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In the context of global climate warming and rising sea levels, the frequency of
tropical cyclones in the South China Sea region has shown a significant upward
trend in recent years. Consequently, the coastal areas of the South China Sea are
increasingly vulnerable to storm surge disasters induced by typhoon, posing
severe challenges to disaster prevention and mitigation in affected cities.
Therefore, establishing a multi-indicator assessment system for typhoon storm
surges is crucial to provide scientific references for effective defense measures
against disasters in the region. This study examines 25 sets of typhoon storm surge
data from the South China Sea spanning the years 1989–2020. A comprehensive
assessment system was constructed to evaluate the damages caused by storm
surges by incorporating the maximum wind speed of typhoons. To reduce
redundancy among multiple indicators in the assessment system and enhance
the stability and operational efficiency of the storm surge-induced disaster loss
model, the entropy method and bootstrap toolbox were employed to process
post-disaster data. Furthermore, the genetic simulated annealing algorithm was
utilized to optimize a backpropagation neural network intelligentmodel (GSA-BP),
enabling pre-assessment of the risks associated with storm surge disasters
induced by typhoon and related economic losses. The results indicate that the
GSA-BP model outperforms the genetic algorithm optimized BP model (GA-BP)
and the simulated annealing algorithm-optimized BP model (SA-BP) in terms of
predicting direct economic losses caused by storm surges. The GSA-BP model
exhibits higher prediction accuracy, shorter computation time, and faster
convergence speed. It offers a new approach to predicting storm surge losses
in coastal cities along the South China Sea.
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1 Introduction

Typhoon storm surges are characterized by intense atmospheric
disturbances, which can induce abnormal water level rise in coastal
areas, when combined with other factors, such as climate change-
induced rising sea levels. They pose significant threats due to their
ferocity, speed, and destructive power (Nicholls, 2004; Mcgranahan
et al., 2007), which have been responsible for the most damage in
marine disasters (Berz and Islam, 2016; OIbert, A. I et al., 2017). The
damages caused by storm surges, including dike breaches, inundation
of farmland, loss of fisheries, housing collapses, and destruction of
fishing vessels, have a profound impact on the daily lives of coastal
residents and the local ecological environment. Coastal nations
worldwide have experienced the onslaught of typhoon storm surges,
leading to severe consequences in affected regions (Dasgupta et al.,
2011). For example, inMarch 2019, Typhoon IDAImade landfall in the
coastal city of Beira in central Mozambique, subsequently affecting
neighboring countries, Zimbabwe and Malawi. The storm surge and
heavy rainfall brought by typhoon IDAI affected over 3 million people,
caused more than 700 deaths, and incurred economic losses exceeding
$1 billion in East Africa. In August 2021, Typhoon IDA made landfall
in New Orleans, Louisiana, United States, and then continued its path
in the southern and northeastern regions of the country, causing
disastrous weather conditions, such as strong winds, heavy rain, and
storm surges. This typhoon IDA caused at least 88 deaths, impacted
millions of people, and resulted in infrastructure damage, widespread
power outages, water supply deficiencies, fuel shortages, and economic
losses exceeding $95 billion (NOAA, 2022). Against the backdrop of
global warming and rising sea levels, the frequency of tropical cyclones
is increasing (Singh et al., 2021), which is triggering a growing chain of
typhoon storm surge events and escalating risks of associated disasters
for countries worldwide. The unique marine conditions in the South
China Sea have made it a hotspot for typhoon occurrences and their
rapid intensification (Lin et al., 2009; Pan et al., 2017), thereby,
increasing the vulnerability of coastal cities in this region.
Additionally, the current status of economic development and the
diverse economic structures of coastal cities in this region render them
more susceptible to disaster-associated risks. Consequently, the
assessment of storm surge hazards is of utmost importance for the
comprehensive development of coastal cities, particularly in the South
China Sea region.

Various methods have been employed to assess losses due to
typhoon storm surges, including statistical simulation-based
assessments (Shepard et al., 2012; Lin and Shullma, 2017; Hsu
et al., 2018), numerical simulation-based assessments (Jelesnianski
et al., 1992; Zerger, 2002; Lin et al., 2010; Krien et al., 2013), and
machine learning-based assessments (Zhao et al., 2015; Jiang and Liu,
2020); Zhang and Jiang, 2022; Lockwood et al., 2022). Since the
establishment of the Sea, Lake, and Overland Surges from Hurricanes
(SLOSH) model in the United States in 1992, researchers have shifted
their focus toward comprehensive risk assessment of storm surge
disasters (Jelesnianski et al., 1992). In 2010, Lin et al. (2010) improved
the Advanced Circulation Model for Oceanic, Coastal, and Estuarine
Waters (ADCIRC), making it more suitable for evaluating storm
surge risks in coastal areas influenced by climate change (Lin et al.,
2010). Krien et al. (2013)proposed combining the Simulating Waves
Nearshore (SWAN) model with ADCIRC to enhance spatial
resolution and assess the typhoon storm surge hazard risks in

Martinique, France, at the 2013 European Geosciences Union
(EGU) conference (Krien et al., 2013). Gao et al. (2012) utilized
storm surge numerical simulation models and techniques, such as
inundation analysis and GIS overlay analysis, to produce high-
resolution risk zoning maps of storm surge disasters induced by
typhoon in the urban area of Taizhou City (Gao et al., 2012). Zhao
et al. (2015) proposed a storm surge damage measurement method
based on the rough set-support vector machine (RS-SVM) model,
which utilized a constructed evaluation index system (Zhao et al.,
2015). Ji et al. (2007) introduced a fuzzy comprehensive judgment
method for the quantitative assessment of losses due to storm surges
(Ji et al., 2007). Overall, previous studies have demonstrated the
application of various scientific methods and models in predicting
disaster losses due to storm surges. Building upon previous research,
this study not only considers the causative factors of typhoon storm
surge from the perspective of tidal levels, but also incorporates the
relationship between typhoon intensity and wave conditions into the
investigation of storm surge causative factors. After conducting a
comparative study of multiple intelligent methods, we select the GSA-
BPmodel to assess the direct economic losses caused by storm surges,
marking the first application of this model in this field.

2 Establishment of typhoon storm
surge loss assessment index system

Prior to constructing a predictive model for disaster losses due to
typhoon storm surges, it is essential to establish an assessment index
system for damage caused by storm surges. This study considers four
perspectives: causative factors, disaster-prone environment,
vulnerability of exposed elements, and disaster prevention and
mitigation capabilities; we select 13 disaster loss indicators to
establish the assessment index system (see Figure 1).

2.1 Causative factors

Disasters caused by typhoon storm surges can be broadly
categorized as generalized or narrow-sense (Liu et al., 2018). The
narrow-sense storm surge disasters typically refer to “storm surge”,
a natural phenomenon where the sea level undergoes significant
abnormal fluctuations due to sudden atmospheric pressure changes.
This phenomenon leads to a rapid and substantial increase in tidal
levels in coastal areas, surpassing normal levels. Generalized storm
surge disasters refer to a process in which various factors, such as
astronomical tides, meteorological conditions, strong winds, and cold
waves, combine to affect coastal regions, causing significant losses of life
and property, while incurring ecological damage. Previous studies have
commonly utilized maximum storm surges and exceedance of the
warning water levels as indicators of hazardous storm surges. Although
these two indicators can directly reflect the sea level and water level
changes caused by storm surges, considering only these aspects is not
comprehensive enough to assess the severity of natural disasters caused
by storm surges. The maximum wind speed of a typhoon is also one of
the key factors contributing to the formation of storm surges.
Additionally, Wang et al. (2022) discovered a linear relationship
between the maximum wind speed of a typhoon, wave height, and
storm surge. Specifically, as the maximum wind speed of a typhoon
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increases, so does the wave height and the impact range of the storm
surge. Higher waves lead to rapid rise in water levels and stronger forces
of impact, thereby, increasing the destructive potential of storm surges
in coastal areas. Therefore, this study selects the maximum storm surge
and wind speeds of a typhoon as causative factors in the assessment
index system.

2.2 Disaster-prone environment

The occurrence and severity of storm surge disasters induced by
typhoon are not only related to the intensity of the typhoon and
astronomical tidal levels in the affected areas, but are also associated
with geographical location and coastal characteristics. For instance,
the slope and angle of the coastline determine the distance and speed
at which the storm surges will penetrate inland. Moreover, coastal
topography influences the interaction between storm surges and
other hydrological factors, such as tides and waves, which can either
amplify or counteract their effects (Phantuwongraj et al., 2013; Du
et al., 2015). In the field of natural disaster theory, the disaster-prone
environment of storm surges is divided into natural and human-
induced factors. When storm surges of the same intensity occur,
regions with higher population density and larger agricultural areas
are more vulnerable to risks of compromised life safety and
economic losses. Therefore, this study selects population density
and size of the cultivated area as factors representing the impact of
disaster-prone environments in the assessment index system.

2.3 Vulnerability of exposed elements

The causative factors of natural disasters only lead to actual
hazards when they affect exposed elements. Therefore, assessing
disaster losses caused by storm surges requires the inclusion of not

only causative factors but also the vulnerability of exposed elements
(Chang et al., 2023). Storm surge disasters induced by typhoon
predominantly occur in coastal areas, affecting five major exposed
elements: human populations, fisheries, agriculture, buildings, and
infrastructure. Indicators, such as the affected population, the
damaged area of aquaculture, the affected agriculture area, the
number of damaged houses, and the length of damaged seawalls,
directly reflect the vulnerability of these exposed elements to storm
surge disasters. Higher values of these indicators indicate a higher
level of vulnerability and severity of storm surge disasters, while lower
values suggest the opposite. Therefore, this study includes these five
indicators as measures of the vulnerability of exposed elements in the
assessment index system.

2.4 Disaster prevention and mitigation
capability of exposed elements

Turner et al. Coauthors. (2003) and Peilong and Fengman
(2012) argue that disaster prevention and mitigation
capabilities are essential components of societal resilience that
are also considered significant aspects of generalized
vulnerability. Tiwari (2015) defines disaster prevention and
mitigation capabilities as the inherent capacity of exposed
elements to mobilize various suitable resources in response to
threats posed by disasters, thereby reducing direct disaster losses
and facilitating the restoration of normal societal functions. In
the context of constructing an assessment index system for
disaster losses due to storm surges, it is crucial to consider the
disaster prevention and mitigation capabilities of exposed
elements. The swift recovery of a city after a disaster is closely
related to its local medical conditions and economic status.
Developed medical conditions require high economic levels.
Thus, the number of hospitals, healthcare centers, and local

FIGURE 1
Typhoon storm surge loss assessment index system.
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medical staff; fiscal revenue; and per capita regional gross
domestic product (GDP) can collectively indicate the passive
defense capabilities of a region. Therefore, this study includes the
number of hospitals and healthcare centers, hospital staff, fiscal
revenue, and per capita regional GDP as indicators of the disaster
prevention and mitigation capabilities of exposed elements.

By establishing a comprehensive assessment index system
that encompasses a variety of causative factors and considers the
disaster-prone environment, the vulnerability of exposed
elements, and disaster prevention and mitigation capabilities,
we can effectively evaluate the potential losses caused by typhoon
storm surges. These assessment indices provide valuable insights
into disaster preparedness and risk management, and thus, can
inform the development of appropriate mitigation strategies.

3 Methods and materials

Multiple indicators are included in the established storm surge
loss assessment indicator system, and there is a certain degree of
information overlap among these indicators. To reduce redundancy
among related indicators and achieve high model stability, fast
operational speed, and accurate evaluation results, this study uses
the following methods.

3.1 Entropy method

The entropy method is an objective weighting method that
determines the weights of different indicators based on the
information provided by the magnitude of observed values for
each indicator (Shannon and Weaver, 1949). In information
theory, entropy is used to represent the measure of
uncertainty, where information and uncertainty are inversely
related. Specifically, larger information corresponds to smaller
uncertainty and lower entropy, while lesser information
corresponds to larger uncertainty and higher entropy. The
algorithm follows the specific steps outlined below.

1) Data standardization:

Xij
′ � Xij −min X1j,X2j,. . . ,Xnj( )

max X1j,X2j,. . . ,Xnj( ) −min X1j,X2j,. . . ,Xnj( )
i � 1, 2, . . . , n; j � 1, 2, . . . ,m( ) (1)

For convenience, the standardized data is denoted as Xij.

2) Calculation of the weight of indicator Xij:

Pij � Xij

∑n
i�1Xij

j � 1, 2, . . . ,m( ) (2)

3) Calculation of the entropy value of the jth indicator:

ej � −k *∑n

i�1Pijlog Pij( ) j � 1, 2, . . . ,m( ) (3)

4) Calculation of the coefficient of variation for the jth indicator:

gi � 1−ej j � 1, 2, . . . ,m( ) (4)

5) Calculation of the weight for each indicator:

Wj � gi

∑m
j�1gi

j � 1, 2, . . . ,m( ) (5)

3.2 Genetic algorithm

The genetic algorithm (GA) is a bio-inspired algorithm that
originated fromDarwin’s theory of evolution andMendel’s theory of
genetic variation (Holland, 1992). This algorithm utilizes computer
simulation and transforms computational problem-solving into a
process resembling biological evolution. Its objective is to find
individuals who are the most well-adapted to the environment.
Starting from a randomly generated initial population, the algorithm
applies a series of genetic operations to produce new individuals that
are better adapted. Through multiple iterations, the new population
evolves toward the optimal region in the search space, eventually
converging into a group of individuals that are most adapted to the
environment, thereby yielding the optimal solution (Katoch et al.,
2021).

The detailed process of the algorithm is illustrated in Figure 2.
After initializing the parameters, the genetic algorithm generates an
initial population consisting of several individual solutions. The fitness
of each individual in the population is evaluated using a fitness
function. Individuals with higher fitness participate in the next
stage of operations, while those with lower fitness are eliminated.
If the termination condition is not met, the individuals with higher
fitness undergo selection, crossover, and mutation operations to form
a new generation. The algorithm terminates when the fitness of the
best individuals reaches a given threshold or when the fitness of the
best individual and the population no longer improve.

FIGURE 2
Flow chart for the genetic algorithm.
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3.3 Simulated annealing algorithm

The simulated annealing algorithm (SA) is a probability-based
stochastic optimization algorithm that is based on the principles of
solid-state annealing (Kirkpatrick et al., 1983). When the
temperature of a solid is high, its internal particles are in a state
of rapid disorderly motion due to higher energy. As the temperature
gradually decreases, the internal energy of the solid decreases and
the particles tend to move toward an ordered state. When the solid
reaches room temperature, the internal energy reaches its minimum,
indicating the most stable state of the particles. This algorithm starts
with a relatively high initial temperature; as the temperature
decreases, it randomly searches the solution space for the global
optimal solution of the objective function based on the probability of
energy changes (Hibat-Allah et al., 2021).

The detailed process of the algorithm is illustrated in Figure 3.
The simulated annealing algorithm begins by initializing the
temperature and selecting an arbitrary initial solution. Random
perturbations are applied to the current solution within its
neighborhood to generate a new solution. The change in the
evaluation or fitness functions between the initial and new
solutions is used as a criterion to accept or reject the new
solution based on the Metropolis criterion. The algorithm

continues until it reaches the maximum number of iterations or
satisfies the termination condition, whereby several consecutive new
solutions have not been accepted, indicating the algorithm’s
convergence.

3.4 Backpropagation neural network

The Backpropagation (BP) neural network is a multi-layer
feedforward grid trained using the error backpropagation
algorithm. It has found wide-ranging applications in information
processing, pattern recognition, intelligent control, and system
modeling (Rumelhart et al., 1986; Yang and Zhou, 2015; Amosov
et al., 2020; Dewi et al., 2022). The main characteristics of this
algorithm include forward signal propagation, backward error
propagation, and the use of the gradient-descent learning rule to
continuously adjust the thresholds and weights of the network,
ultimately minimizing the sum of squared errors.

As shown in Figure 4, the BP neural network consists of an input
layer, hidden layers, and an output layer. Its operation process can be
divided into two stages. The first stage is forward propagation, where
signals are passed from the input layer, processed through the
hidden layer, and finally reach the output layer. The second stage

FIGURE 3
Flow chart for the simulated annealing algorithm.
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is backward propagation of errors, where the error between the
output layer and the target values are used to adjust the weights and
thresholds of the neural network, it gradually reduces the error.

3.5 Comparison and combination of
algorithms

Genetic algorithms, simulated annealing algorithms, and BP
neural networks have matured in their respective domains.
However, as their applications increase, their shortcomings and
limitations have become evident. Genetic algorithms have a strong
global optimization capability but are weak in local search, which
renders pure genetic algorithms time-consuming and less efficient
for analysis of late-stage evolution. These algorithms are also prone
to premature convergence issues (Beg and Islam, 2016). Simulated
annealing algorithms are point-search algorithms with weaker
global optimization capabilities compared to swarm-search
algorithms. The performance of these algorithms is also
influenced by parameters, such as the cooling rate. If the cooling
rate is slow, the search time will be longer, but it will potentially yield
better solutions. Conversely, if the cooling rate is too fast, it may
quickly skip the optimal solution (Correia et al., 2022). BP neural
networks constitute local search optimization methods. The weights
and thresholds of the network are adjusted gradually in the direction
of a local improvement, making the algorithm susceptible to getting
trapped in local minima and resulting in training failures.
Furthermore, the computation process of BP neural networks is
complex, leading to a significantly reduced convergence rate (Jin
et al., 2000).

Given that the global optimization ability of the genetic
algorithm is strong, while its local optimization ability is poor
and the Simulated Annealing Algorithm has poor global
optimization ability with strong local optimization ability, the
two algorithms complement each other’s optimization
deficiencies. At the same time, the simulated annealing algorithm
meets the needs of optimizing the network gradient descent

algorithm, which can improve the convergence speed and reduce
the number of iterations to a certain extent. The genetic algorithm is
a global search optimization algorithm, which can improve the
problem of traditional neural networks falling into local optimal
solutions, therefore, it improves the efficiency of the prediction
model. Therefore, this paper uses a genetic algorithm and simulated
annealing algorithm to form a genetic simulated annealing
algorithm GSA to optimize the BP neural network.

3.6 Data and processing

3.6.1 Data collection
The data on losses due to post-typhoon storm surges in the

South China Sea region from 1989 to 2020, as reported in the “China
Ocean Disaster Bulletin” and “Collection of Historical Materials on
Storm Surge Disasters in China” (Yu et al., 2015), were used in this
study. The maximum wind speed data for relevant typhoons were
obtained from the International Best Track Archive for Climate
Stewardship (IBTrACS) tropical cyclone observation data (Knapp
et al., 2010). Economic and social development statistics of the
coastal provinces in the South China Sea were collected from the
statistical yearbooks of the respective provinces. These data have
been authoritatively released by relevant departments of the
National Natural Resources Ministry and the Meteorological
Bureau. They have undergone rigorous quality control and
verification, ensuring the reliability of the data. Figure 5 presents
the 25 selected typhoon tracks and their maximum intensities,
indicating that all these typhoons passed through coastal cities in
the South China Sea region and reached the maximum typhoon
strength. Among the initial 25 samples of the GSA-BP model,
20 samples were used for initial training, and 5 samples were
used for initial testing.

3.6.2 Expansion of training samples
In this study, the limited availability of post-storm surge loss

samples poses a significant challenge due to the small sample size.

FIGURE 4
Flow chart for the backpropagation neural network.
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Despite the limited number of samples, we have noted that many
studies within this field have managed to produce reliable
outcomes with small samples (Ye et al., 2014; Zhao et al.,
2015; Wang and Liu, 2018; Zhao et al., 2018; Jia et al., 2022a;
Jia et al., 2022b). To further enhance the robustness of our model,
we have utilized the Bootstrap method (Härdle, 1995) to augment
our training and testing samples. The fundamental premise of
bootstrap is to augment the sample size by randomly resampling
the original data. The advantage of this approach is that it
obviates the need for any assumptions about the unknown
distribution of the data and directly resamples the original
data, thereby transforming a small sample into a larger one
(Brad Efron et al., 1993; Zoubir A M et al., 1998). We
employed the bootstrap toolbox to resample the initial data,
expanding the original training data to 60 samples for the
final training set. It is noteworthy that while bootstrap is
efficacious in many scenarios, it does possess certain
limitations. For instance, if there exists long-term
dependencies or correlations among the original data, the
bootstrap method might introduce biases (Tewes, 2018).
However, in this study, our data consisted of independent
observations regarding typhoon storm surge disaster losses,
thus the limitations of the method did not significantly impact
our research. By employing the bootstrap method, we were able
to leverage the limited data more efficiently, enhancing the
accuracy and stability of the model. In summary, given our
research context and objectives, as well as the data challenges
we faced, the use of the bootstrap method was a prudent and
fitting decision. Additionally, to compare the regression
prediction results from the GSA-BP model for losses due to
post-storm surges with the results from the genetic algorithm-
Back Propagation (GA-BP) model and the Simulated Annealing-
Back Propagation (SA-BP) model; this study selected GA-BP and
SA-BP models as control experimental models.

3.7 Establishment of the GSA-BP disaster
loss prediction model

The establishment of the GSA-BP model involves several steps,
which are depicted in Figure 6, outlining the model’s technical
roadmap.

1) Input the test and training datasets and initialize the basic
parameters of the algorithm in the model, such as the number
of iterations, temperature cooling rate, and population size, along
with the topology of the BP neural network.

2) Calculate the fitness of each individual in the population.
Generate a new population through selection, crossover, and
mutation operations for the selected individuals. Apply
annealing operations for further optimized training of the
new population.

3) Calculate the fitness of the annealed new population and
determine if an individual with optimal fitness has been
found. Compare the current fitness of each individual in
the new population with their historical fitness. Retain the
historical fitness if that is the best fit, otherwise, replace it
with the current fitness. Repeat this process until an
individual with the best fitness satisfying the termination
condition is found, concluding the genetic simulated
annealing algorithm.

4) Utilize the best individual as the initial weights and thresholds of
the BP neural network.

5) Train and learn the BP neural network using the latest weights
and thresholds obtained. If the error reaches a minimum value,
thereby meeting the desired outcome, the training and learning
of the BP network are concluded, and the optimal solution is
obtained.

FIGURE 5
Maximum intensity and track of 25 selected typhoons.

FIGURE 6
A technical roadmap of the GSA-BP model.
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4 Results and discussion

As the indicators in the typhoon storm surge loss assessment
system established earlier had different scales and measurement
units, a direct comparison without preprocessing was not
feasible. To effectively address and mitigate the effect of the
potential correlation and information redundancy among the
indicators in the assessment system on the model’s predictive
results, this study utilized the entropy method to assess the
dispersion of the 13 indicators. As compared to subjective
assignment methods, the entropy method not only reduces
subjective errors, but also minimizes information loss, thereby
improving the accuracy of the model. The calculation results are
presented in Table 1. Based on the calculated results in Table 1, it
can be observed that the weight of the maximum wind speed of a
typhoon is the highest, indicating the least dispersion among the
indicators. On the other hand, the weight of the damaged area in
aquaculture is the lowest, implying the highest dispersion. To
avoid interference from redundant information, the final
selection of input variables for the model included the
following 10 influencing indicators: maximum wind speed of
typhoon, fiscal revenue, per capita GDP, population density,
amounts of local medical staff, maximum storm surge, affected
agricultural area, affected population, length of damaged seawall,
and number of hospitals and healthcare centers.

In preparation for the assessment system of typhoon storm surge
disaster losses, it is imperative to conduct a preprocessing phase.
Similarly, prior to the initiation of the training phase, the GSA-BP
model necessitates the determination of parameters. The GSA-BP
model includes multiple hyperparameters, such as the number of
hidden layer nodes, momentum coefficient, population size, and
crossover probability, and these parameters need to be pre-set
manually. Each set of hyperparameters produces a different
model structure. To quickly find and optimize the best
combination of hyperparameters, this study employed Bayesian

optimization. Bayesian optimization stands as an efficacious
method for global optimization, demonstrating particular
aptitude in addressing high-dimensional and intricate
optimization challenges, such as those encountered in neural
network hyperparameter tuning (Snoek et al., 2012; Shahriari, B
et al., 2015). The GSA-BPmodel contains multiple hyperparameters,
including the hidden layers of the BP neural network, population
size, mutation probability, and crossover probability, among others.
These parameters need to be set in advance, and each different
combination of hyperparameters results in a new model. Given the
advantages of the Bayesian optimization method mentioned above,
we employed this approach to swiftly obtain the optimal
hyperparameter combination for the GSA-BP model. The
optimized parameters are presented in Table 2. To address the
potential for overfitting, we applied regularization techniques during
the neural network training process. This approach helps the model
to generalize better from the data provided.

The distribution trends of the predicted and observed values
for the training samples with the GSA-BP, SA-BP, and GA-BP
models are shown in Figure 7. The first 20 samples in the figure
represent the initial training data, while the subsequent
40 markers represent the expanded samples generated using
the bootstrap package. During the training process, we employed
both R2 and R as regression evaluation metrics. These metrics
were chosen for their relevance in assessing the correlation
between predicted and actual values, highlighting the model’s
predictive capability. It is evident that as compared to the GA-BP
(Figure 7C) and SA-BP(Figure 7B) models, the GSA-BP
(Figure 7A)model exhibits a closer distribution trend to the
actual values. Additionally, the GSA-BP model has the highest
number of overlaps between the predicted and actual values in
the training samples. Table 3 presents a comparison of the
results from the training samples with the three models. The
GSA-BP model achieves higher goodness of fit (R2) and
correlation coefficient (R) of 0.8011 and 0.8950, respectively,

TABLE 1 Weights of each indicator.

Assessment indicator of storm surge losses Weights

Maximum wind speed of the typhoon 0.1119

Fiscal revenue 0.0884

Per person regional Gross Domestic Product 0.0873

Population density 0.0868

Amounts of local medical staff 0.0823

Maximum storm surge 0.0789

Affected agriculture area 0.0742

Affected population 0.0702

Length of damaged seawall 0.0694

Amounts of hospitals and health centers 0.0617

Number of damaged houses 0.0606

Size of cultivated area 0.0575

Damaged area of aquaculture 0.0490

TABLE 2 Optimized parameters for the GSA-BP model.

Model parameters Parameter setting

The hidden layers of the BP neural network 7 (single hidden layer)

Input nodes 10

Momentum coefficient 0.8585

Learning rate 0.1288

population size 11

Method of chromosome selection Tournament

Crossover method Float

Crossover probability 0.8796

Mutation method Float

Mutation probability 0.1401

Initial temperature 79

Temperature attenuation parameter 0.98

Refrigerant temperature 1.3484×10−4

Frontiers in Earth Science frontiersin.org08

Zhang et al. 10.3389/feart.2023.1258524

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1258524


as compared to the SA-BP model with R2 of 0.1648 and R of
0.1284 and the GA-BP model with R2of 0.1615 and R of 0.1271.
The higher correlation regression coefficient achieved with the

GSA-BP model indicates a better fit and higher correlation with
the observed values, resulting in smaller errors.

Figure 8 illustrates the distribution trends of the predicted and
observed values for the test samples with the GSA-BP, SA-BP, and
GA-BP models. It can be observed that the SA-BP model shows an
overall downward trend in its prediction quality, whereby the
predictions deviate significantly from the upward trend of the
actual values. Although the GA-BP model exhibits an upward
trend, the slope and intercept of the trendline differ significantly
from the actual values, indicating substantial deviations. In
comparison, the GSA-BP model demonstrates a closer and nearly
overlapping distribution trend with the actual values for the test
samples, indicating a better alignment between the predicted and
observed values. Table 4 presents a comparison of the results from
the test samples with the three models. The GSA-BP model achieves
a higher goodness of fit (R2) and correlation coefficient (R) of
0.9920 and 0.9960, respectively, compared to the SA-BP model
with R2 of 0.1008 and R of 0.3176, and the GA-BP model with R2 of
0.0006 and R of 0.0231. The higher correlation regression coefficient
achieved with the GSA-BP model indicates a better fit and a higher
correlation with the actual values, resulting in smaller errors.

To further validate the advantages of the GSA-BP model in the
assessment of disaster losses due to typhoon storm surges, boxplots
depicting the absolute errors of the training (Figure 9A) and test

FIGURE 7
The distribution trend of predicted and observed values from the (A) GSA-BP, (B) SA-BP, and (C) GA-BP training samples.

TABLE 3 Comparison of results from applying the different models to the
training samples.

GSA-BP SA-BP GA-BP

R2 0.8011 0.1648 0.1615

R 0.8950 0.1284 0.1271

FIGURE 8
The distribution trend of predicted results and actual values from
the GSA-BP, SA-BP, and GA-BP test samples.

TABLE 4 Comparison of results from applying the different models to the test
samples.

GSA-BP SA-BP GA-BP

R2 0.9920 0.1008 0.0006

R 0.9960 0.3176 0.0231
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samples (Figure 9B) for the three models (shown in Figure 9) were
analyzed. In Figure 9, the GSA-BP model’s absolute error box height
for both training and test samples is notably lower compared to the
GA-BP and SA-BP models. And the outliers of the GSA-BP box
(points outside the box) are significantly less than the other two
models, suggesting that the GSA-BP model exhibits lower error
fluctuations and has higher data stability. This leads to reduced
absolute errors and a more accurate representation of the
observations.

Figure 10 presents the fitness curves for the GSA-BP, SA-BP, and
GA-BP models. According to Figure 10, the GSA-BP model
converges and reaches the optimal solution in approximately
42 iterations with a best fitness value of ~0.0344. The SA-BP
model converges at ~47 iterations with a best fitness value of
approximately 0.037. It can be observed that the GSA-BP model

converges faster and has a smaller fitness value as compared to the
SA-BP model, indicating a higher convergence speed and better
fitness. Although the GA-BP model generally achieves a smaller
fitness value than the GSA-BP model, it can be seen from the graph
that the GA-BP model requires approximately 60 iterations to
converge, making it computationally more time-consuming
compared to the GSA-BP model. Considering both the number
of convergence iterations required and the best fitness value of the
models, the GSA-BP model demonstrates superior efficiency as
compared to the SA-BP and GA-BP models.

Establishing a comprehensive typhoon storm surge loss
assessment index system is crucial for conducting related risk
assessments. The system constructed in this study integrates
assessment indicators from four distinct perspectives: causative
factors, disaster-prone environment, vulnerability of exposed
elements, and disaster prevention and mitigation capabilities.
This provides a holistic framework for storm surge risk
assessment. While our typhoon storm surge loss assessment
index system is novel, the foundational concepts and methods for
its construction have been validated in other related fields. For
instance, Liu et al. (2022) employed a similar index system in their
research to assess typhoon risks. They found that, compared to
traditional risk assessment methods, their evaluation results were
more accurate and closely aligned with actual loss data when disaster
mitigation capabilities were taken into account. This finding further
underscores the importance of establishing a multi-faceted
assessment system, especially one that encompasses disaster
prevention capabilities, in risk assessment.

Considering the above research findings, it is evident that the
GSA-BP model, based on the index system mentioned in Section 2,
not only operates at a high speed but also produces predictions for
both the training and test sets that are closer to the corresponding
actual values, yielding ideal fitting results. Given the backdrop of
climate change and rising sea levels, which are leading to increased
frequency and intensity of storm surges, we believe that the
assessment system and GSA-BP model established in this study
can be applied in fields such as disaster response and risk

FIGURE 9
Boxplots of absolute error of the GSA-BP, SA-BP, and GA-BP (A) training samples and (B) test samples.

FIGURE 10
The optimum fitness curves for GA-BP, GSA-BP, and SA-BP
models.
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management. Relevant government departments can more
accurately identify potential high-risk areas for storm surge
disasters and based on this, formulate more rational disaster
prevention and mitigation strategies.

5 Conclusion and future perspectives

In this study, a comprehensive assessment frameworkwas developed
to evaluate losses caused by typhoon storm surges by integrating loss
data obtained from investigations of storm surge disaster induced by
typhoon with observational data on tropical cyclones and storm surges.
The assessment framework considered four aspects: causative factors,
disaster-prone environment, vulnerability of exposed elements, and
disaster prevention and mitigation capabilities. Furthermore, the
maximum typhoon wind speed was incorporated into the disaster
loss assessment framework. The genetic simulated annealing
algorithm (GSA) was employed to optimize a backpropagation (BP)
neural networkmodel for the pre-assessment of 25 typhoon storm surge
events in the South China Sea from 1989 to 2020. Additionally, the
bootstrap method was used to augment the training sample data, which
allowed an evaluation of the applicability of the GSA-BP model and
enhanced the accuracy of storm surge loss predictions.

The results demonstrate that the GSA-BP model developed in this
study provides a reasonably accurate pre-assessment of direct economic
losses incurred by storm surges. It offers a novel approach to estimating
the severity of storm surge disasters in coastal cities along the South
China Sea. However, the accuracy and scientific validity of the prediction
results from the GSA-BPmodel presented in this study can be improved
due to the challenges associated with collecting complete post-disaster
loss data for storm surges in this study. Therefore, future efforts should
focus on strengthening the collection of data on post-disaster storm
surge losses, thus providing robust support for the development of
relevant disaster assessment frameworks.
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