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The relationship between the high-frequency time series of PM2.5 in the
atmosphere and the air pollutants emitted by industrial firms is not yet fully
understood. This study aimed to identify independent PM2.5 clustering regions
in Shaanxi Province and to evaluate the spatio-temporal correlations of PM2.5

concentrations and pollutant emissions from industrial firms in these regions. To
accomplish this, daily data on PM2.5 concentrations and air pollutants emitted by
industrial firms were analyzed using the K-means spatial clustering method and
cross-wavelet transformation. The results show that: 1) PM2.5 concentrations in
Shaanxi Province can be divided into three independent clustering regions. 2) The
lagged impact of industrial emissions on PM2.5 concentrations were about 1/4-1/
2 period. 3) PM2.5 wasmainly influenced by particulate matter (PM) emissions from
industrial plants during the period of 16–32 days, while nitrogen oxides (NOx)
significantly affected PM2.5 concentrations during the period of 32–64 days. 4)
Emissions of PM, NOx, and sulfur dioxide (SO2) more significantly affect PM2.5

concentrations in northern and central Shaanxi, and pollutants emitted by firms in
the thermal power generation, utility, and steel industries had more significant
effects on PM2.5 concentrations than those emitted by the cement manufacturing
and electric power industries. During the COVID-19 shutdown, the emissions of
firms cannot significantly affect PM2.5 concentrations. These findings suggest that
emission reduction initiatives should consider industrial, regional, and periodic
differences to reduce PM2.5 pollution during winter.
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1 Introduction

Exposure to high level of fine particulate matter (PM2.5) in the atmosphere has been
associated with severe adverse effects on human health (Barwick et al., 2017; Zhong et al.,
2017; Chen et al., 2018; Liu and Salvo, 2018; Cheung et al., 2020; Fan et al., 2020; He et al.,
2020), as well as substantial economic losses (Zhang and Mu, 2018; Sun et al., 2019; Chen
et al., 2022; Ito and Zhang, 2020). While efforts have been made to manage PM2.5

concentrations in developing countries like China, with notable progress in recent
decades (Greenstone et al., 2021), the annual average PM2.5 concentrations in China’s
339 cities are still expected to exceed the recommended level by the World Health
Organization (MEE, 2022; WHO, 2021). Moreover, severe haze pollution remains a
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common occurrence in many Chinese cities during autumn and
winter (Ma et al., 2020; Zhang et al., 2020b).

To effectively reduce ambient PM2.5 concentrations, it is crucial
to identify the firms that should reduce emissions during periods of
heavy pollution as well as during normal times (F. Wang et al., 2019;
Zhao et al., 2018; Alari et al., 2021; Frankowski, 2020; Rivera, 2021),
for the industrial sector significantly contributes to China’s
economic growth but also emits a large amount of air pollutants
while consuming fossil energy (Choi et al., 2021; MEE, 2020; Zhang
et al., 2014). Various studies have analyzed the correlation between
PM2.5 concentrations and yearly air pollutant emissions using a
physicochemical model (Choi et al., 2021; Lu et al., 2021;Wang et al.,
2022; Liu et al., 2018b; Zhang et al., 2014; Zhang et al., 2018), likely
multiple regression (Zhang et al., 2020), geographically weighted
regression model (Wang et al., 2018; Tu et al., 2019) and
physicochemical model such as CMAQ (Wang et al., 2022b;
Wang et al., 2019b), WRF-Chem (Spiridonov et al., 2019; Azmi
et al., 2022; Zhang et al., 2023). Although an increasing body of
research begins to concentrate on the interplay between business
emissions and air quality (Li et al., 2016; Wu et al., 2023), there has
been limited research conducted on the relationship between high-
frequency scale (such as a week, day, or even an hour) air pollutant
emissions from industrial firms and PM2.5 concentrations, which
can help the government formulate proper strategies for reducing
industrial emissions.

In order to better capture the high-frequency variability of
PM2.5, some researchers have employed the wavelet analysis
technique to identify the temporal patterns of PM2.5 changes
(Chen et al., 2020; Kapwata et al., 2021; Li et al., 2017; Shi et al.,
2014; Sun et al., 2017; Zhao et al., 2009; Zhao et al., 2016). Wavelet
analysis has been shown to be effective in studying the periodicity
and evolution characteristics of PM2.5 concentrations, as well as
investigating the influence of natural factors on PM2.5

concentrations. Moreover, PM2.5 pollution exhibit significant
regional variations that often do not align with administrative
divisions (Tie et al., 2005; Tie and Cao, 2009; Wang et al., 2011;
Zhao et al., 2020), the PM2.5 pollution areas must be identify before
appropriate mitigation strategies can be established.

To fill the knowledge gap mentioned above, this study selects
Shaanxi Province in China as a relatively independent study area to
examine the correlation between firms’ emissions and PM2.5. For the
unique topography Guanzhong Plain is one of China’s most polluted
region for PM2.5 (Xu et al., 2018; Li et al., 2022); Southern Shaanxi
has a good ecology; Northern Shaanxi has many polluting firms) and
diverse types of firms (Miao et al., 2019; Wang et al., 2022c) in
Shaanxi Province can provide effective lessons for pollutant
management in other regions and countries. We collected a
unique daily scale emission data from all continuous emission
monitoring system (CEMS) installed firms in Shaanxi Province
and air quality monitor site data at county level.

This paper are to make the following contributions to the field:
1) Establish a methodology for identifying PM2.5 pollution control
areas using spatial clustering techniques; 2) Identify firms and
industries with a significant impact on PM2.5 pollution areas by
utilizing cross-wavelet analysis on high-frequency time scale data; 3)
Provide evidence-based support for precisely requiring firms to
adopt emission reduction measures during periods of heavy
pollution, and effectively reducing socio-economic losses.

The rest of this paper is structured as follows. Part 2 introduces
the study area, data, and methodology. Part 3, this study shows
cluster and wavelet analysis. In the final part, this paper provides
some concluding remarks.

2 Study region, data resource, and
methodology

2.1 Study region and data resource

Shaanxi Province, in northwestern China, spans between 105°29′E-
111°15′E longitude and 31°42′N-39°35′N latitude, characterized by a
complex and diverse terrain. Shaanxi Province, themost affluent among
the five northwestern provinces of China, recorded a GDP of
2,980.1 billion RMB in 2021 (National Bureau of Statistics, 2023).
The industrial sector played a substantial role, contributing 46.3% to the
Shaanxi’s GDP. With a diverse industrial landscape encompassing
high-end energy and chemical sectors, equipment manufacturing,
aerospace, electronic information, and automobile production,
Shaanxi Province’s industrial firms collectively consumed
92.8 million tonnes of standard coal in 2021. This consumption
constituted 68.1% of the total standard coal usage within the
province. Such considerable energy consumption consequently led to
substantial pollutant emissions. Notably, industrial sources in Shaanxi
Province contributed to over 60% of total emissions for both Total
Suspended Particulates (TSP) and Sulfur Dioxide (SO2) pollutants in
2021 (Ministry of Ecology and Environment, 2021).

Shaanxi can be geographically divided into three parts: southern
Shaanxi, Guanzhong and northern Shaanxi. Northern Shaanxi,
which encompasses the cities of Yulin and Yan’an, is abundant
in coal, oil, and natural gas resources and houses several large-scale
energy chemical firms, including thermal power, coking, coal
chemical, and petrochemical. The Guanzhong plain, comprising
cities such as Xi’an, Xianyang, Weinan, Baoji, and Tongchuan, is
recognized as one of China’s worst air pollution areas in China due
to a significant number of thermal power, cement, and steel sectors
(Bai et al., 2019). The Southern Shaanxi region, including the cities
of Hanzhong, Shangluo, and Ankang, is rich in rare mineral
resources, such as molybdenum, rhenium, and mercury, as well
as abundant natural resources.

Figure 1 demonstrates the distribution of 169 air quality
monitoring stations and 361 firms in Shaanxi Province.
Specifically, Guanzhong has 60 air quality monitoring stations
and 150 industrial firms, Northern Shaanxi has 59 air quality
monitoring stations and 177 industrial firms, while Southern
Shaanxi has 50 air quality monitoring stations and 34 industrial
firms. Shaanxi’s average PM2.5 concentrations has decreased from
57 to 43 μg/m3 between 2017 and 2020. However, the current
concentration remains above the national standard limit of
30 μg/m3.

The monitoring data of PM2.5 concentrations are from the
ambient air quality monitoring stations in Shannxi Province
(http://113.140.66.226:8024/sxAQIWeb/pagecity.aspx?cityCode=
NjEwMTAw), and meteorological data including wind speed,
wind direction, air temperature, air pressure, and humidity are
from Shaanxi air quality real-time release system. The research
period is from 1 January 2017 to 31 December 2020. The firms’

Frontiers in Earth Science frontiersin.org02

Zhao et al. 10.3389/feart.2023.1256296

http://113.140.66.226:8024/sxAQIWeb/pagecity.aspx?cityCode=NjEwMTAw
http://113.140.66.226:8024/sxAQIWeb/pagecity.aspx?cityCode=NjEwMTAw
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1256296


emissions data come from key pollutant discharge firms’
monitoring information release platforms (http://113.140.66.
227:9777/envinfo_ps/zdyjbxxpublicity/list), including the three
most important pollutants, TSP (total suspended particles), SO2

(sulfur dioxide) and NOx (nitrogen oxide). The pollutant
emissions of the firms installing CEMS exceed 65% of the total
pollutant emissions in the region (The State Council, 2007), which
basically reflects the regional industrial pollutant emissions.

FIGURE 1
Study area of Shaanxi Province.
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For air quality monitoring data, we remove outliers in the data
and ensure the accuracy of the data by using data from neighbouring
air quality monitoring points. For firm emission data, we firstly
removed extreme outliers in the firms CEMS data; secondly, we
determined whether the firms was in a shutdown state through the
firms’ flue gas oxygen content, and for missing values in a non-
shutdown state, we filled in the pollutant emissions of the firms
neighboring time through the missing values to ensure the validity of
the data.

2.2 Methodology

2.2.1 Spatiotemporal cluster analysis
PM2.5 concentrations exhibits spatial clustering on a daily basis.

To identify regions that require targeted control during the study
period, daily partitioning results of the clustering process are
subjected to correlation clustering analysis. If the external
transfer of pollutants is not taken into account, PM2.5

concentrations in the identified areas can be reduced by reducing
all types of pollutant emissions, such as those from industrial, mobile
and non-organized sources. Thiessen polygons are generated from
the monitoring stations to ensure the continuity of the identified
pollution area and to avoid the limitations imposed by
administrative divisions. The resulting clustering categories are
consistent with the geographical division, and further refine the
control area for PM2.5 while smoothing out the boundary of the
region.

This paper adopts the K-means clustering method, a fast
clustering approach that abstracts clustering units into
m-dimensional points and evaluates the similarity between units
based on the distance between clustering units (Liu et al., 2018a), to
conduct spatial clustering of PM2.5:

1) Optional K initial clustering centers: Z1(1), Z2(1), . . ., Zk(1), 1 is
the subsequence of iteration.

2) The rest of the samples are allocated to one of the K cluster
centers according to the principle of minimum distance:
min{||X-Zi(k)||, i=1, 2, . . . , K} = {|| X-Zi(k)||} = Dj(k) (1)

X∈Si(k),k is the subsequence of iteration; K is the number of
cluster centers.

3) Compute the new vector value of each cluster center: Zj (k+1)
j=1, 2, . . . , K

Zj k + 1( ) � 1
Nj

∑
X∈Sj k( ) X, j � 1, 2, . . . , K (2)

4) If Zj(k+1) ≠ Zj(k), return formula (1), classify the pattern samples
center by center, and repeat the iterative calculation. If Zj(k+1)=Zj(k),
algorithm convergence, calculation completes (Wegner et al., 2012).

2.2.2 Wavelet and cross-wavelet analysis
The wavelet transform is a powerful method for the

simultaneous analysis of time series in both the time and
frequency domains. It involves the use of a variable window
function and is generated from mother and child waves through
time translation and scaling, as noted by Gao and Zhang (2016) and

Mu et al. (2021). This decomposition results in a set of essential
functions where increasing the scale is equivalent to decreasing the
frequency and sacrificing the time resolution, while reducing the
scale and increasing the frequency is equivalent to sacrificing the
frequency resolution. By stretching and translational transform, the
wavelet function is obtained from the wavelet generator function.
The continuous wavelet function is expressed as:

WX
n s( ) �

��
δt

s

√ ∑N−1

n′�0
xn′ψ*

n′ − n( )δt
s

[ ] (3)

where* represents a conjugate complex, N is the total number of the
time series, (δt/s)/s is a factor used for the standardization of wavelet
function.

The Morlet wavelet function is commonly used in wavelet analysis
as it effectively separates and reconstructs waves of different frequency
bands without losing time resolution. This function maintains its shape
through frequency shift and has excellent temporal aggregation and
high-frequency resolution (Morlet et al., 1982). Therefore, Morlet
wavelet function is employed to analyze the periodicity of PM2.5

concentrations:

ψ0 t( ) � π−1/4eiω0te−t
2/2 (4)

Where t is time, ω0 is dimensionless frequency. If ω0 =6, scale s
equals Fourier period. Wavelet power spectrum |WX

n (s)|2 shows the
variation characteristics of the time series on a specific scale and its
variation with time. This unbiased and consistent estimation of the
real power spectrum of time series is achieved through the use of the
full wavelet spectrum (Torrence and Compo, 1998; Torrence and
Webster, 1999).

�W
2
s( ) � 1

N
∑N−1

n�o
Wn s( )| |2 (5)

The boundary effects and errors encountered when handling
finite time series are addressed by testing the statistical significance
of the wavelet power spectrum using an appropriate equation
(Cazelles et al., 2008; Furon et al., 2008; Grinsted et al., 2004; Liu
et al., 2018a). Therefore, the test measure display as follows:

Pk � 1 − α2

1 − αe−2iπk| |2 (6)

Cross-wavelet analysis can compare the frequencies of two-time
series Xt and Yt, and obtain the resonance period and phase of the
two sequences in some periods. Cross wavelet spectra of two-time
series XWT is WXY � WXWY*, cross wavelet power is |WXY|. The
period changes with time, reflected by the cross wavelet power can
be visualized by the full spectrum (Veleda et al., 2012). The
confidence degree of cross wavelet power can be calculated by
the square root of the product of two chi-square distributions.
The confidence and correlation coefficient of the two-time series
are as follows:

D
WX

n s( )WY*
n s( )∣∣∣∣ ∣∣∣∣

σXσY
<P( ) � Zv p( )

v

������
PX

kP
Y
k

√
(7)

R2
n s( ) � S WXY

n s( )( )∣∣∣∣ ∣∣∣∣2
S WX

n s( )∣∣∣∣ ∣∣∣∣2( )•S WY
n s( )∣∣∣∣ ∣∣∣∣2( ) (8)
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The phase difference can be transferred to the difference of
[-π, π], and its value indicates the lag characteristics of the
two sequences (Aguiar-Conraria and Joana Soares, 2011;
Addesso et al., 2022). The phase difference formula is as
follows:

φxy � arctan
I WXY

n s( )( )
R WXY

n s( )( )( ) (9)

3 Results analysis

3.1 Spatiotemporal distribution of PM2.5 in
study region

The seasonal distribution of PM2.5 concentrations in each region is
relatively even, with the highest levels in winter and the lowest in summer
(Figure 2). During the winter and spring seasons, the PM2.5

FIGURE 2
Spatiotemporal distribution of PM2.5 concentrations.
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concentrations in the three regions display significant variations, ranging
from 65 to 95 μg/m3 and 29.5–47 μg/m3, respectively. This indicates that
the concentrations duringwinter are approximately twice as high as those
during spring. Conversely, PM2.5 concentrations slightly vary among the
three regions during the summer and autumn seasons. Moreover,
meteorological factors such as temperature, wind speed, and relative
humidity significantly promote the diffusion of atmospheric pollutants.
In mid-March, the cessation of heating results in a reduction of pollution
sources, leading to lower PM2.5 concentrations during the spring season
than during the winter season.

Annual PM2.5 concentrations in the three regions follow the
order of Guanzhong > Northern Shaanxi > Southern Shaanxi.
Guanzhong is the most economically developed region in
Shaanxi Province and has several large coal-fired power plants,
cement manufacturers, chemical plants, and metal smelters, which
contribute to high PM2.5 concentrations. The Guanzhong area’s
proximity to the Qinling Mountains in the South and the Loess
Plateau in the North further hinders airflow movement and
pollutant diffusion, thereby intensifying the pollutant
concentration (Wang et al., 2015). In Northern Shaanxi, several

FIGURE 3
Spatial clustering PM2.5 in Shaanxi.
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coal-fired power plants and factories discharge pollutants, and the
unique linear canyon terrain in Yan’an City tends to converge local
pollutants in the area. Southern Shaanxi primarily relies on natural
resources to develop the primary industry, has low urbanization, and
has a less prominent contribution of firm emission sources to PM2.5

concentrations.

3.2 Clustering results of PM2.5 in study region

From Figure 2, it is obvious shows that PM2.5 pollution in
Shaanxi Province has a significant regional feature, in order to
accurately identify each PM2.5 pollution region in Shaanxi
Province, so as to more accurate identification of the link
between pollutant emissions from firms and PM2.5 in the air, this
part use the PM2.5 data of the air monitoring points in the study time
period, and the method of spatial clustering to perform spatial
clustering. Figure 3 depicts the spatial clustering of air pollution
areas in Shaanxi Province. By overlaying the zoning results onto the
elevation map of Shaanxi Province, it becomes apparent that
delimited regions of PM2.5 overlap with the locations of the
Guanzhong Plain, Northern Shaanxi, and Southern Shaanxi,
suggesting that PM2.5 concentrations are influenced by the
topography. Three regions were identified based on their

coverage area and PM2.5 concentration levels. Region 1 covers
most of the Guanzhong area, region 2 includes the northern
Shaanxi area and a portion of the Guanzhong area, while region
3 comprises the Southern Shaanxi area and a portion of the
Guanzhong area. Region 1 had a mean PM2.5 of 57.4 μg/m3, and
335 days per year exceeded 24-h PM2.5 thresholds (<75 μg/m3),
representing 20.41% of total days. In Region 2, the mean PM2.5

was 40.3 μg/m3, with 151 days exceeding the 24-h PM2.5 benchmark,
representing 9.2% of the total number of days. Finally, the mean
PM2.5 concentration in region 3 was 33.2 μg/m3, with 79 days
exceeding the 24-h PM2.5 benchmark, representing 4.81% of the
total number of days.

3.3 Air pollutant emissions from industrial
firms in study region

The analysis results presented in Figure 4 shows the variations in
pollutant emissions among industrial firms in Shaanxi Province.
Figure 4 shows that region 1 and region 2 emit about the same
amount of TSP pollutants, while region 2 emits a much larger
amount of SO2 and NOx than region 1 and region 3. This emission
situation is closely related to the distribution of industries in
different regions. This difference was attributed to the lots of

FIGURE 4
Daily variation curves of air pollutants, including TSP, SO2, and NOx, emitted by industrial firms from 2017 to 2020.
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power plants located in region 2, which accounts for 50% of the
power plants in Shaanxi Province and contributes to over 70% of
total pollutant emissions from power plants. Region 1 is distributed
with many processing and manufacturing firms, which mainly emit
TSP pollutants, making the emissions of TSP pollutants in region
1 and region 2 similar, although there are significant differences in
SO2 and NOx emissions. Simultaneously, it can be observed that
TSP emissions in region 3 saw a notable increase during the
COVID-19 period in 2020. In contrast, emissions in regions
1 and 2 experienced a certain degree of decline. There’s a
reasonable suspicion that regions 1 and 2 redirected a portion of
their production capacity to region 3, which may account for this
dynamic change.

3.4 Analysis of cross-wavelet in different
regions

This part we employ the Morlet wavelet function to conduct a
wavelet transform of daily data on TSP, SO2, and NOx emissions from
industrial firms in three regions of Shaanxi Province from January
2017 to December 2020. The wavelet spectrums of TSP, SO2, and NOx

are analyzed, with time d as the horizontal axis and time scales as the
vertical axis. A wavelet coefficient of 0 signifies a mutation point
wherein the correlation coefficient shifts from higher to lower
values. The white shadow area in the wavelet spectrum represents
the influence cone of the wavelet boundary, while the area enclosed by
thick white solid lines indicates that the noise test has passed at a 95%
significance level.

Figure 5 shows that the pollutants emitted by industrial firms during
thewinter prevention period (November to February) in the three regions
demonstrate substantial periodicities of 16–64 and 64–128 days, with the
impact of contaminants on PM2.5 concentrations lagging 1/4-3/8 cycles.
TheTSP andPM2.5manifest a strong correlation in the 16–32 days range,
followed by NOx and PM2.5, while SO2 and PM2.5 exhibit the weakest
correlation. These results coincide with the fact that TSP directly
influences PM2.5 concentrations in the atmosphere, while NOx and
SO2 necessitate a chemical reaction to generate nitrate and sulfate and
form secondary particles. Simultaneously, the figure shows a notable
correlation between pollutant emissions from firm and PM2.5

concentrations within short timeframes in both region 1 and region
2. This strong correlation strongly suggests that firms’ pollutant emissions
play a pivotal role in driving fluctuations in PM2.5 concentrations,
particularly during the winter months. However, this short-term

FIGURE 5
Spatiotemporal correlation between PM2.5 concentrations and industrial firms’ emissions in different regions of PM2.5 pollution. Note: region
1 represents Guanzhong, region 2 represents Northern Shaanxi, and region 3 represents Southern Shaanxi. (A,D,G) Region 1 TSP, Region 2 TSP, Region 3
TSP; (B,E,H) Region 1 S02, Region 2 S02, Region 3 S02; (C,F I) Region 1 NOx, Region 2 NOx, Region 3 NOx.
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influence onPM2.5 concentrations as a result of corporate emissions is not
evident in region 3.

Figure 5 also shows that the emissions from industrial firms in
region 1 strongly resonate with PM2.5 from November to February
2017 and 2018. However, during a short period of 32–64 days, the
emissions negatively related with PM2.5 concentrations, implying that
changes in PM2.5 concentrations lag behind alterations in TSP
emissions from firms. In the winter of 2019, there is a significant
correlation between firm emissions and PM2.5 concentrations, but no
significant correlation is found in the spring of 2020 since industrial
emissions reduced during the COVID-19 lockdown, which caused an

unprecedented cessation of human activities that affected China’s
industrial production and pollutant emissions. Therefore, controlling
industrial emissions can alleviate PM2.5 pollution in Shaanxi.

3.5 Analysis of cross-wavelet in different
industries

Using region 1 as an example, the study found a strong correlation
between PM2.5 concentrations and pollutants emitted by thermal
production, supply, and steel industries within a short timeframe of

FIGURE 6
Spatiotemporal correlation between PM2.5 concentration and the air pollutants emitted by different industrial firms in region1 (Guanzhong).
(A,D,G,J) TSP steel industry, TSP thermal power industry, TSP cement manufacturing, PM heat production and supply; (B,E,H,K) S02 steel industry, S02

thermal power industry, S02 cement manufacturing, S02 heat production and supply; (C,F,I,L) NOx steel industry, NOx thermal power industry, NOx

cement manufacturing, NOx heat production and supply.
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8–32 days. However, the correlation coefficient displays irregular
fluctuations (Figure 6). Conversely, there was a weak correlation
between PM2.5 and emissions from cement and power sectors.
During a medium to long timeframe of 32–64 days, TSP emissions
from heat production and supply firms in 2018 and 2019 exhibited
correlations with PM2.5 concentrations. Moreover, SO2 positively related
PM2.5 concentrations in 2018 and 2019, while NOx and PM2.5 displayed
positive correlations in 2019 and 2020. Between 2017 and 2019, TSP, SO2,

and NOx emissions from cement manufacturing firms demonstrated
strong positive correlations with PM2.5. In contrast, there were weak
correlations between PM2.5 concentrations and pollutants emitted by
firms in the power and iron-steel industries. Within a long timeframe of
64–128 days, the correlation between emissions in the above four
industries and PM2.5 concentrations gradually weakened, except for
significant relationships between PM2.5 and NOx emitted by thermal
production and supply firms.

FIGURE 7
Spatiotemporal correlation between PM2.5 concentrations and meteorological factors in region 1 (Guanzhong). (A) Region 1 pressure, (B) Region 1
temperature, (C) Region 1 humidity, (D) Region 1 sunshine hours, (E) Region 1 wind speed.
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3.6 Spatiotemporal correlation between
PM2.5 concentrations and meteorological
factors

In addition to firms’ emissions, meteorological factors are also
an important driver of PM2.5 concentrations (Jia et al., 2020). This
section takes region 1 as an example to further analyse whether
meteorology further influences the changes in PM2.5 concentrations
on basis of emissions from firms. Specifically, the study examines the
periodic effects of atmospheric pressure, temperature, humidity,
wind speed, and sunshine on PM2.5 using time-series data and
Morlet cross-wavelet transform analysis. Figure 7 shows that the
PM2.5 concentration has a negative correlation with atmospheric
pressure, humidity, wind speed, and sunshine on an 8–32 days time
scale, while no significant correlations are observed with air
temperature. In addition, the degree of correlation between PM2.5

concentration and wind direction, air pressure, and humidity during
the winter defense period in 2017–2018 and 2018–2019 is
significantly higher than that in other years. In a certain extent,
it can be inferred from Figures 5A–C that a connection exists
between the heightened responsiveness of firms’ emissions to
ambient PM2.5 and alterations in meteorological conditions. This
dynamic suggests that firms emit comparable levels of pollutants but
contribute to more PM2.5 pollution, possibly due to changing
meteorological factors.

4 Conclusion

This study utilizes data of PM2.5 concentrations collected from
169 air quality monitoring stations and 361 industrial firms situated
in all county-level cities within Shaanxi Province. The spatial cluster
analysis method is used to determine the clustering region of PM2.5,
while the spatiotemporal correlation between PM2.5 concentrations
and industrial firm emissions in different smog-contaminated areas
is evaluated using the cross-wavelet analysis method.

The findings of this study indicate that the mean PM2.5

concentrations in Shaanxi Province decreased from 50.2 to 38.1 μg/
m3 between 2017 and 2020, which can be attributed to the 3-year plan to
control haze and improve air quality. ThemeanPM2.5 concentrations in
summer and winter were 38.9 μg/m3 and 77.6 μg/m3, respectively, with
higher concentrations observed during winter. Additionally, the mean
PM2.5 concentrations in Guanzhong, Northern Shaanxi, and Southern
Shaanxi were 57.4, 40.3, and 33.2 μg/m3, respectively, with Guanzhong
having a higher PM2.5 concentration than Southern Shaanxi.

The K-means clustering method is employed to cluster daily
PM2.5 concentrations in winter, and three pollution areas are
identified based on ground elevation information and
geographical subregions of Shaanxi Province. PM2.5

concentrations in the three regions of Shaanxi Province during
winter show periodic changes, with pollutants emitted by firms
lagging about 1/4-1/2 of the period. In the 16–32 days period, PM2.5

concentrations are significantly affected by PM, followed by NOx

and SO2. NOx has significantly affected PM2.5 concentrations in the
32–64 days period, while in the 64–128 days period, the impact of
NOx and SO2 on PM2.5 concentrations is similar. Industrial firms in
regions 1 and 2 significantly affect local PM2.5 concentrations, while
the impact of industrial firms in region 3 is minor.

We also found during the COVID-19 lockdown, industrial firm
emissions, excluding those in the heat production and supply
industry, had no significant impact on PM2.5 concentrations,
indicating that controlling air pollutants emitted from firms can
alleviate PM2.5 in Shaanxi. Furthermore, pollutants emitted by firms
in the thermal production, supply, and steel industries have a greater
impact on PM2.5 concentrations than those from the cement
manufacturing and power industries.

The study findings suggest that the government should focus on
reducing and eliminating backward production capacity,
strengthening discharge control of thermal power production,
supply, and steel-iron industries, and promoting industrial
structure optimization and upgrading in Shaanxi Province to
reduce PM2.5 concentrations during winter. Specifically, for the
Guanzhong and northern Shaanxi regions, there is a particular
need to control pollutant emissions from firms under
unfavourable meteorological conditions in order to effectively
mitigate the severe PM2.5 pollution caused by firms’ emissions.
For the southern Shaanxi region, there is a need to prevent firms in
the northern Shaanxi and Guanzhong regions from relocating or
relocating some of their production orders to southern Shaanxi.
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