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As volcanic stratigraphy provides important information about volcanic activities,
such as the eruption style, duration, magnitude, and their time sequences, its
observation and description are fundamental tasks for volcanologists. Since
outcrops are often obscured in nature, the first task would be identifying
stratigraphic exposures in many cases. This identification/selection process has
depended on humans and has difficulties in terms of time and effort consumption
and in biases resulting from expertise levels. To address this issue, we present an
approach that utilizes supervised machine learning with fine-tuning and forms the
backbone to automatically extract the areas of stratigraphic exposures in visible
images of volcanic outcrops. This study aimed to develop an automated method
for identifying exposed stratigraphy. This method will aid in planning subsequent
field investigations and quickly outputting results. We used U-Net and LinkNet,
convolutional neural network architectures developed for image segmentation.
Our dataset comprised 75 terrestrial outcrop images and their corresponding
images with manually masked stratigraphic exposure areas. Aiming to recognize
stratigraphic exposures in various situations, the original images include
unnecessary objects such as sky and vegetation. Then, we compared
27 models with varying network architectures, hyperparameters, and training
techniques. The highest validation accuracy was obtained by the model trained
using the U-Net, fine-tuning, and ResNet50 backbone. Some of our trained U-Net
and LinkNet models successfully excluded the sky and had difficulties in excluding
vegetation, artifacts, and talus. Further surveys of reasonable training settings and
network structures for obtaining higher prediction fidelities in lower time and
effort costs are necessary. In this study, we demonstrated the usability of image
segmentation algorithms in the observation and description of geological
outcrops, which are often challenging for non-experts. Such approaches can
contribute to passing accumulated knowledge on to future generations. The
autonomous detection of stratigraphic exposures could enhance the output from
the vast collection of remote sensing images obtained not only on Earth but also
on other planetary bodies, such as Mars.
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Introduction

Volcanic stratigraphy provides important information about
volcanic activities. For example, from the thickness of the tephra, we
can obtain information about the duration and magnitude of the
eruption. Its spatial distribution/variation has been used to estimate
thewind direction at the time of eruption and the erupted volume, and to
evaluate the eruption magnitude (e.g., Bonadonna et al., 2016 and
references therein). The analyses of the grain size contributed to
evaluating explosivity during an eruption (e.g., Kueppers et al.,
2006a). Applying fractal theory, we can quantify and compare
explosivity among several eruptions (e.g., Kueppers et al., 2006b;
Perugini et al., 2011). The grain shape and texture analyses of tephra
contributed to inferring with the eruption style such as external water
participation (e.g., Wohletz and Heiken, 1992; Miwa et al., 2015; Dürig
et al., 2021). Statistical analysis andmachine learning techniques provide
new insights into the characterizations and classifications of the eruption
(Leibrandt and Le Pennec, 2015; Liu et al., 2015; Shoji et al., 2018). Thus,
the observation and description of volcanic stratigraphy are fundamental
tasks for volcanologists to obtain details and histories of eruptions. Such
approaches are common to other geological surveys on different targets,
fields, and other solid bodies.

Depending on each research subject, the essential requirement in
selecting which areas/parts of the outcrop are worth examining and
describing is the clear appearance of the layering structure. Since talus
and vegetation often obscure outcrops in nature, identifying the areas/
parts of stratigraphic exposures is the first task in the field survey.
Modifications of outcrops to expose clear stratigraphy are performed
occasionally, although those contributions are limited and prohibited in
protected areas. Therefore, we often must find naturally clear
stratigraphic exposures on outcrops without any modifications. The
identification process of stratigraphic exposures has traditionally been
dependent on visual observation by humans. Human observation
contains difficulties in terms of time and effort consumption, as well
as biases resulting from the expertise levels of each person. In the field,
time is often limited due to weather, imminent danger, and accessibility.
Huge outcrops and large research areasmake this problemmore serious.

As a solution, recently the unmanned aerial vehicle (UAV) has
been actively used for geological surveys. The programmed flights of
UAVs can search vast and challenging areas compared with
humans’ survey (Smith and Maxwell, 2021). Combining the
technologies of image analysis, UAVs also show potential to
select appropriate locations automatically. On the other hand,
UAVs have several difficulties compared with humans. One of
these difficulties is to identify stratigraphic exposures. The
identification and discrimination of stratigraphic exposures can
be challenging for non-experts. Automating the identification of
stratigraphic exposures on outcrops significantly contributes to
solving issues related to time, effort, and expertise levels.

Difficulties setting the threshold for unparameterizable issues in
landforms have been solved by applying machine learning
techniques and could also be applied for scouting exposed
stratigraphies. One of the typical target landforms for the
application of machine learning is impact craters on terrestrial
bodies. Using the Mars Orbiter Laser Altimeter digital elevation
model, Stepinski et al. (2009) presented the automated cataloging of
impact craters and found a regional decrease in the crater depth/
diameter ratio, which may relate to subsurface ice. For finding new

impact craters which previously depended on manual detection
strongly biased by thermal inertia, Wagstaff et al. (2022) trained and
evaluated the classifier with visible images obtained using the
Context Camera onboard the Mars Reconnaissance Orbiter.
Another application example is the detection of volcanic rootless
cones (Palafox et al., 2017). Compared with support vector machine
approaches, Shozaki et al. (2022) demonstrated the recognition and
classification of Martian chaotic terrains using convolutional neural
network models. Their models showed over 90% accuracy for the
classification and contributed to revealing the global distribution of
chaos features on Mars. Thus, automation using machine learning
techniques can contribute to identification and discrimination of
landforms, which depends on geological expertise so far and could
be suitable for finding stratigraphic exposures.

In this study, we present an approach that utilizes supervised
machine learning to automatically extract areas of stratigraphic
exposures in any type (e.g., ground view, from UAVs) of visible
images of volcanic outcrops. Semantic segmentation, a deep learning
algorithm, used for the extraction of obstacles and anomalies is
adapted for the extraction of stratigraphic exposures among outcrop
images in a short time. For example, Silburt et al., 2019 built a
convolutional neural network (CNN) architecture to extract lunar
impact craters from the Moon digital elevation model. Their trained
CNN showed a high precision for crater detection as human-
generated. Inspired by Silburt et al., 2019, Latorre et al., 2023
implemented several transfer learning approaches including fine-
tuning and presented its capability for the autonomous detection of
impact craters across the Moon and Ceres, which have different
geological features. Thus, semantic segmentation shows potential to
extract specific geological features autonomously. Furthermore,
implementing transfer learning approaches for CNN contributes
to wider use across target bodies. Here, we demonstrate semantic
segmentation for the autonomous extraction of stratigraphic
exposures from outcrop images, implementing fine-tuning and
pre-trained weights. The main purpose of this study is to provide
an automatic identification method of exposed stratigraphy which
will be helpful in the planning/preparation of subsequent
investigations and in the prompt outputting of investigated results.

Methods

In this work, we demonstrated the automated identification of
stratigraphic exposure on outcrop images using a machine learning
algorithm. The procedure of this study involves the 1) preparation of
original images, 2) generation of masked images, 3) augmentation of
original and masked images, and 4) training and evaluation of the
U-Net and LinkNet networks to detect stratigraphic exposures
(Figure 1).

Preparation of outcrop images

We prepared outcrop images that contained stratigraphic
exposures, sky, vegetation, artifacts, and talus to train the network
(Figure 1). The total number of prepared images (hereafter, original
images) is 75, of which 30 images were our holdings and 45 images were
obtained using google-image-download, a Python script published on
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GitHub (https://github.com/Joeclinton1/google-images-download/tree/
patch-1, Copyright © 2015–2019 Hardik Vasa). This script was
developed for searching Google Images on keywords/key phrases
and downloading images to locals. Using this script, we obtained
outcrop images with “geologic layer,” “tephra layer,” “volcanic
tephra layer,” and “volcano geologic layer” as keywords/key phrases.
Therefore, our dataset includes both volcanic and non-volcanic
stratigraphies. This is acceptable because we focus on the extraction
of stratigraphic structures itself in this study. The whole images we
obtained by google-image-download were labeled as non-commercial
reuse with modification. The original images were taken from various
distances (meters to kilometers), which correspond to a scale ranging
from in situ observations to aerial surveys. Aiming to recognize
stratigraphic exposures in various situations, the original images
include talus, gullies, vegetation, snowy regions, artifacts, and other
unnecessary objects (Figure 1). A total of 60, 10, and 5 of those images
were used as training, validation, and testing images, respectively
(i.e., 80%, 13.3%, and 6.6% splitting). The original images are
available in a public repository at https://doi.org/10.5281/zenodo.
8396332.

Hand-masked image generation

The masking of stratigraphic exposure areas was carefully
performed manually, and unnecessary objects were excluded
(Figure 1). Images that are masked at the stratigraphic
exposure’s region for each original image were generated using
labelme (https://github.com/wkentaro/labelme, Copyright ©

2016–2018 Kentaro Wada), a tool that allows graphical
annotation on images. We annotated the region of
stratigraphic exposures as polygons and then saved it as a
binarized image (hereafter, hand-masked images). Those
hand-masked images are available in a public repository at
https://doi.org/10.5281/zenodo.8396332.

Image augmentation

To increase the generalization ability of the network, we
augmented the original and the hand-masked training/validation
images by rotation, horizontal and vertical shifts, and horizontal flip,
and converted them into 256 x 256 grayscale images (Figure 1). Data
augmentation is a common technique in the training of neural
networks to overcome the small amount of data. Before
augmentation, we cropped each image as a square because the
original images were not square and its aspect ratio will be
modified by resizing in augmentation. To augment both original
and hand-masked images, Keras ImageDataGenerator (Chollet,
2015) was used. The rotation range was 45°. The maximum
width and height shifts were 20% against the width and height.
In the ImageDataGenerator, we did not use zoom and shear
functions during augmentation because the unfixable aspect ratio
could generate pseudo-layering structures in zoom and shear. The
fill mode was “constant” because the default “nearest” generates
pseudo-layering structures. The angle and width of the rotation and
shift were randomly determined within the range, and horizontal
flipping occurred randomly. The size of augmented images was
adjusted to 256 x 256 pixels to input the following algorithm. Due to
the limitation to our computing system, we augmented images to be
less than 10,000 in total. As a result, we obtained 7,586 and
1,414 pairs of augmented original/hand-masked images for
training and validation datasets, respectively.

Training

To extract certain areas from images by our system, we applied
image segmentation algorithms. In this study, we compared two
architectures: U-Net (Ronneberger et al., 2015) and LinkNet
(Chaurasia and Culurciello, 2017). U-Net is a fully convolutional
network originally developed for biomedical image segmentation. It

FIGURE 1
Procedure of dataset preparation, training, and evaluation in this study.
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is designed to work with a small number of training images and
produce precise segmentation results. This network classifies each
pixel and then outputs segmentation maps, and has been applied to
segmentation in terrestrial and planetary remote sensing images
(e.g., Silburt et al., 2019;Wieland et al., 2019; Zhu et al., 2021; Latorre
et al., 2023). LinkNet is a fully convolutional neural network for fast
image semantic segmentation and has been developed to recover the
spatial information on images more efficiently through the decoder
which was diminished during the encoding procedure [employs
ResNet18 (He et al., 2016) as a backbone in the original].

Training, validation, and testing were performed using the Keras
package (https://keras.io), which is free and written in Python (Chollet,
2015). We used the original U-Net architecture (Ronneberger et al.,

2015) as “simple U-Net” using the unet script (https://github.com/
zhixuhao/unet, Copyright © 2019 xhizuhao), which does not implement
fine-tuning. The segmentation model package (Iakubovskii, 2019), a
Python library with neural networks for image segmentation based on
Keras and TensorFlow (Abadi et al., 2016), was used for U-Net and
LinkNet model buildings with backbones and with/without encoder
weights. The path of U-Net comprises unpadded 2 x 2 convolutions
[followed by rectified linear units (ReLUs)], 2 x 2 max pooling
operations with stride 2 for downsampling, and 2 x
2 upconvolutions. The lowest resolution of images in training in our
network is 16 x 16 pixels. The total number of convolutional layers in
this network is 23. The LinkNet used comprises three decoder blocks
that use the UpSampling Keras layer. Supplementary Figure S1,S2

TABLE 1 Loss, dice, and binary accuracy at the end of training in each model.

ID Model Fine-
tuning

Backbone Step Training
stopped
epoch

Training Validation Duration (min)

Loss Dice
loss

Accuracy Loss Dice
loss

Accuracy Total Per
epoch

U-1 U-Net No No 50 58 0.582 0.422 0.785 0.573 0.569 0.646 512 8.83

U-2 100 52 0.568 0.416 0.802 0.582 0.573 0.638 298 5.73

U-3 150 48 0.563 0.411 0.810 0.577 0.573 0.663 282 5.88

U-4 No Yes
(ResNet18)

50 74 0.468 0.290 0.785 0.632 0.509 0.648 90 1.22

U-5 100 62 0.446 0.263 0.791 0.631 0.484 0.659 70 1.13

U-6 150 62 0.428 0.255 0.799 0.644 0.485 0.670 76 1.23

U-7 No Yes
(ResNet50)

50 73 0.450 0.289 0.800 0.591 0.506 0.672 121 1.66

U-8 100 49 0.451 0.273 0.790 0.616 0.493 0.665 78 1.59

U-9 150 44 0.465 0.300 0.781 0.587 0.506 0.671 76 1.73

U-10 Yes Yes
(ResNet18)

50 63 0.322 0.214 0.882 0.584 0.505 0.686 76 1.21

U-11 100 55 0.315 0.220 0.911 0.567 0.496 0.697 61 1.11

U-12 150 43 0.258 0.158 0.906 0.643 0.469 0.693 53 1.23

U-13 Yes Yes
(ResNet50)

50 138 0.254 0.195 0.954 0.507 0.471 0.733 229 1.66

U-14 100 62 0.206 0.139 0.938 0.567 0.442 0.728 99 1.60

U-15 150 63 0.187 0.128 0.947 0.529 0.428 0.748 108 1.71

L-1 LinkNet No Yes
(ResNet18)

50 28 0.731 0.455 0.531 0.738 0.607 0.509 17 0.61

L-2 100 21 0.772 0.510 0.467 0.680 0.629 0.599 14 0.67

L-3 150 20 0.852 0.567 0.443 0.692 0.667 0.620 15 0.75

L-4 No Yes
(ResNet50)

50 20 0.666 0.412 0.586 0.712 0.583 0.493 30 1.50

L-5 100 108 0.519 0.321 0.742 0.615 0.506 0.646 146 1.35

L-6 150 134 0.508 0.293 0.751 0.645 0.486 0.647 190 1.42

L-7 Yes Yes
(ResNet18)

50 23 0.777 0.351 0.582 1.090 0.535 0.421 14 0.61

L-8 100 20 0.677 0.417 0.593 0.723 0.572 0.514 13 0.65

L-9 150 138 0.393 0.230 0.824 0.587 0.478 0.705 99 0.72

L-10 Yes Yes
(ResNet50)

50 88 0.328 0.206 0.873 0.586 0.483 0.689 126 1.43

L-11 100 104 0.314 0.219 0.898 0.562 0.494 0.697 141 1.36

L-12 150 88 0.303 0.183 0.896 0.678 0.465 0.706 128 1.45
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shows the model architectures trained in this study. The training was
executed in Mac Studio, Apple M1 Max, 64 GB memory. In Keras, an
epoch is an arbitrary cutoff, generally defined as “one pass over the
entire dataset,” used to separate training into distinct phases, which is
useful for logging and periodic evaluation, and “steps per epoch” is a
total number of steps (batches of samples) before declaring one epoch
finished and starting the next epoch (Chollet, 2015). In our training, the
“steps per epoch” ranged from 50 to 150. Epochs for training were fixed
to 300, considering an accuracy/time-cost trade. To avoid overfit and
further efficient training, we adopt an early stopping callback, which
stops training when a monitoring metric has stopped improving
(Chollet, 2015). In this study, the monitored metric was validation
loss during training. Training was stopped when it had not been
improved within the last 20 epochs and the weight from the best
epoch was restored. We used the Adam optimization algorithm
(Kingma and Ba, 2014) for the training of our network with the
learning rate of 1e–6.

We evaluated two training techniques: fine-tuning and the use of
a backbone network in the encoder (Table 1). Fine-tuning is an
approach that trains with a pre-trained model’s weights on new data
(Hinton and Salakhutdinov, 2006). The backbone is the recognized
architecture or network used for feature extraction (Elharrouss et al.,
2022). Both techniques have been used to obtain higher classification
accuracy. In this study, we verified two backbones: ResNet18 and
ResNet50 (He et al., 2016). As a result, we compared 27 models with
varying training steps, model architectures, and training techniques
(Table 1).

The performance of the trained network was evaluated by the
loss function and two metric functions: the dice loss (Milletari et al.,
2016) and binary accuracy. The loss function is a function that

calculates gaps between facts and predictions. In this study, we use
binary cross entropy in the Keras library for the loss function. This
loss function was used in training. The dice loss is a common metric
that optimizes networks based on the dice overlap coefficient
between the predicted segmentation result (i.e., predicted regions)
and the ground truth annotation (i.e., hand-masked), which can
solve the data imbalance problem (Milletari et al., 2016). The binary
accuracy is the fraction of correctly classified pixels in the image.

The quantitative and qualitative evaluation of our models was
performed using the validation data and five test images. The
validation data were used to evaluate the network after each
epoch of the training. Test images were our holdings which were
not included in the image dataset used for training (i.e., not used for
training and validation datasets). The evaluation of test image
predictions was made from the four points of view: exclusions of
sky, vegetation, artifacts, and talus.

Result

Summary of the training

The loss function, dice loss, and accuracy of the epoch in our
training are shown in Figures 2–7. The steps, the training stopped
epoch, losses, dice losses, and accuracies of training and validation at
the end of the training, as well as the duration, are shown in Table 1.
We trained networks several times and confirmed that the
corresponding changes in binary accuracy were negligible. In all
training processes, the early stopping function interrupted the
training before the 300th epoch due to a lack of improvement for

FIGURE 2
Loss, dice loss, and accuracy plots and curves during training for U-Net models with a setting of 50 steps per epoch.
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the validation loss within the last 20 epochs. Training of some
LinkNet models (IDs: L-1, L-2, L-3, L-4, L-7, and L-8) failed to
minimize the validation loss and stopped before the 30th epoch.
These indicate training failures. The largest epoch was 138 in the 50-
step U-Net training with fine-tuning and a ResNet50 backbone (ID:
U-13) and in the 150-step LinkNet training with fine-tuning and a
ResNet18 backbone (ID: L-9).

In our computer system, the duration per epoch in the case of
the simple U-Net training took ~6 times longer than that of U-Net
and LinkNet training with fine-tuning and/or backbones (8.83 min
per epoch, Table 1).

The three best validation accuracies were obtained in U-Net
training with fine-tuning and a ResNet50 backbone (0.748, 0.733,
and 0.728 for model ID U-15, U-13, and U-14, respectively,
Table 1). Training failed models (IDs: L-1, L-2, L-3, L-4, L-7, and L-
8) showed low validation accuracies (<0.62). For the successfully trained
models, the validation accuracy has a 10%–20% gap to the training
validation. In many cases, the models with higher “steps per epoch”
show higher validation accuracies. Models ResNet50 backbone
implemented have higher validation accuracies relative to those
ResNet18 backbone implemented. Fine-tuned models show higher
validation accuracies than those of non-fine-tuned models.

Predicted stratigraphic exposure regions by
trained networks

We verified the fidelity of prediction (masking regions of
stratigraphic exposures) using test images that were not used in
both training and validation (Figures 8, 9). Training-failed models

(IDs: L-1, L-2, L-3, L-4, L-7, and L-8) showed poor predictions. The
models U-Net trained show higher fidelities of prediction, especially
the exclusion of the sky than those that are LinkNet-trained. This
fidelity is higher in models trained with higher steps. For vegetation,
artifacts, and talus, those exclusions by our model were incomplete;
predicted regions as stratigraphic exposures include them. For
vegetation, incomplete extraction often occurred in denser
regions. It is common to both U-Net- and LinkNet-trained
models than models trained with fine-tuning, and a
ResNet50 backbone showed better fidelities of the prediction.

Discussion

Increment of the prediction fidelity

Since our trained network extracts stratigraphic exposures
incompletely, the training procedure should be reconsidered.
Considering the stability of validation accuracy and the fidelity of
predicted images, approximately 100-step training is appropriate for
the dataset and the training networks used in this study. The higher
fidelities of exclusions of the sky relative to vegetation, artifacts, and
talus are probably due to their significantly different textures. Our
success implies that color is not necessary for those exclusions
because the training dataset was prepared as grayscale images.
However, to increase the exclusion fidelity of vegetation, artifacts,
and talus, the training procedure should be reconsidered and
improved.

The distinguishing of vegetation from stratigraphic exposures
is not a difficult task for humans. In general, humans identify

FIGURE 3
Loss, dice loss, and accuracy plots and curves during training for U-Net models with a setting of 100 steps per epoch.
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FIGURE 4
Loss, dice loss, and accuracy plots and curves during training for U-Net models with a setting of 150 steps per epoch.

FIGURE 5
Loss, dice loss, and accuracy plots and curves during training for LinkNet models with a setting of 50 steps per epoch.
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FIGURE 6
Loss, dice loss, and accuracy plots and curves during training for LinkNet models with a setting of 100 steps per epoch.

FIGURE 7
Loss, dice loss, and accuracy plots and curves during training for LinkNet models with a setting of 150 steps per epoch.
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vegetation as the accumulation of elongated/oval greenish/
brownish objects like leaves, stems, branches, trunks, and
roots. Our training dataset was prepared as grayscale images,
and the network should learn the exclusion of vegetation by the
difference of texture, not by the color difference. The 256 x
256 pixels of augmented images were considered to have a poor
resolution for this texture-only-guided distinguishment,
although satisfying in the exclusion of the sky. Training with
higher resolution and color images will contribute to identifying

vegetation that has several types of texture and color (Sodjinou
et al., 2022), although time and computing costs are concerned.
Since denser vegetation has higher exclusion difficulty (Figures 8,
9), another idea to increase the prediction fidelity is to include
images with dense vegetation in the training.

The distinguishing of talus regions with stratigraphic exposures
is often difficult for non-experts. This is because its constituent
materials are supplied from upper stratigraphies and are
indistinguishable from stratigraphic exposure at the same height/

FIGURE 8
Predicted results for test images using U-Net trained models.
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elevation occasionally. It means color/texture analyses will have less
contribution to those discriminations, and our strategies for talus
exclusion using U-Net and LinkNet architectures, identifying
materials as a region, could be reasonable. To increase the talus
exclusion fidelity, training with higher-resolution augmented images
in which stratigraphic layering can be identified could help
contribute toward fidelity.

A stricter masking of stratigraphic exposures will contribute to
increasing prediction fidelity, although its time and effort
consumptions also increase. Further investigation and verification
of reasonable training settings and network structures for obtaining
higher prediction fidelities in lower time and effort costs are
required.

Strategies for subsequent processes

After the suggestion of stratigraphic exposure regions, the further
contribution of computing will be the identification/discrimination of
each layer. The interface of each layer is a drastic change in constituent
materials. Those changes appear as differences in texture and color in
visible images. Since color contains unexpected changes such as wetness
and shadow, layer discrimination should also use texture information.
Evidently, deep convolutional neural networks are one of the most
powerful solutions, as displayed in control and trajectory planning for
automated vehicles (e.g., Notle et al., 2018; Dewangan and Sahu,
2021). As a non-deep learning approach, the gray-level co-occurrence
matrix (Haralick et al., 1973) and other methods/combinations

FIGURE 9
Predicted results for test images using LinkNet trained models.
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(e.g., Armi and Fekri-Ershad, 2019) will contribute to texture-based
layer discrimination. Using layer-discriminated (i.e., boundary-drawn)
images, we can calculate the thickness of each layer, although the actual
scale input (and strictly, strike and dip) is necessary. Furthermore, this
kind of texture analysis will provide brief information for constituent
material (e.g., lava or pyroclast, lapilli, or ash).

The autonomous measurement of each layer thickness greatly
contributes toward decreasing time and effort costs. Although strike
and dip should be considered especially on deformed outcrops, the
shortest distance between two layer boundaries on scaled front-side
images corresponds to layer thickness. The autonomous calculation
of those distances can be used for the automatic drawing of
stratigraphic columns generally produced in geological surveys.
Since the measurement of each layer by hand takes time and has
difficulty in unreachable heights, automation helps the researcher in
both saving time and effort.

Application to satellite/aerial terrestrial/
extraterrestrial images

The automatic identification of stratigraphic exposures
would have proven its worth in satellite and aerial images
since they often comprise huge datasets. Combination with
geological information system tools will contribute to
suggesting the locations of outcrops with coordinate values.
However, the network of stratigraphic exposure identification
should be trained with images that have the same scaling
(resolution) as that of target datasets. In this study, our
network was trained by outcrop images taken from the ground
view; its use may not work for satellite images and aerial
photographs. For the use of satellite/aerial images, the training
dataset should also have consisted of those images.

The difficulty of the autonomous identification of stratigraphic
exposure on extraterrestrial outcrops will be lower than that on
terrestrial outcrops because of the lack of vegetation on those bodies.
Similar to the terrestrial case, tuned training using images taken on
each target body is necessary. Since the data volume obtained on
extraterrestrials reaches challenging amounts for remote sensing
analysis as mentioned for Mars by Palafox et al. (2017), our
improved scheme will be a powerful tool for geological surveys
on other bodies.

Conclusion

The automatic extraction of stratigraphic exposure in visible images
using a trained network will play an important role in the lower time/
effort costs during geological surveys. In this work, we trained U-Net
and LinkNet, with fine-tuning and backbones, and demonstrated the
successful exclusion of the sky and clouds and the difficulties for those of
vegetation, artifacts, and talus. Considering the stability of validation
accuracy, the fidelity of predicted images, and time/computing costs,
approximately 100-step training is appropriate for the dataset and
architectures used in this study. Further surveys of reasonable
training settings, network architectures, and techniques for obtaining
higher prediction fidelities in lower time and effort costs are necessary.
In this study, we presented the usability of image segmentation

algorithms in the observation and description of geological outcrops.
Such approaches could contribute to passing accumulated knowledge
on to further generations. Our improvedmodel will enhance the output
from the vast collection of remote sensing images obtained not only on
Earth but also on other planetary bodies, such as Mars.
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