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In order to accurately simulate the productivity variation characteristics of
fractured wells with complex fracture network in shale gas reservoir, based on
the multiple migration mechanism of shale gas, the micro-seismic data and
discrete fracture model were used to characterize the fracture geometry and
complex boundary characteristics, and the comprehensive seepagemathematical
model of fractured wells with complex fracture network was established based on
the dual porosity-discrete fracture model, and the numerical solution was carried
out by combining the unstructured grid and the control volume finite element
method. The sensitivity analysis of the influence of key parameters such as fracture
conductivity, physical property difference in composite area and Langmuir volume
on the production performance of fractured horizontal wells is carried out. This
study provides theoretical methods and calculation tools for accurate prediction
of productivity change and optimization of production system of fractured
horizontal wells with complex fracture network in shale gas reservoirs.
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1 Introduction

Shale gas reservoir is an important exploration field proposed in China’s energy
development plan to vigorously enhance exploration and development, and continuously
and efficiently promote the development and utilization of shale gas resources, which has
important strategic significance for optimizing China’s clean energy production capacity
layout and reducing natural gas dependence on foreign countries (Zou et al., 2020). China is
generally rich in shale gas resources. It is estimated that the technically recoverable reserves
of shale gas in China are 21.8 trillion cubic meters, and the proven reserves exceed 1 trillion
cubic meters (Li, 2023). At present, three national shale gas demonstration zones have been
built in Fuling, Changning-Weiyuan and Zhaotong, and China’s shale gas production is
planned to reach 80 to 100 billion cubic meters by 2030 (Yang et al., 2020).

By referring to the key technologies of the shale gas revolution in North America, the
multi-cluster fracturing technology of horizontal wells has become a key method to
efficiently develop and utilize shale gas resources (Wu et al., 2022; Sun, 2023). Through
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the implementation of the “close cutting and large displacement and
temporary plugging and diversion” technology, the tight reservoir is
“broken” to form the SRV (stimulated reservoir volume) region, the
natural fracture groups around the near well are opened and
communicated, the seepage field around the horizontal wellbore
is improved, and the final recoverable reserves of a single well are
increased (Xie, 2018; Liu et al., 2019). However, the characterization
of complex fracture network geometry and mathematical expression
of flow exchange between different systems have been the key
problems, affecting prediction accuracy of production after
fracturing. Brown et al. (2011), Yuan et al. (2015) divided the
fractured horizontal well and shale gas reservoir into stimulated
and initial regions, adopting multi-linear and dual porosity models
to obtain the solution. Xu et al. (2015), Fan et al. (2015), Zhang et al.
(2015) respectively used the circular or rectangular composite region
model to simplify the complex fracture geometry, and the flow
characterization was carried out by combining the continuum
model. In order to more accurately predict the effect of fracture
properties on flow mechanism and production, Karimi-Fard et al.
(2004), Altwaijri et al. (2018) established the discrete fracture model
to display and characterize the length, angle and width of each
fracture, and then carried out the production impact analysis. Jiang
and Rami (2015) further combined the respective advantages of
continuous medium model and discrete fracture model, the discrete
fracture model is adopted for large-scale hydraulic fracturing
fractures, and continuous medium model is used for small-scale
natural fracture system, which ensures the efficiency and accuracy of
production prediction of fractured horizontal wells with complex
fractures. However, the above models did not take into account the
gas-water two-phase flow in the SRV region and gas-water co
production characteristics caused by fracturing fluid retention.

In addition, researchers (Ozkan et al., 2011; Stalgorova and
Mattar, 2013; Wang, 2014; Li et al., 2015; Zhao et al., 2018)
established analytical and semi-analytical models respectively to
predict the production of horizontal wells after fracturing in
shale gas reservoirs. However, the analytical and semi-analytical
model mainly uses the symmetric main fracture model, the whole or
local regular rectangular or circular SRV region to simplify the
hydraulic fracture network, and for gas-water two-phase flow, an
approximate solution is obtained by defining a pseudo pressure
function to transform it into single-phase seepage. The above
processing will significantly affect the accuracy of production
performance and productivity prediction for fractured horizontal
wells. The numerical model is more suitable to deal with the
geometry characteristics of the complex fracture network, and
can accurately characterize the complex boundary characteristics
of the fracture network through the spatial mesh dispersion, and is
convenient for coupling the multi-scale and multi-phase seepage
mechanism of shale gas reservoirs (Wu and Pruess, 1988; Geiger
et al., 2004; Lv et al., 2012; Moinfar et al., 2013; Wu, 2014; Zhang
et al., 2017; Wang et al., 2020; Zhang et al., 2023).

To sum up, this study combined with micro-seismic data and
discrete fracture model to characterize fracture geometry and
complex boundary characteristics on the basis of comprehensive
consideration of multiple flow mechanisms in shale gas reservoir,
and established a dual continuum-discrete fracture coupling seepage
model. A fully implicit numerical solution model is established by
using unstructured triangular mesh and controlled volume finite

element method. Combined with the field data, the productivity
change characteristics of horizontal wells after fracturing were
simulated and predicted, and the key factors affecting the
production and EUR of single well were analyzed.

2 Physical model and basic
assumptions

Natural fractures and bedding are developed in shale reservoirs,
the brittle mineral content of favorable development series of strata is
high (Cai, 2020; Zhu et al., 2022; Li et al., 2023), and the fracture
network stimulation area is formed near the well after fracturing (Zhao
et al., 2018). The field monitoring of micro-seismic results of shale
fractured horizontal wells shows (as shown in Figure 1) that there are
dense signal response points around the wellbore during the fracturing
process, and complex reformations are formed during the fracturing
process. Therefore, micro-seismic monitoring data and discrete
fracture model were applied to characterize the fracture geometry
and complex boundary characteristics of the reconstruction area, and
the flow characteristics of the composite area of the original reservoir
and the stimulation area were described based on the dual medium
model (Moinfar et al., 2013; Cheng et al., 2020).

The assumptions of the physical model are as follows: 1)
Considering the retention of fracturing fluid in the formation,
gas-water two-phase flow occurs in hydraulic fracturing fractures
and fractures in the reconstruction area, while single-phase gas
isothermal seepage occurs in the shale matrix and the original
reservoir area. 2) Ignoring the vertical heterogeneity of physical
properties of shale reservoirs, two-dimensional grid is used to
describe them approximately; 3) There is a quasi steady state
channeling between the matrix system and the fracture system,
and the fluid enters the fracture system from the matrix system
under the action of pressure difference, and flows into the horizontal
wellbore through the fracture and produces.

3 Mathematical model

3.1 Micro-nano scale flow model of shale
gas reservoir

Shale reservoir has a complex pore structure, and gas seepage in
the reservoir hasmultiple flowmechanisms such as Knudsen diffusion,
surface adsorption diffusion, slip flow and viscous flow (Geng et al.,
2016; Wu et al., 2016; Zhang et al., 2018) (as shown in Figure 2).

In the process of shale gas development, the thickness of
adsorption layer decreases, and the effective flow pore size
increases further. The effective pore radius of removing the
adsorption layer can be expressed as:

rabs � r − dMθ � r − dM
p/Z

p/Z + pL
(1)

Where, dM is the molecular diameter of the gas, m; r is the actual
radius of the matrix pores, m; θ is the true gas coverage,
dimensionless; p is the current pore pressure, Pa; pL is Langmuir
pressure, Pa; Z is the true gas compression factor, dimensionless.
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Considering the stress-sensitive effect, the porosity and
permeability of shale matrix related to pore pressure can be
expressed as:

φ p( ) � φr + φi − φr( )e−η pi−p( )
k p( ) � kie

−Ψ pi−p( ) (2)

Where, φ(p) is the porosity of the matrix considering stress
sensitivity; φi is the initial porosity, dimensionless; φr is the
porosity under maximum stress, dimensionless. k(p) is the matrix
permeability after considering stress sensitivity, nD; ki is the original
permeability of matrix, nD; η is the stress sensitivity coefficient of
porosity, Pa−1; ψ is the stress-sensitive coefficient of permeability,
Pa−1; pi is the original gas reservoir pressure, Pa.

The effective pore radius of the matrix considering the thickness
of the adsorption layer and the stress-sensitive effect is as follows:

re �

��������������������
8τ

kon,abse−Ψ pi−p( )
φr + φi − φr( )e−η pi−p( )

√√
(3)

Where, τ is the tortuosity, which is the ratio of the actual length of
the flow path to the represented length.

In the circular organic nanopores, the apparent permeability
contributed by the bulk phase gas based on the Beskok model can be
expressed as:

kon,bulk � −r
2
eφ p( )
8τ

1 + αKn( ) 1 + 4Kn

1 +Kn
( ) (4)

Where, Kn is Knudsen diffusion constant, dimensionless; α is the
rarefied gas effect coefficient, dimensionless, which can be calculated
by the following equation:

α � α0
2
π
tan−1 α1Knβ( ) (5)

Where, α0 is the rarefied gas coefficient under Kn→∞ condition; α1
and β are fitting constants.

The apparent permeability considering the real gas effect can be
expressed as:

kon,surface � Ds

μgrRTCscφ p( )
Mgp2τ

(6)

Where, Ds is the surface diffusion coefficient, m2/s; μgr is the gas
viscosity after considering the real gas effect, mPa·s; R is the
universal gas constant, Pa/(mol•K); T is the absolute

FIGURE 1
Diagram of physical model. (A)Model of fractured horizontal well with complex fracture network in shale gas reservoir based onmicro-seismic data
(Cheng et al., 2020). (B) Schematic diagram of grid division (6,857 triangles). (C) Assumptions of seepage models in different regions.

FIGURE 2
Gas transport mechanism in micro and nano pores of shale matrix (Javadpour, 2009; Guo et al., 2022).
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temperature, K; Mg is the molecular weight of gas, g/mol; Csc is the
concentration of adsorbed gas in Langmuir monolayer on the pore
surface, kg/m3. The calculation equation is as follows:

Csc � 4θMg

πd3
MNA

(7)

Where, NA is Avogadro’s constant, 6.022×1023mol-1.
The surface diffusion coefficient can be calculated as follows:

Ds � D0
s

1 − θ( ) + κ
2 θ 2 − θ( ) + H 1 − κ( )[ ] 1 − κ( ) κ2θ2

1 − θ + κ
2 θ( )2 (8)

H 1 − κ( ) � 0, κ≥ 1
1, 0≤ κ≤ 1{ , κ � κb

κm
(9)

Where, H(1-κ) is Heaviside function; κb is the plugging rate, m/s; κm
is migration rate, m/s;D0

s represents the surface diffusion coefficient
when the gas coverage is 0, m2/s, which is calculated by the following
equation:

D0
S � 8.29 × 10−7T0.5e−

ΔH0.8
RT (10)

Where, ΔH is the isothermal adsorption heat of gas, J/mol.
The total gas transport flux includes free gas phase transport and

surface diffusion of adsorbed gas in circular tube pores. After taking
into account the cross-sectional area of the circular tube, the
apparent permeability of the matrix pore is as follows:

kapp � ςbulkkon,bulk + ςsurfacekon,surface

� r2e
r2e + θdM( )kon,bulk + 1 − r2e

r2e + θdM( )[ ]kon,surface (11)

Where ςbulk is body phase gas weight coefficient, its value is equal to
the ratio of the cross-sectional area occupied by the body phase gas
and the total cross-sectional area, dimensionless; ςsurface is surface
diffusion weight coefficient, its value is equal to the ratio of the cross-
sectional area occupied by the surface diffusion gas to the total cross-
sectional area, dimensionless.

3.2 Comprehensive seepagemodel of multi-
scale flow mechanisms

Further, based on the dual media-discrete fracture model, the
comprehensive seepage model of fractured horizontal well is
established as follows:

①Seepage control equations of matrix system:

∇ · kapp
μgBg

∇pgml
⎛⎝ ⎞⎠ − αl

kapp
μgBg

pgml − pgf l( ) + qdes �
∂ ϕml/Bg( )

∂t
(12)

Where,

qdes � −ρs 1 − ϕml − ϕf l( ) ∂VE

∂t
(13)

Where, Bg is the volume coefficient of gas, dimensionless; pgm is
the matrix system gas pressure, MPa; pgf is the fracture system gas
pressure, MPa; qdes is the desorption production of matrix, m3/s;
φm is the matrix system porosity, dimensionless; φf is the porosity
of fracture system, dimensionless; α is the shape factor,
dimensionless; ρs is the density of shale rock, g/cm3; The

subscripts l=1, 2, 1 denotes the inner zone, 2 denotes the
outer zone.

②Seepage control equations of fracture system:
For inner zone:

∇ · kfkru1
μuBu

∇pfu1( ) + α1
kappkru1
μuBu

pmu1 − pfu1( ) � ∂

∂t

Sfu1ϕf1

Bu
( ) (14)

For outer zone:

∇ · kf
μgBg

∇pfg2
⎛⎝ ⎞⎠ + α2

kapp
μgBg

pmg2 − pfg2( ) � ∂

∂t

ϕf2

Bg
( ) (15)

Where, pf is the pressure of the natural fracture system,MPa; kf is the
permeability of natural fractures in shale reservoirs, mD; kr is the
relative permeability, dimensionless; Subscript u=g, w, where g
represents the gas phase and w represents the water phase.

③Control equations of hydraulic fracture seepage:

∇ · kFkrul
μuBu

∇pFu( ) + qusct � ∂

∂t

ϕFSFu
Bu

( ) (16)

Where, kF is hydraulic fracture permeability, mD; φF is the hydraulic
fracture porosity, dimensionless; qgsct is horizontal well production,
m3/s; pF is the hydraulic fracture pressure, MPa.

4 Model solving

4.1 Element characteristic matrix

First, the element characteristic matrix of Eq. (12) is constructed
based on triangular mesh and control volume finite element method
(as shown in Figure 3), and the average mesh pressure pgm and
average saturation Sfu of the matrix system are approximated by
triangle vertex interpolation:

pgm x, y( ) � ∑k
v�i
Nv x, y( )pgmv, pful x, y( ) � ∑k

v�i
Nv x, y( )pfulv

Sful x, y( ) � ∑k
v�i
Nv x, y( )Sfulv (17)

Where Nv is the interpolation function.
For the convection term in the matrix system seepage equations,

Galerkin’s weightedmarginmethod andGauss’s law are used to obtain:

∫∫
Ωi

∇ ·⎛⎝λ
– · ∇pgml

⎞⎠dV � ∑
v�j,k

Tiv pigml − pvgml( ) (18)

Where Tiv represents the conductivity matrix given by the following
equation:

Tiv � A λx
∂Ni

∂x

∂Nv

∂x
+ λy

∂Ni

∂y

∂Nv

∂y
( )

� 1
4A

λxaial + λybibl( ) (19)

The above equations establish the net flow of the control volume
of the inflow node i of triangle ijk. Similarly, the net inflow flow
equation of nodes j and k can be established. Then the flowmatrix of
the virtual finite control volume unit can be obtained as:
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Tij + Tik −Tij −Tik

−Tji Tji + Tjk −Tjk

−Tki −Tkj Tki + Tkj

⎛⎜⎜⎝ ⎞⎟⎟⎠ pigml

pjgml

pkgml

⎛⎜⎜⎝ ⎞⎟⎟⎠ �
fgmi

fgmj

fgmk

⎛⎜⎜⎝ ⎞⎟⎟⎠ (20)

Eq. (20) is the processing format of the convection term of the
controlled volume finite element method based on triangular mesh.
In Eq. (12), the cross-flow term between matrix system and fracture
system, as well as the adsorption and desorption term and the time
derivative term of matrix system are numerically calculated using
the traditional finite element method.

Taking gas phase as an example, the finite element integral
numerical calculation format for constructing the cross-flow term is
as follows:

∫∫
Ωm

Nvα
kapp
μgBg

pm − pf( )dΩm � ∫∫
Ωm

Nvα
kapp
μgBg

∑k
v�i
Nvpmv −∑k

v�i
Nvpfv

⎛⎝ ⎞⎠dΩm

�

α Akapp
3μgBg

( )
i

0 0

0 α
Akapp
3μgBg

( )
j

0

0 0 α Akapp
3μgBg

( )
k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

pmi − pf i

pmj − pfj

pmk − pfk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(21)

For the adsorption and desorption term and the time
derivative term, the finite element integral numerical
calculation format is constructed by combining Euler backward
difference as follows:

A

3Δt

ϕm
Bg

( )n+1

i
− ϕm

Bg
( )n

i

ϕm
Bg

( )n+1

j
− ϕm

Bg
( )n

j

ϕm
Bg

( )n+1

k
− ϕm

Bg
( )n

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ A

3Δt

1 − ϕm − ϕf( )VE[ ]n+1i − 1 − ϕm − ϕf( )VE[ ]ni
1 − ϕm − ϕf( )VE[ ]n+1j − 1 − ϕm − ϕf( )VE[ ]nj
1 − ϕm − ϕf( )VE[ ]n+1k − 1 − ϕm − ϕf( )VE[ ]nk⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (22)

Eqs 17–22 construct the element characteristic matrix of shale
matrix gas phase seepage equation based on triangular mesh and
controlled volume finite element method. Similarly, the element
characteristic matrix of shale fracture system seepage equation can
be constructed.

For hydraulic fracturing fractures, the discrete fracture model is
used to reduce their dimensionality to a one-dimensional line
segment with a certain width. The interpolation function of the
gas phase equation can be expressed as:

pgF � xj − x

Δl pgFi + x − xi

Δl pgFj

� NipgFi +NjpgFj

� Ni Nj[ ] pgFi

pgFj

⎡⎣ ⎤⎦ (23)

Combined with the interpolation function, Eq. (16) of the
hydraulic fracture seepage control equation is constructed in the
following numerical calculation format:

∫∫
ΩF

Nv
∂

∂lF
λgF

∂pgF

∂lF
( )dΩF

� wF ×ΔlF × λgF ×
∂Nv

∂lF

∂Ni

∂lF

∂Nj

∂lF
[ ] pgFi

pgFj

⎡⎣ ⎤⎦
� wF × λgF ×

1
ΔlF

− 1
ΔlF

− 1
ΔlF

1
ΔlF

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ pgFi

pgFj

⎡⎣ ⎤⎦
(24)

For the time term:

∫∫
ΩF

Nl

∂ SgFϕF/BgF( )
∂t

dΩF � wF ×
ΔlF
2Δt ×

SgFϕF
BgF

( )n+1

i
− SgFϕF

BgF
( )n

i

SgFϕF
BgF

( )n+1

j
− SgFϕF

BgF
( )n

j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(25)

Similarly, the characteristic matrix of water phase unit in
fracturing fracture system can be further constructed.

FIGURE 3
Schematic diagram of unstructured mesh generation. (A) Triangular mesh generation for large-scale discrete fractures. (B) Virtual finite control
volume mesh in triangular mesh, which is formed by connecting the center of gravity of a triangle to the midpoint of each side.
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4.2 The whole region iteratively solves the
matrix

The pressure value of each system in the next time step is
characterized by the fully implicit calculation format. The
“dimensionality reduction” treatment of fractured fractures is
carried out and embedded into the reservoir flow model. By
assembling the characteristic matrix of each unit, the fully
implicit iterative solution matrix for the whole region is
constructed as follows:

Tk
gf + δTk

gfP
k
gf −Wk

gmf −
δNk

gf

Δt δWk
gmf Pk

gm − Pk
gf( ) +Wk

gmf δTk
gfP

k
gf +

δNk
gf−Swf
Δt

Wk
gmf Tk

gm + δTk
gm − δWk

gmf Pk
gm − Pk

gf( )
−Wk

gmf −
δNk

gm

Δt − δVk
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

Finally, the numerical well model of fractured horizontal well is
established and put into Eq. (26):

qn+1usct � ∑NF

i�1
PIn+1ui pbh − pavei( )n+1 (27)

Where, qusct is the daily gas and water production ground conditions,
m3/d; pbh is bottom-hole flow pressure, MPa; pavei is the average
pressure of the grid block where the well source and junction are
located, MPa; NF is the total number of intersection points between
fractured fractures and horizontal wellbore. PIui is the production index,
m3/d/MPa. Through iterative computations, when the accuracy
requirements of δP and δSw are met, the stable value under current
time step is obtained and the calculation of the next time step is started.

5 Results and discussion

5.1 Pressure distribution prediction and
analysis

For a fractured horizontal well with a complex fracture
network (Figure 1) in the south Sichuan shale gas reservoir
block, the triangular grid was used to discrete the spatial grid
of the whole area, and a fully implicit numerical simulation
program was developed to simulate and predict the
production dynamic characteristics of fractured horizontal
wells. The basic parameters of the model are shown in
Table 1. The calculation equation of the fracture relative
permeability curve is: krgf=1-Swf, krwf=Swf.

Figure 4 shows the change of gas well pressure of fractured
horizontal wells with complex fracture networks of shale gas for
100 days, 1 year and 10 years, respectively. As can be seen from the
figure, the pressure propagation presents the characteristics of non-
uniform distribution in the complex fracture network area, and the
pressure propagation is faster in the well section with high
reconstruction degree. At the same time, the gas well pressure

propagation gradually expands outward with time, and the pressure
at the boundary of the inner and outer regions is also non-uniform due
to the influence of the complex fracture network boundary shape.
When the pressure propagates to the original reservoir area, its
pressure propagation speed is significantly slower than that of the
reconstruction area, indicating that the reconstruction area of complex
fracture network is the main contribution area to the pressure drop
and production of shale gas wells.

In addition, Figure 5 shows the production decline curves of
fractured horizontal wells with and without SRV region. By
comparison, it can be seen that the SRV region formed by
complex fracture networks will significantly increase the daily
and cumulative gas production of fractured wells, indicating that
compared to traditional double wing hydraulic fracturing method,
fracture network fracturing is more conducive to achieving higher
single well EUR and production efficiency for horizontal wells in
shale gas reservoirs.

5.2 Effect of fracture water saturation on
productivity

Figure 6 shows the influence of different fracture water
saturation on gas well productivity. Due to the low flowback
rate of fracturing fluid in shale reservoirs, a large amount of
fracturing fluid remains in the reservoir, resulting in gas-water
two-phase flow characteristics in fractured wells and near
wellbores. The simulation results show that the higher the
fracture water saturation, the lower the daily gas production.
When the fracture water saturation is 0.2, 0.3, and 0.4, the
cumulative gas production after 10 years of depletion
production is 194 million m3, 170 million m3and 145 million
m3, respectively. Therefore, the retained fracturing fluid has a
significant impact on gas well productivity.

5.3 Effect of fracture conductivity on
productivity

Figure 7 shows the influence of different hydraulic fracture
conductivity on gas well productivity. As can be seen from the
figure, the higher the diversion capacity, the higher the early daily
gas output, but the difference degree gradually decreases with the
increase of production time. When the diversion capacity CFD is
0.25D cm, 0.5D cm and 1.0D cm, the cumulative gas production
after 10 years of depletion is 133 million m3, 180 million m3 and
194 million m3, respectively. Therefore, in the hydraulic fracturing
process of shale gas reservoir, it is necessary to improve the
conductivity of fracturing fractures as much as possible to
increase the production.

5.4 Effect of permeability of stimulation area
on productivity

Figure 8 shows the influence of permeability in the stimulation
area on gas well productivity. It can be seen that the higher the
permeability of the stimulation area, the larger the daily gas
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TABLE 1 Basic parameters of the model.

Original reservoir pressure, pi, MPa 46 Matrix nanopore radius, re, nm 2

Reservoir thickness, h, m 80 Stress sensitivity factor, df, MPa-1 0.05

Horizontal well length, L, m 1700 Reservoir temperature, T, K 323

Bottom hole flow pressure, pbh, MPa 14 gas specific gravity, rg 0.6

Langmuir pressure, pL, MPa 15 Langmuir volume, VL, m
3/kg 0.01

Stimulated inner zone Outer zone

Fracture permeability, kf1, mD 0.001 Fracture permeability, kf2, mD 0.0005

Fracture porosity, φf1 0.15 Fracture porosity, φf2 0.05

Matrix permeability, km1, mD 0.0001 Matrix permeability, km2, mD 0.0001

Matrix porosity, φm1 0.02 Matrix porosity, φm2 0.02

Fracture water saturation, Swf1 0.2 Fracture water saturation, Swf2 0

FIGURE 4
Pressure distribution of fractured wells with complex fracture network under different production time. (A) After 100 days’ production. (B) After
1 year’ production. (C) After 10 years’ production.

FIGURE 5
Production of fractured horizontal well with and without SRV
region.

FIGURE 6
Effect of different fracture water saturation on gas well
production.
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production of the gas well in the early stage, and the larger the
cumulative production of the gas well, indicating that the fracturing
stimulation area around the horizontal well is more fully stimulated.
When the fracture permeability in the stimulation area is 0.001mD,
0.005mD and 0.01mD, the cumulative gas production after 10 years
of depletion production is 194 million m3, 261 million m3 and
308 million m3, respectively. It is the key to improve the production
of shale gas wells by optimizing the construction parameters,
increasing the stimulation degree of the stimulation area and
improving the seepage capacity of shale reservoir.

5.5 Effect of Langmuir volume on
productivity

Figure 9 shows the influence of different Langmuir volume VL

on gas well production curves. As can be seen from the figure, the
larger the VL value, the larger the daily gas production and
cumulative gas production of the gas well, and the slower the
decline rate of gas well production. With the progress of gas well
production, the free gas in fracture and matrix system is
preferentially produced. The continuous reduction of reservoir
pressure makes the gas adsorbed on the surface of organic matter

begin to desorption, and enter the fracture system as a reservoir
supplementary gas source, delaying the decline of gas well
production. When Langmuir volume VL is 0.01 m3/kg, 0.02 m3/kg
and 0.03 m3/kg, the cumulative gas production after 10 years of
depletion production is 193 million m3, 260 million m3 and
313 million m3, respectively. Adsorption and desorption is a
unique seepage mechanism of shale gas reservoir, which is
different from conventional gas reservoir. With the progress of
production, the reservoir pressure decreases and the adsorption
gas is desorbed in large quantities, which will contribute to the
production replenishment and stable production of
fractured horizontal wells in shale gas reservoir in the middle
and later stages.

6 Conclusion

(1) Simulation studies show that the micro-seismic data and
discrete fracture model can be used to reasonably
characterize fracture geometry and complex boundary
characteristics, and the influence of fracture network on
production dynamics can be accurately simulated.

(2) Parameter sensitivity analysis shows that the higher the fracture
water saturation, the lower the gas well production; The
hydraulic fracture conductivity has obvious influence on the
early production of shale gas fractured horizontal wells.
Complex fracture network stimulation area is the main
contribution area of shale gas well output, the better the
stimulation effect, the higher the permeability of the
stimulation area, the higher the output of shale gas well.
Therefore, the fracturing reconstruction of shale gas wells is
mainly to improve the reconstruction degree and increase the
reconstruction volume.

(3) For fractured horizontal wells in shale gas reservoirs, with a
large amount of free gas produced in fractures and matrix
systems, the early high production stage ends, and the
adsorbed gas adsorbed on the surface of shale matrix is
desorbed due to the reduction of reservoir pressure, which
becomes the key to the production replenishment and stable
production in the middle and late period. The more desorption
gas, the greater the cumulative gas production.

FIGURE 7
Effect of different fracture conductivity on gas well production.

FIGURE 8
Effect of different permeability in SRV region on gas well
production.

FIGURE 9
Effect of different Langmuir volume on gas well production.
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