valuemethod is used to
allocate the weight values of the three models, and a combination model for
conventional gas production prediction is established. Finally, residual analysis and
precision test are carried out on the prediction results. The results show that: 1)
The combination model established using the Shapley value method can
effectively combine the advantages of various models and improve the
accuracy of prediction. And the standardized residual of the combined model
is the lowest, the prediction is closest to the actual value, and the accuracy test is
the best, indicating that the combined model has the highest accuracy. 2) After
using a combination model for prediction, conventional gas production will peak
in 2046, with a peak production of 412 × 108 m3, with a stable production period of
(2038–2054) years, a stable production period of 17 years, and a stable production
period of 389 × 108 m3, the predicted results of the combinedmodel have a longer
stable production period, and the trend of production changes is more stable. The
use of combination model provides a reference for the field of natural gas
prediction, while improving the accuracy of prediction results and providing
better guidance for production planning.
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1 Introduction

Natural gas belongs to low-carbon fossil energy, with a strong development foundation
and huge development potential. Moderately leveraging the unique advantages of clean, low-
carbon, efficient, and stable natural gas can effectively promote the transformation and
development of the energy system from fossil energy to renewable energy. Responding to the
trend of international energy development, focusing on green energy and reducing carbon
emissions (Shui. et al., 2022; Wang et al., 2023; Jia. et al., 2023). It can be seen that the
reasonable and efficient exploration and development of natural gas is extremely important.
To achieve this goal, accurately and stably predicting the trend of natural gas production
changes has become an important link in development planning (Qiao. et al., 2020; Yuan.
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et al., 2022). Therefore, only by establishing a reliable prediction
model and improving the accuracy of production prediction can we
ensure the reasonable formulation of exploration and development
planning plans.

Sichuan Basin has a long history of exploration and
development, especially conventional gas has experienced
multiple cycles of development, and is currently in the
production growth period. In addition, there has been some
research on methods and models for predicting natural gas
production, and the most commonly used peak prediction
methods and grey system methods have been well applied. For
example, Chong et al. (2022) established an optimized grey system
model with weighted score accumulation, using natural gas
production in Germany, Italy, and Canada as examples to verify
the feasibility of the model and apply it to study China’s natural gas
production. The results indicate that this model is very suitable for
predicting and analyzing natural gas production in China. Li.
Xuemei et al. (2022a) proposed a grey prediction model
combined with Particle swarm optimization, which can be used
to predict time series with seasonal characteristics, with high
prediction accuracy. The model was used to predict the quarterly
production of natural gas in China from the third quarter of 2021 to
the second quarter of 2024. The predicted results can provide a basis
for formulating natural gas production plans and environmental
policies. Wang. et al. (2016) used a multi cycle Hubbert model to
predict China’s annual natural gas production based on several
different ultimate recoverable reserve scenarios, and determined
peak production, peak years, and future production trends. Accurate
predictions of natural gas production and consumption can provide
a basis for decision-making and help the government formulate new
major policies.

Although these peak prediction models are also applicable to the
production prediction of Sichuan Basin, due to the limitations of the
models themselves, there are certain errors in the prediction results.
In order to reduce the errors caused by the models, a combination
model needs to be established. Qiao. et al. (2021) developed a
combined model with automatic encoder and long-short-term
memory, and calculated the difference between the US natural
gas production and consumption as an example. The results
indicate that the combined model outperforms other artificial
intelligence models and has higher prediction accuracy. Research
can provide reference for other time series predictions and natural
gas policymakers. Tuan Hoang. et al. (2023) used three machine
learning models, including decision tree, Random forest and support
vector regression, to predict engine performance and emission
parameters. In most cases, the accuracy rate was up to 99%.
Therefore, using combination models for prediction can
effectively combine the advantages of various prediction models,
thereby improving the accuracy of prediction results.

Shapley value method is a good allocation method, which can
reasonably allocate weights according to the error size of eachmodel,
and the established combination model often has higher accuracy
(Cai. et al., 2023). Li et al. (2021) combined the individual
characteristic weight coefficient with the Shapley value of each
hydropower station, and proposed a variable coefficient Shapley
value method for compensation benefit distribution of multi owner
cascade hydropower stations. Taking China’s Nanhe Hydropower
Station as an example, this method was compared with other typical

distribution methods. The results show that the stability of this
method in compensating benefit allocation is better than other
methods, achieving fair and reasonable allocation of
compensation benefits among cascade hydropower stations, and
improving the utilization efficiency of water resources in the basin.
An et al. (2019) combined the Shapley value method with network
DEA to explore the problem of resource sharing and revenue
allocation between different stages in a three-stage system.
Several network DEA models have been established to calculate
the optimal profits of the system before and after collaboration. In
addition, the Shapley value was used to handle the problem of
income distribution and verified through examples. Therefore, the
Shapley value method can be combined with commonly used peak
prediction models, such as the Hubbert model, Gauss model, etc., to
establish a more accurate combination model for prediction results.

After the combination model is established, error analysis is
required to study the accuracy and reliability of the model. Common
error analysis methods include residual analysis and precision
inspection, among which precision inspection includes F-test and
t-test (Shichun et al., 2022; Pellatt. and Sun., 2023). Hong-Ju et al.
(2022) established a model from 14 optimal wavelengths selected
from KM spectrum, and tested whether the model has better
performance in predicting Reducing sugar content. The F-test
and t-test results of two samples further demonstrate the
robustness and effectiveness of the model. Hong-Ju et al. (2023)
realized rapid quantification and visualization of sweet potato starch
content through near-infrared spectroscopy and image data fusion,
and further verified the accuracy of the model through F-test and
t-test. Therefore, after the residual analysis of the prediction results,
the accuracy of the prediction results can be judged by combining
the F-test and t-test.

According to the development of conventional gas production in
Sichuan Basin, this paper firstly predicts conventional gas
production by using Hubbert model, Gauss model and GM (1,
N) model, and calculates the average percentage error of each model
according to the prediction results. Then the Shapley value method
is used to allocate the weight values of the three models. Based on the
weight allocation results, a combination model for conventional gas
production prediction is established, and the production prediction
curves of the combination model and the single model are
compared. Finally, residual analysis and accuracy testing were
conducted on the prediction results of the four models, and the
accuracy and reliability of each model were analyzed and studied
(Liu et al., 2022; Liu et al., 2023a; Liu et al., 2023b).

2 Theory of combined prediction of
natural gas production

2.1 Production prediction theory

2.1.1 Hubbert model
TheHubbert model is a widely used resource predictionmethod.

The model was developed by geophysicist M King Hubbert
proposed it in the mid-20th century (Nanzad. et al., 2017). The
model can better simulate the changes in natural gas life cycle,
namely the process of rapid growth, stable growth, and gradual
decline after reaching the peak (Tunnell Bolorchimeg et al., 2021). In
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order to better predict the production trend of natural gas reserves,
the ultimate recoverable reserve URR is introduced as a boundary
constraint condition to improve the original Hubbert model. The
improvement process is as follows.

Q t( ) � NR

1 + e−k t−tm( ) (1)

Formula (1) is the famous Hubbert model. Among them, Q(t)
represents the cumulative production, the unit is 108m3/a; NR

represents recoverable reserves, the unit is 108m3/a; t is the
production exploitation time, the unit is year; tm is the peak time
of production; the unit is year; k is the model parameter.

In formula (1), the traditional Hubbert model uses exploitable
reserve NR for calculation, while in actual production, more
consideration is given to the proved rate and recovery rate, and
production planning is based on the ultimate recoverable reserves.
Therefore, the ultimate recoverable reserves URR is introduced as
the boundary condition, and the recoverable reserve NR is replaced
by URR. Then, by taking the derivative of formula (1) over t, the
calculation formula for annual production can be obtained, which is
formula (2).

Q � dQ t( )
dt

� k × URR × e−k t−tm( )

1 + e−k t−tm( )[ ]2 (2)

In the formula, Q represents the annual production, the unit is
108m3/a.

When t � tm, the production growth reaches its peak. At this
point, the cumulative production Q(t) has the highest rate of
change, that is, dQ(t)/dt is the largest. At this point:

Qm � k × URR/4 (3)
In the formula, Qm represents the peak annual production, the

unit is 108m3/a.
Transforming formula (3) intoURR � 4Qm/k and substituting it

into formula (2) can obtain the annual production calculation
formula for the Hubbert model, which is formula (4).

Q � 2Qm

1 + cosh k t − tm( )[ ] (4)

2.1.2 Gauss model
The Gauss model is similar to the Hubbert model in that it has

the advantage of higher accuracy and is therefore equally suitable for
natural gas production prediction research (Pan et al., 2019). The
curves predicted using the Gauss model are often leaner and higher,
but the overall trend of change is consistent with the Hubbert model
from a macro perspective, and both exhibit symmetry with peak
production as the axis of symmetry. The original expression of the
Gaussian model is shown in formula (5).

Q t( ) � NR

s
���
2π

√ e− t−μ( )2/2s2 (5)

In the formula, μ is the mean, s is the standard deviation, and
other parameters are the same as the Hubbert model.

In the process of natural gas extraction, the cumulative
production within the (0 −∞) interval of the extraction time t is
considered as the ultimate recoverable reserves URR. ReplaceNR in

formula (5) with URR to obtain formula (6), which is the calculation
formula for annual production Q.

Q � URR

s
���
2π

√ e− t−μ( )2/2s2 (6)

Derive formula (6) from time t to obtain the following
expression.

dQ

dt
� URR

s
���
2π

√ e− t−μ( )2/2s2 −t − μ

s2
( ) (7)

When the production change reaches its highest value, the
annual production change rate dQ/dt � 0. At this point, the peak
annual production time is:

tm � μ (8)
Add tm � μ Substitute it into formula (6) to obtain the annual

peak production Qm.

Qm � URR

s
���
2π

√ (9)

By substituting formulas (8), (9) into formula (6), the annual
production calculation formula for the Gauss model can be
obtained, which is formula (10), where s is the model parameter.

Q � Qme
− t−tm( )2/2s2 (10)

2.1.3 GM (1, N) model
The grey model, abbreviated as the GMmodel, includes the GM

(1, 1) model and GM (1, N) model. Due to its flexible and efficient
advantages, it is also widely used in various predictions (Wang. et al.,
2021). The GM (1, N) model represents a grey model established
using first-order differential equations for n variables x1, x2 . . . xn.
The traditional GM (1, N) method directly accumulates xi

(0) in the
first order to generate a new sequence xi

(1), which is expressed in
formulas 11, 12 (Sunil Kumar. et al., 2022).

xi
0( ) � xi

0( ) 1( ), xi
0( ) 2( )/xi

0( ) p( )[ ]
i � 1, 2/n

{ (11)

xi
1( ) � xi

1( ) 1( ), xi
1( ) 2( )/xi

1( ) p( )[ ]
xi

1( ) k( ) � ∑k
m�1

xi
0( ) m( )

⎧⎪⎪⎨⎪⎪⎩ (12)

Among them, k � 1, 2 . . .p; i � 1, 2 . . . n
Establish a simplified differential equation for GM (1, N) using

the cumulative sequence xi
(1) to obtain a prediction model. After

research, it was found that if there is a local numerical mutation in
xi

(0), it will affect the overall accuracy of the prediction model (Ding.
and Dang., 2023). Therefore, the correction weight coefficient α is
introduced at the point of numerical mutation to reduce the
prediction model error.

The corrected accumulation formula is:

xi
1( ) k( ) � xi

1( ) k − 1( ) + αxi
0( ) k( ) + 1 − α( )xi

0( ) k − 1( )
α � 1, xi

0( ) k( ) is continuous at xi
0( )

α � 0.75, xi
0( ) k( ) is discontinuous at xi

0( )

⎧⎪⎨⎪⎩ (13)

Then, use sequence xi
(1) to establish a simplified differential

equation and obtain formula (14).
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dx1
1( )

dt
+ ax1

1( ) � b1x2
1( ) + b2x3

1( ) +/bn−1xn
1( ) (14)

The discrete format of the above equation can be rewritten as:

x1
0( ) k + 1( ) + a

2
x1

1( ) k( ) + x1
1( ) k + 1( )[ ] � ∑n−1

i�1
bixi+1 1( ) k + 1( )

(15)
Y � x1

0( ) 2( ), x1
0( ) 3( )/x1

0( ) p( )[ ] (16)
β � BT · B( )−1BT · Y � a, b1, b2/bn−1[ ] (17)

B �

−1
2

x1
1( ) 1( ) + x1

1( ) 2( )[ ] x2
1( ) 2( ) / xn

1( ) 2( )

−1
2

x1
1( ) 2( ) + x1

1( ) 3( )[ ] x2
1( ) 3( ) / xn

1( ) 3( )
/

−1
2

x1
1( ) p − 1( ) + x1

1( ) p( )[ ]
/

x2
1( ) p( ) /

/

/

xn
1( ) p( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

Based on the above algorithm, establish a GM (1, N) grey
prediction model:

xi
1 k + 1( ) � e−ak xi

0( ) 1( ) − 1
a
∑n
i�2
bi−1xi

1( ) k( )⎡⎣ ⎤⎦ +∑n
i�2

bi−1
a

xi
1( ) k( )

(19)
By using the GM (1, N) grey prediction model, a new sequence

xi
(1) is obtained, and the sequence xi

(0) is obtained through first-
order subtraction corrected by the weight coefficient α.

xi
0( ) k( ) � xi

1( ) k( ) − xi
1( ) k − 1( ) − 1 − α( )xi

0( ) k( )
α

(20)

2.2 Shapley value method combined
prediction theory

Shapley value method is a method of interest distribution in
cooperative Game theory, which can scientifically and fairly
distribute the interests of each unit according to the degree of
contribution, and obtain the weight value of each unit (Li et al.,
2021). This allocation approach can be well reflected in combination
prediction. When using Shapley values for weight allocation, all
possible prediction models can be fully considered, and the greater
the contribution of each model to the combination, the greater the
final assigned weight. The process of determining weights and
combining model formulas using the Shapley value method is as
follows (Kjersti et al., 2021):

Suppose there are n prediction models, set I � [1, 2, 3, . . . , n],
and for any subset S of set I, its error is E (S). Let ei be the average
percentage error of the ith prediction model, then the error E (S) of
any subset S is:

E S( ) � ∑i∈Sei
S| | (21)

In the equation, |S| represents the number of predictive models
in the set S.

The error allocation formula for the Shapley value method is:

Ei � ∑
i�s

ω S| |( ) E S( ) − E S/i( )[ ], i � 1, 2, . . . , n (22)

ω S| |( ) � n − S| |( )! S| | − 1( )!
n!

(23)

Among them, ω(|S|) is the marginal contribution value of single
prediction method i; |S| is the number of single prediction methods
in subset S; E(S/i) is the absolute error value of subset S after
removing i.

The weight formula of the ith prediction method in combination
prediction is:

ωi � 1
n − 1

E − Ei

E
, i � 1, 2, . . . , n (24)

Among them, ωi is the weight of the ith prediction method.
Multiply each model with the weight and stack it to obtain the
formula for the combined model:

y � ω1y1 + ω2y2 +/ + ωnyn (25)
Among them, yn represents the formula for each prediction

model.

3 Combined prediction of conventional
gas production

3.1 Single model production prediction

Sichuan Basin has a long history of conventional gas exploration
and development, and the historical production is shown in Figure 1.
Conventional gas has been in production since 1953 and has gone
through three peaks by 2023, with each life cycle experiencing
several stages of production increase, stable production, reaching
peak, and decreasing production. This is similar to the prediction
law of models such as Hubbert and Gauss.

From Figure 1, it can be seen that the historical production of
conventional gas has gone through three peak periods (circled in the

FIGURE 1
Historical production of conventional gas.
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figure). Since 2013, the production has rapidly increased, far
exceeding the previous historical production (arrow in the
figure). Therefore, it can be inferred that conventional gas
production has entered a rapid production period and has
entered the fourth production development cycle, which will
reach its peak again in the future. In addition, it can be seen
from the figure that the historical data for the fourth production
development cycle is from 2013 to 2023. In order to verify the
accuracy of the prediction results, half of the data was selected as the
validation data, that is, from 2013 to 2017 as the historical data.
Starting from 2018, the prediction was conducted, and the
prediction results from 2018 to 2023 were compared with the
historical data. Therefore, based on the data since 2013, three
separate models were used to predict the trend of conventional
gas production changes, and the weights of Shapley values were
allocated according to the errors, ultimately forming a combined
prediction.

Before the single model prediction of conventional gas
production, the numerical range of the ultimate recoverable
reserves URR should be estimated first. The following is a simple
estimation of URR through numerical calculation. Through
geological exploration, it is found that the conventional gas
resource in Sichuan Basin is 12.23 × 1012m3. Then, by analyzing
the exploration and development laws of many gas reservoirs in the
Sichuan Basin, the range of conventional gas proved rate and
recovery factor is selected. According to the current technical
conditions for conventional gas exploration and production in
Sichuan Basin, the proven rate of conventional gas is 40%–60%,
that is, the cumulative proven reserves at the end of the life cycle
range from (4.892 − 7.338) × 1012m3. At present, the recovery
factor of conventional gas in Sichuan Basin is about 40%, so the
estimated range of URR is (19568 − 29352) × 108m3.

From Figure 1, it can be seen that the growth stage of
conventional gas production began in 2013. In order to test the
accuracy of the prediction results, data from (2013–2017) was

chosen as the basis for prediction, and the middle value of the
URR range was used as the final recoverable reserves for production
prediction (taking URR = 25,000 × 108m3). Then, the Hubbert
model, Gauss model, and GM (1, N) model were used to predict
the changes in conventional gas production starting from 2018.
Finally, the data from 2018 to 2023 in the prediction results were
compared with historical data to determine the accuracy of the
prediction results.

Figure 2A shows URR = 25,000 × 108m3, the conventional gas
production prediction results of the Hubbert model, Gauss model,
and GM (1, N) model are obtained. To study the general pattern of
natural gas production growth and maintain the symmetry of the
prediction model, the prediction time is only truncated to 2080,
making it easier to observe the differences in the trend of the three
models’ prediction curves. From Figure 2A, it can be seen that the
faster the growth rate of production, the higher the peak production,
and the faster the rate of decline, resulting in lower production
during the decline period.

The production time relationship obtained from the formula
in Section 2.1 is as follows. Among them, formula (26) is the
production time relationship of the Hubbert model, formula (27)
is the production time relationship of the Gauss model, and
formula (28) is the production time relationship of the GM (1, N)
model.

Q � 2 × 398
1 + cosh 0.0637 t − 2046( )[ ], URR � 25000 × 108m3 (26)

Q � 419 × e− t−2046( )2/ 2×23.82( ), URR � 25000 × 108m3 (27)

Q � xi
1( ) t − 2016( ) − xi

1( ) t − 2017( ) − 0.5xi
0( ) t − 2016( )

0.5

xi
1 t − 2016( ) � e−0.5t xi

0( ) 1( ) − 1
0.5

∑n
i�2
bi−1xi

1( ) t − 2016( )⎡⎣ ⎤⎦
+∑n

i�2

bi−1
0.5

xi
1( ) t − 2017( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(28)

FIGURE 2
Prediction results of conventional gas production.
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From Figure 2A, it can be seen that the trends predicted by the
Hubbert model and Gauss model are consistent, reaching their peak
in 2046, with peak production of 398 × 108m3 and 419 × 108m3,
respectively; The GM (1, N) model has a faster growth rate, an earlier
peak time of 2045, a larger peak production of 438 × 108m3, and a
faster decline rate in the GM (1, N) model.

Figure 2B shows a comparison between the predicted results of
the three models from 2018 to 2023 and historical data. From the
figure, it can be preliminarily seen that among the three prediction
models, the GM (1, N) model has a relatively larger prediction error.
The error analysis of the three models over the past 6 years is
obtained by calculating the production error, as shown in Table 1.

According to Table 1, comparing the average percentage error of
the three prediction models, the Gauss model has the highest
prediction accuracy with an error of 4.442%, followed by the
Hubbert model with an error of 5.168%, and the GM (1, N)
model with the worst accuracy with an error of 6.704%. In order
to improve the accuracy of prediction models and effectively
combine the advantages of different prediction models, the
Shapley value method is used to allocate the weights of the three
prediction models, forming a combined prediction model.

3.2 Combined model production prediction

According to the error results obtained in 3.1, the total average
percentage error is E = (5.168 + 4.442 + 6.704)/3 = 5.438 (unit is %,
and in subsequent calculations, the error units are %). According to
the Shapley value method, let the set I = (Shui. et al., 2022; Wang
et al., 2023; Jia. et al., 2023) represent the three prediction models,
and then, according to formula (21), the error values E (S) of all
subsets of the combined model can be obtained, as shown in Table 2.

According to the method in Section 2.2, the Shapley values of the
three models can be obtained according to formula (22) as follows: E1 =
1.610, E2 = 1.066, E3 = 2.762. At this point, E1 + E2 + E3 = 5.438, that is,
the sum of the three values is equal to the average percentage error,
indicating that the calculation results are correct. Then use formulas 23,
24 to calculate the weight values of the three prediction methods in the

combined prediction, ω1 � 0.352, ω2 � 0.402, ω3 � 0.246, it can be
concluded that the combined prediction model is:

Q � 0.352Q1 + 0402Q2 + 0.246Q3

Q1 � 2 × 398
1 + cosh 0.0637 t − 2046( )[ ], URR � 25000 × 108m3

Q2 � 419 × e− t−2046( )2/ 2×23.82( ), URR � 25000 × 108m3

Q3 � x 1( )
i t − 2016( ) − x 1( )

i t − 2017( ) − 0.5x 0( )
i t − 2016( )

0.5

x 1( )
1 t − 2016( ) � e−0.5t x 0( )

i 1( ) − 1
0.5

∑n
i�2
bi−1x

1( )
i t − 2016( )⎡⎣ ⎤⎦

+∑n
i�2

bi−1
0.5

x 1( )
i t − 2017( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(29)

The combination prediction model is shown in formula (29).
Among them, Q represents the production predicted by the
combination model, and Q1, Q2, and Q3 represent the
production predicted by the Hubbert model, Gauss model, and
GM (1, N) model, respectively. Below, the conventional gas
production is predicted based on the combination model, and
the results obtained are shown in Table 3.

From Table 3, it can be seen that the combination model
established based on the Shapley value method has higher accuracy,
with an average relative error of only 4.347%. Among the prediction
results in the past 6 years, the relative error was relatively large only in
2019, and the prediction results in other years were relatively close to
historical values, with the minimum error of 1.69%.

Figure 3A shows the proportion of errors among different
prediction models, representing the relative proportion of prediction
results errors among the four models from 2018 to 2023. From the
graph, it can be seen that the error between the Hubbert model and the
GM (1, N) model is relatively large, while the Gauss model and the
combination model predict results more accurately. Figure 3B shows a
comparison of the average errors of the four models. From the graph, it
can be seen that the average error of the combined model is lower than
that of any other model. Therefore, the combined model is more
accurate than the single model.

Next, starting from 2015, for the new life cycle of conventional
gas production, the results predicted by the combined model and
other single models are compared, as shown in Figure 4. The curve
section in the figure from 2015 to 2017 is historical data, and the
production forecast results start from 2018. The two figures in
Figure 4 contain the prediction curves of three single models, of
which Figure 2A is to show the stable production period under the
prediction of the three models, and Figure 2B is to compare the
prediction results of the combined model with those of other
models. It is easier to observe and compare the two figures.

Based on Figures 2A, 4A, it can be seen that when using the
Hubbert model and Gauss model separately for production prediction,
conventional gas production will reach its peak in 2046, with peak

TABLE 1 Error analysis of prediction results in the last 6 Years.

Years Historical production Hubbert Gauss GM (1, N)

2018 190.57 206.79 200.85 204.27

2019 196.53 215.61 211.48 215.92

2020 213.46 224.59 222.26 227.75

2021 236.37 233.69 233.15 239.73

2022 236.6 242.90 244.12 251.82

2023 243 252.18 255.12 263.96

Analysis Average percentage error 5.168% 4.442% 6.704%

TABLE 2 Subset error table.

Set S (1) S (2) S (3) S (1,2) S (1,3) S (2,3) S (1,2,3)

Error value (%) 5.168 4.442 6.704 4.805 5.936 5.573 5.438
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production of 398 × 108m3 and 419 × 108m3, respectively, with a stable
production period of (2039–2053) years, a stable production period of
15 years. When using the GM (1, N) model for production prediction,
conventional gas production will peak in 2045, with a peak production
of 438 × 108m3, with a stable production period of (2038–2052) years, a
stable production period of 15 years.

FromFigure4B, it canbe seen thatwhenusing the combinedmodel
forproductionprediction,theconventionalgasproductionwill reachits
peakin2046,withapeakproductionof412× 108m3,astableproduction
period of (2038–2054), a stable production period of 17 years, and a
stable production of 389 × 108m3. It can be seen that the prediction
results of the combined model have a longer stable production period,
and its production prediction curve is similar to the results of theGauss
model, but the trend of production change is more stable.

4 Error analysis of prediction results

According to the contents in Section 3.2, the prediction results of
the combined model are more accurate than those of any single
model, and the predicted curve is more stable, with a higher stable

production period. Next, from the perspective of residual analysis
and precision test, the prediction results are compared with the
standardized residual to determine the stability and accuracy of the
prediction model, and then the F-test and t-test are used to
determine the reliability of the prediction model.

4.1 Residual analysis

Residual can effectively reflect the deviation between the
predicted value and the actual value, thus intuitively comparing
the accuracy of the prediction model. Standardized residual can
reflect the stability and correctness of the prediction results.
Generally, standardized residual is within the range of [−2, 2]
(Mohammed and Muhammad, 2021). If it exceeds the range, it
indicates that the predicted results are incorrect. The calculation
formula for residual and standardized residual is as follows.

δi � Yi − yi (30)

δ*i �
δi − �δ

σ
(31)

TABLE 3 Error analysis of combined prediction results.

Years Historical production Combined predicted value Residual Relative error (%)

2018 190.57 201.54 10.97 5.76

2019 196.53 211.67 15.14 7.70

2020 213.46 221.96 8.50 3.98

2021 236.37 232.38 −3.99 1.69

2022 236.6 242.88 6.28 2.65

2023 243 253.44 10.44 4.30

Average relative error (%) — — — 4.347

FIGURE 3
Comparison of errors among different models.
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In the equation, δi is the residual, Yi is the predicted production
value, yi is the actual production value, δ*i is the standardized
residual, �δ is the average residual value, σ is the residual standard
deviation.

Due to the possibility of randomness in a single calculation, in
order to reduce errors caused by accidental results, and to
demonstrate that slight fluctuations in URR have no impact on
the predicted results. Take a fluctuation of around 5% for URR,
when the URR = 25,000 × 108m3, take a fluctuation range
of ±1,000 × 108m3, that is, let the URR fluctuate randomly
within the range of (24,000–26000) × 108m3, then use a single
model and a combined model to predict the conventional gas
production for 10 times respectively, and finally carry out
residual processing on the results obtained, and analyze the error
degree of the model, as shown in Figure 5.

Figure 5 shows the residual results of 10 predictions of conventional
gas using four models. Through comparison, it can be concluded that
the GM (1, N) model has the highest degree of error, with residual
values generally above 10 except for 2021. Overall, the residuals of the
Hubbert model are relatively large, while the residuals of the Gauss
model and the combined model are relatively small and stable, with
residuals basically maintained between 5 and 10, and only the predicted
residuals in 2019 are relatively large. Therefore, it can be preliminarily
determined that among the four models, the Gauss model and the
combined model have relatively high accuracy.

Below, based on the production results calculated in Section 3,
the residuals and standardized residuals of the four models are
compared, as shown in Figure 6.

For the convenience of comparison, the residuals are taken as
absolute values, as shown in Figure 6A. For the four prediction
models, the Gauss model and the combined model have the highest
accuracy. In the early stages of prediction, the Gauss model has
higher accuracy, but over time, the accuracy of the combined model
gradually exceeds that of the Gauss model.

Figure 6B shows a comparison of standardized residuals for
four prediction models. Firstly, all standardized residuals are
within the range of [−2, 2], indicating that there will be no
errors in using these models for prediction, but there may be
some errors. The closer the standardized residual is to 0, the more
stable the predicted results are and there will be no significant
fluctuations. From the graph, it can be seen that the standardized
residual range of the combined model is the smallest, and almost
all of them are concentrated around 0, indicating that the stability
of the combined model is the best. When using the combined
model for prediction, the overall results will not fluctuate
too much.

Therefore, based on the results of the entire residual analysis, the
combined model has the best accuracy and stability in predicting
conventional gas production.

4.2 Accuracy inspection

To ensure the accuracy of the results, the precision of the results
should also be analyzed, which requires precision testing of the
predicted results. Therefore, for production data obtained from
different prediction models, precision validation should be
conducted first. If there is no significant difference, accuracy
validation should be conducted again. In this case, F-test and
t-test are required.

The F-test is to determine whether there is a significant
difference in the prediction results and whether the precision
meets the requirements by comparing the deviation between the
predicted value and the actual value. Themain method is to calculate
the F-value, then determine the confidence interval, consult the
critical value table of F-test, and judge whether there is significant
difference by comparing the size relationship between the
F-calculation and the F-table.

FIGURE 4
Comparison of results of different models.
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The calculation method of F value is shown in formula (32) (Li.
Aimin et al., 2022). Among them, S21 and S

2
2 represent the larger and

smaller variances in the predicted and actual values, respectively.

F � S21
S22

(32)

The t-test method calculates the t-value based on the arithmetic
mean, variance, and number of data between the predicted and
actual values, and then determines the confidence interval. The
critical value table of the t-test is compared, and the reliability of the
calculation results is determined by comparing the size relationship
between the t-calculation and the t-table, thereby indicating whether
the selected prediction method is reliable. In addition, F-test is the
premise of t test, and t test can be continued only when the
conditions of F-test are met.

The calculation method of t value is shown in formula (33)
(Delacre et al., 2022). Among them, �X is the arithmetic mean, S2 is
the variance, and n is the number of data.

t � X1 −X2�����
S21
n1
+ S22

n2

√ (33)

The predicted results and historical production data of the four
models are shown in Table 4.

First, carry out F-test for the four models, and calculate the
F-value according to formula (32).

F1 �
S2history
S2Hubbert

� 1.752, F2 �
S2history
S2Gauss

� 1.226, F3 �
S2history
S2GM 1,N( )

� 1.013, F4 �
S2history

S2combination

� 1.34

Among them, S2history is the variance of historical data, S
2
Hubbert is

the variance of Hubbert model prediction results, S2Gauss is the
variance of Gauss model prediction results, S2GM(1,N) is the
variance of GM (1, N) model prediction results, and S2combination is
the variance of combination model prediction results.

The confidence interval of 95% was selected. According to the
critical value table of F-test, F-table = 3.217, and the size relationship
between the F-calculation and F-table was compared. If
F-calculation is greater than F-table, it indicates that there is no
significant difference in the predicted values, and t-test can be
continued. If the F-calculation is less than the F-table, it indicates
a significant difference between the predicted values, and this

FIGURE 5
Residual results of different models.

Frontiers in Earth Science frontiersin.org09

Li et al. 10.3389/feart.2023.1264883

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1264883


prediction method cannot be adopted, and there is no need to
continue with t-test. It is found that the F-values of the four models
are less than the critical value of the F-test, which indicates that there
is no significant difference between the precision of the prediction
results of the four models. Therefore, the accuracy test can be
continued.

Perform t-tests on each of the four models and calculate the
t-value according to formula (33). Due to the use of production data
from the past 6 years and the comparison between predicted and
historical values, the degree of freedom in t-test is f = n1 + n2-2 = 6 +
6–2 = 10. Among them, n1 and n2 are the number of predicted
production and historical production, both of which are 6.

t1 � XHubbert −Xhistory�����������
S2
Hubbert
n1

+ S2
history

n2

√ � 2.101, t2 � XGauss −Xhistory����������
S2
Gauss
n1

+ S2
history

n2

√ � 1.664,

t3 � XGM 1,N( ) −Xhistory�����������
S2
GM 1,N( )
n1

+ S2
history

n2

√ � 2.741, t4 � Xcombination −Xhistory������������
S2
combination

n1
+ S2

history

n2

√ � 1.593

Among them, Xhistory is the mean of historical data, XHubbert is
the mean of Hubbert model prediction results,XGauss is the mean of

Gauss model prediction results, XGM(1,N) is the mean of GM (1, N)
model prediction results, andXcombination is the mean of combination
model prediction results.

Select a confidence interval of 95% and look up the t-test threshold
table, which shows that t-table = 1.812. Comparing the calculation
results, it can be seen that t1>t-table and t3 > t-table. Therefore, the
prediction results obtained using the Hubbert model and GM (1, N)
model do not have sufficient precision and have significant errors. In
addition, t4 < t2, compared to the Gauss model, the t-value of the
combined model is smaller, indicating that the prediction results
obtained by the combined model have higher precision.

Therefore, based on the overall accuracy test results, the
accuracy and precision of the prediction results are the best
when using a combination model for conventional gas
production prediction.

4.3 Comprehensive evaluation

After the residual analysis and precision test of the prediction
results of the combined model and the single model, the following
conclusion are obtained.

TABLE 4 Production data for the last 6 Years.

Years Historical production Hubbert model Gauss model GM (1, N) model Combined model

2018 190.57 206.79 200.85 204.27 201.54

2019 196.53 215.61 211.48 215.92 211.67

2020 213.46 224.59 222.26 227.75 221.96

2021 236.37 233.69 233.15 239.73 232.38

2022 236.6 242.90 244.12 251.82 242.88

2023 243 252.18 255.12 263.96 253.44

FIGURE 6
Comparison of residuals.

Frontiers in Earth Science frontiersin.org10

Li et al. 10.3389/feart.2023.1264883

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1264883


Among the four models, GM (1, N) model has the largest error
in prediction results and the largest range of error fluctuations. The
Hubbert model also has a larger error in prediction results and a
larger range of error fluctuations. Moreover, the precision of these
two models is not enough. After F-test and t-test, significant
deviation is found in the prediction results, which indicates that
GM (1, N) model and Hubbert model are not reliable for prediction.

The error of the Gauss model and the combined model is
relatively small, but the error fluctuation of the combined model
is smaller, indicating that when using the combined model for
prediction, the results are more stable. At the same time, through
accuracy testing, it was found that both models have high precision
and the methods are reliable. However, the t-value of the combined
model is smaller, indicating that its accuracy is higher.

In conclusion, compared with a single model, the most accurate
and stable prediction model is the Gauss model. However, after the
weight distribution of the three models using the Shapley value
method, the combined model obtained has higher accuracy and
stability, which indicates that the combined model has better
prediction effect on conventional gas production.

5 Conclusion

This article uses the Shapley value method to allocate the weight
values of three commonly used models for natural gas production
prediction. Based on the average error of the three models’
predictions, the weights of each model are obtained, and a
combined prediction model is established. The rules of the
production prediction curves of different models are analyzed,
and residual analysis and accuracy testing are conducted on the
prediction results. The accuracy and reliability of the prediction
models are compared, and the conclusion are as follows.

1) Shapley value method can effectively reduce the errors caused by
the shortcomings of a single model. After weight allocation and
the formation of a new combined model, it can effectively
combine the advantages of each model and improve the
accuracy of prediction. The comparison of the average error
shows that the error of the combined model is lower than that of
any single model, indicating that its accuracy is the highest. After
the residual analysis and precision test of the prediction results of
the four models, it is found that the combined model meets the
F-test and t-test, with the smallest test value and the highest
precision, and the residual and standardized residual are lower
than other models, which indicates that the combined model has
the highest accuracy and the most reliable method.

2) Using a combined model to predict conventional gas production,
the results show that conventional gas production will peak in

2046, with a peak production of 412 × 108m3, a stable production
period of (2038–2054), a stable production period of 17 years,
and a stable production of 389 × 108m3. The prediction results of
the combined model have a longer stable production period and
a more stable trend in production changes.
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