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The collision between the Indian and Eurasian plates continues to drive significant
deformation and uplift within the interior of the Tibetan Plateau, together with its
outward expansion along the margins. In particular, the North Qilian Shan fold-
thrust belt (NQLS) and the Hexi Corridor basins (HXBS) represent the
northernmost region of the northeastern Tibetan Plateau. This area serves as a
natural laboratory for deciphering mechanisms of crustal deformation and
thickening along the plateau’s margins. Specifically, the northeastern Tibetan
Plateau has been attributed to 1) southward underthrusting of the Asian
lithosphere, 2) distributed shortening and crustal thickening, 3) vertical inflation
of the Tibetan crust due tomid-lower crustal channel flow, and 4) intracontinental
subduction facilitated by large-scale strike–slip faults. The exact mechanism
underlying the most concentrated convergent stress in the western segment
of NQLS–HXBS remains a subject of debate. To address this uncertainty, we
gathered seismic data along a 130-km-long linear array that extends northward
from NQLS, traversing the Jiuquan Basin and reaching the Huahai Basin. Our
analysis, conducted through the receiver function method, reveals intriguing
findings. The Moho depth deepens from 45–50 km beneath the Huahai Basin
to 55–60 km beneath NQLS. Notably, a double Moho structure emerged, marked
by a distinctive near-flat positive amplitude at a depth of 45–50 km beneath NQLS
within a distance of 0–50 km. Our study presents a comprehensive analysis of the
crust-scale deformation mechanism, shedding light on the following key aspects:
1) the development of a decollement at 12–20 km depth decoupling the upper
and lower crust; 2) deformation of the upper crust occurring through south-
dipping brittle thrust faults, while the lower crust features imbricate structures and
duplexes; 3) evidence pointing to the underthrusting of the Beishan Block beneath
NQLS, indicated by the double Moho beneath NQLS; and 4) the formation of a
Moho ramp beneath the Jiuquan Basin, facilitating the transfer of shortening stress
from beneath NQLS and HXBS to the north. In the context of the western segment
of NQLS and HXBS, our speculation is that coupled distributed shortening and
Beishan Block subduction beneath NQLS work in tandem to accommodate
crustal deformation.
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1 Introduction

The collision and continued convergence of the Indian and
Eurasian plates since ca. 55 Ma have resulted in substantial
deformation and uplift within the interior of the Tibetan Plateau,
together with the outward expansion of the plateau along its margins
(e.g., Molnar and Tapponnier, 1975; Tapponnier et al., 2001; Yin,
2000; Yin, 2010; ; Zhao et al., 2010; Zuza et al., 2018; Xiong et al.,
2022). This collision has significantly impacted both the topography
and climate of the surrounding regions (Zhang et al., 2004).
However, the precise manner in which the Tibetan crust
accommodates the convergence of the Indian and Eurasian plates,
leading to the development of the Tibetan Plateau, remains a subject
of intense debate (e.g., Cheng et al., 2019; Clark and Royden, 2000; Yin
and Harrison, 2000; Tapponnier et al., 2001; van Hinsbergen et al.,
2011; van Hinsbergen et al., 2012; Yakovlev and Clark, 2014; Ingalls
and Stedman, 2016; Zuza et al., 2016; Zheng et al., 2017). Moreover,
different segments of the Tibetan Plateaumarginsmay exhibit varying
deformation mechanisms, particularly across the northeastern
Tibetan Plateau margin that stretches across strike for >1,000 km.
(Lin et al., 2011; Duvall et al., 2013).

NQLS and the HXBS comprise the northernmost margin of the
Tibetan Plateau. This contractional thrust-fold belt and foreland
basin system represent an area of concentrated stress resulting from
the convergence of the Indian and Eurasian plates (Xiong et al.,
2019). Understanding the geometric and kinematic characteristics of
the crustal structure in this region is essential for deciphering the
deep interrelation between the Tibetan Plateau and the Eurasian

plate. This knowledge holds the potential to significantly enhance
our comprehension of continental tectonics (Yin et al., 2002;
Molnar, 1988; Zhang et al., 2004; Zhou et al., 2006; Yin, 2010;
Lease et al., 2012; Craddock et al., 2011; Craddock et al., 2014; Zuza
et al., 2019).

Since the 1970s (Burke and Dewey, 1973; Molnar and
Tapponnier, 1975), numerous end-member models have been
proposed to explain the formation of the Tibetan Plateau, as a
result of intensive study (Figure 1). In the northeastern Tibetan
Plateau, these models include (1) Cenozoic underthrusting of the
Asian lithosphere beneath the Tibetan Plateau (Willett and
Beaumont, 1994; Kind et al., 2002; Zhao et al., 2011; Feng et al.,
2014; Ye et al., 2015); (2) coupled distributed crustal shortening and
underthrusting of the Alxa Block beneath Tibet, accounting for the
observed crustal shortening and thickness distribution (England and
Houseman, 1986; Dewey et al., 1997; Huang et al., 2018; Xiong et al.,
2019; Zuza et al., 2019); (3) vertical inflation of the Tibetan crust due
to lateral mid-lower crustal channel flow (Zhao and Morgan, 1987;
Bird, 1991; Royden et al., 1997; Clark and Royden, 2000); and (4)
intracontinental subduction facilitated by large-scale strike–slip
faults (Zuza et al., 2016; Wu et al., 2023b).

These tectonic models offer specific predictions regarding the
location, timing of deformation, and kinematics of crustal structures
in the northeastern Tibetan Plateau (Lease et al., 2012; He, 2020;
Zuza et al., 2016; 2019). Therefore, crustal-scale seismic imaging can
provide insights into the dominant deformation mechanism along
the northern margin of the Tibetan Plateau. Despite prolific
geophysical research conducted over recent decades on the
northeastern Tibetan Plateau, the mechanisms driving crustal
deformation remain contentious. Given that the west-to-east-
trending NQLS and HXBS stretch over a span of 1,000 km, the
crustal deformation mechanism may indeed vary across different
segments.

In the western segment, the Moho depth is notably deeper than
that in the middle-eastern Qilian Shan fold-thrust belt, with a
maximum depth of 73 km beneath Hala Lake, as substantiated by
studies (Cui et al., 1995; Gao et al., 1999; Jolivet et al., 2001; Huang
et al., 2021). This observation supports the hypothesis that the most
concentrated convergent stress is accommodated through crustal
deformation in the western segment. To address this question, we
gathered seismic data from a linear array spanning 130 km,
extending northward from NQLS, traversing the entire Jiuquan
Basin, and reaching the Huahai Basin. The data were continuously
recorded over approximately 30 days using the Smart Solo IGU-16
HR 3C geophones, which are three-component geophones with a
dominant frequency of 5 Hz (Figure 2B). The dense seismic array
comprises 261 short-period geophones spaced at 500-m intervals.
Through receiver function processing of the seismic observations, we
have unveiled the crustal structure beneath the North Qilian–Huahai
Basin and gained insights into the crustal deformation mechanism
within the western segment of NQLS–HXBS.

2 Geological setting

The northeastern Tibetan Plateau has an average elevation of
~4.5 km, with the high topography decreasing rapidly to <1.5 km in
HXBS to the north (Figure 2). Previous geophysical observations

FIGURE 1
Crustal growth model map of the northeastern Tibetan Plateau
(modified from Zuza et al., 2019; Wu GW. et al., 2023).
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FIGURE 2
(A) Tectonic fault map of the northeastern Tibetan Plateau, including the Qilian Shan and surrounding regions (modified from Gao et al., 2013; Zuza
et al., 2016). The red rectangle shows the location of Figure 2B. (B)Geologic map of the North Qilian Shan fold-thrust belt and the Huahai Basin (modified
from Ye et al., 2021). The blue line segment represents the dense-seismic array. The red dashed line represents the CMP line. The green dashed line
represents the MT line. The black dashed line represents the DSS line. (C) Cross section along line (A, B) in Figure 2B. CMF, Changma Fault; NQLF,
North Qilian Fault; HXF, Hanxia Fault; NBT, North Border Thrust.

Frontiers in Earth Science frontiersin.org03

Wang et al. 10.3389/feart.2023.1255813

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1255813


indicate that the Moho depth ranges from 55 to 73 km (Zhao et al.,
2001; Yue et al., 2012; Gao et al., 2013; Yuan et al., 2013; Xu et al.,
2018; Wu et al., 2023b). Additionally, the relatively stable crust
beneath HXBS has a thickness of approximately 42–51 km (Cui
et al., 1995; Xiong et al., 2019).

The NQLS formed as an accretionary complex due to the closure
of the Qilian Ocean in the Early Paleozoic and was later reactivated
following the Indian–Eurasian plate collision in the Cenozoic. The
present-day tectonic belt, located between the northern Alxa
Block–Beishan Block and the southern Middle Qilian Block,
follows a narrow NW–SE-trending structure. This belt is
truncated by the Altyn Tagh faults to the northwest (Figure 2).
The Qilian Shan fold-thrust belt exhibits volcanic and magmatic
rock distributions from the Paleoproterozoic to the early Paleozoic
(Wu et al., 2023a). Since the Cenozoic era, NQLS has been involved
in crustal thickening and deformation, marking its northernmost
extension onto the Tibetan Plateau.

The Jiuquan Basin is situated at the western terminus of HXBS,
and the Jiuquan Basin is bounded by the Jiayuguan fault, Altyn Tagh
fault, Qilian Shan North Margin fault, and Heishan fault.
Sedimentation in the Jiuquan Basin initiated in the Mesozoic,
and this northwest-trending basin was subsequently influenced
by the uplift of NQLS. Deep seismic reflection profiles reveal that
the thickness of the Cenozoic sedimentary cover ranges between
1.5 and 2 km (Song et al., 2001; Huang et al., 2018).

The Huahai Basin lies to the north of the Jiuquan Basin bounded
by the Kuantan Shan fault, Heishan fault, and Jintana Shan fault.
Initially part of the Dunhuang Block, a relatively stable Precambrian
block, the Huahai Basin is covered by Mesozoic–Cenozoic
sediments with a sedimentary thickness of 5 km (Chen and Yang,
2010). Paleozoic granitoids have locally intruded into the
sedimentary cover (refer to Figure 2).

3 Methods and principles

In this study, we deployed a dense array of 261 Smart Solo 16 HR
3C nodal short-period seismometers for observations. These were
positioned with an average spacing of 500 m in the field and
operated for approximately 30 days. A receiver function is a time
sequence derived from deconvolving the radial component of
teleseismic P-waves. This process yields the vertical component
that represents P-to-S wave conversion. Receiver function
analysis is an effective approach for imaging crustal structures.
By stacking multiple receiver functions with similar ray paths,
the dense nodal array enhances the vertical resolution of receiver
function images and boosts high-frequency signals (Langston, 1979;
Xu et al., 2018; Ammon et al., 1990; Xu et al., 2020; Tian et al., 2021).

After obtaining the raw seismic data, several steps are typically
followed to extract receiver functions. This process involves filtering,
receiver function separation, and deconvolution. In practical research,
receiver function studies usually focus on earthquakes with a
magnitude of 5 or higher. For data preprocessing, earthquakes
within 30°–90° epicentral distances (refer to Figure 3) were selected.
We acquired a total of 47 seismic events with a magnitude (Ms)
of ≥5 and epicentral distances between 30° and 90° from the IRIS
website during the data acquisition period. Data for each station were
extracted from 900 s after the origin time. Raw seismic data at stations

contain not only information about the subsurface medium structure
but also various types of noise from surface human activities, unrelated
to underground structures and tectonics. Hence, noise filtering is
essential, often using low-pass and band-pass filters. After removing
the instrument response, the data were down-sampled from 500 Hz to
50 Hz (0.002 s–0.02 s), and band-pass filtering was conducted within
the frequency range of 0.5 Hz–10 Hz. The raw three-component data
coordinate system was rotated from NEZ to RTZ. Ray parameters and
theoretical arrival times were computed. After rotation, P-wave energy
concentrated mainly in the radial R component, while azimuthal
energy in the tangential T component. Finally, time-domain
deconvolution algorithm calculations were performed (Ligorria and
Ammon, 1999), using a Gaussian filter factor 2. This iterative
deconvolution subtracts the radial component of observed seismic
records from calculated theoretical receiver functions, iteratively
updating differences until either iterations exceed a threshold or
differences fall within a given tolerance range (refer to Figure 4).
Computed receiver functions were then selected, focusing on data with
clear P-wave phases, distinct seismic phases, and good Ps–PpPs
consistency.

The common midpoint (CMP) stacking concept, initially
introduced by Dueker and Sheehan (1997) for reflection waves,
was adapted for imaging converted waves in receiver functions. This
method corrects and stacks slanting receiver functions dynamically
to create a wavefield image of the interface below the array. Building
on this, Zhu and Kanamori (2000) proposed the CCP stacking
method for receiver functions. Based on a given velocity model, each
receiver function is projected back into the spatial domain using ray
paths, followed by stacking imaging in the spatial domain (Chen
et al., 2022; Cheng et al., 2023). In our study, we applied the CCP
stacking method to stack the processed receiver functions. The

FIGURE 3
Seismic distribution map (the black triangle represents the
location of the station, red circles represent the earthquake of
magnitude 5–5.5, and blue circles represent the earthquake of
magnitude 5.5 or above).
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method assumes a horizontally layered medium beneath the station,
mapping amplitude information of processed and deconvolved
receiver functions along the ray path to the conversion point.
The amplitudes of receiver functions at the conversion point are
stacked to obtain the medium structure below the station (refer to
Figure 4).

For time–depth conversion, we utilized the reference velocity
model IASP91, with a rectangular shape and a maximum depth of
100 km (Chen et al., 2022). Bins were spaced at intervals of 5 km.
The time-to-depth conversion used a depth interval of 1 km, with
intervals of 2 km from 0 km to 100 km. After stacking receiver
functions with these settings, the CCP profile image was generated
(refer to Figure 5).

4 Results

In the CCP image, red colors indicate positive amplitudes
(increased velocity downward), while blue colors indicate
negative amplitudes (decreased velocity downward). Our new
seismic imaging reveals the following features.

A continuous positive amplitude stretches throughout the
section at depths of 0–5 km; it deepens to 8 km in the contact
zone of North Qilian and Jiuquan Basin and the center of the Huahai
Basin; two distinct large negative amplitude bodies are visible at
depths of 8–20 km below the NQLS and Jiuquan Basin; a relatively
continuous positive amplitude extends at a depth of 12–20 km; the
Moho, the most prominent positive velocity discontinuity, deepens

FIGURE 4
Receiver function image (receiver function of all stations in a single seismic event).

FIGURE 5
CCP superposition profile. The red colors indicate positive amplitudes (increased velocity downward); the blue colors indicate negative amplitudes
(decreased velocity downward). Decollement is marked by red crosses and labeled as D1. Moho is marked by black and green crosses and labeled as L1,
M1, and M2. The ductile shear zone is marked by blue crosses and labeled as L2.
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from 45–50 km beneath the Huahai Basin to 55–60 km beneath
NQLS; above the bottom Moho, a distinct positive amplitude at a
depth of 45–50 km beneath NQLS, within 0–50 km distance, may
represent the original Moho of the marginal NQLS (Figure 5).

5 Discussion

5.1 Crustal structures

The dense stations along our profile provide high-resolution
images, revealing clear and strong crustal deformations from NQLS
across the Jiuquan Basin to the Huahai Basin. At a depth of 20 km

along the entire section, D1 is captured, exhibiting a subtle increase
beneath NQLS (Figure 5). The Golmud–Ejinaqi DSS profile showed
a relatively lower velocity zone at a depth of 20 km with a P-wave
velocity of 5.9 km/s compared to the surrounding 6.1 km/s P-wave
velocity (Cui et al., 1995). The Diaodaban–Huahai basin deep
seismic reflection profile revealed a strong reflector at the depth
of 3.5–4 s TWT (approximately 12 km), which could indicate the
intracrustal decollement (Wu et al., 1995; Cui et al., 1995). These
data consistently suggest that D1 is the main decollement in the
crust, separating it into upper and lower parts. By projecting
earthquakes from 1900 to 2023 located within 100 km of our
profile (Figure 8) onto the seismic section, we found that seismic
activities mostly occurred above 20 km depth. A cluster of

FIGURE 6
Crustal structure and Moho from different studies. Deep reflection seismic image (Wu et al., 1995) is overlain by our receiver function image
(transparent) showing our interpretations of Moho and intracrustal boundaries. The CMPMoho depth is shown by the yellow line (Liu et al., 2006), and the
CCPMoho depths, including the double Moho, are shown by the green dashed lines. Significant velocity boundaries are labeled with Vp (km/s) (Cui et al.,
1995).

FIGURE 7
The electrical structure and deep reflection stack map (C1, C2, and C3) modified from Xiao et al. (2012) and Wu et al. (1995) are the centers of
relatively low resistivity in the crust along the profile. R1, R3, R4, and R5 are the locations along the high-resistivity body at different temperatures. The red
solid line represents the fault, and the red dotted line represents the boundary between the Hexi Corridor and its north. The short black line shows the
seismic reflection mentioned in Wu et al. (1995) on the resistivity image. The white solid circles show the seismic activities from 1980 to 2008.
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earthquakes was distributed along the decollement, in alignment
with geophysical observations. A continuous L1 is present at a depth
of 50 km beneath the North Qilian and southern Jiuquan Basin,
forming a lateral-stretching wedge with M1 below (Figure 5). Below
the northern Jiuquan and Huahai basins, a near-flat M2 is distinct at
depths of 45–50 km, abruptly deepening to 60 km (M1) beneath the
middle Jiuquan Basin. We interpret M1 and L1 to signify a double
Moho beneath NQLS, formed by the underthrusting of the North
Block beneath NQLS. This double Moho was also observed in the
Eastern Qilian Shan fold-thrust belt (Ye et al., 2015), representing
the underthrusting of the Alxa Block beneath the Eastern Qilian
Shan fold-thrust belt. In other global orogenic belts, a double Moho
was detected through passive- or active-source seismic methods in

West Kunlun, China, and the northern and western margins of the
Yilgarn Craton, Australia (Kao et al., 2001; Kennett and Saygin,
2015). L2, preserved above M2 in the northern Jiuquan and Huahai
basins, may indicate a ductile shear zone accommodating
deformation in the lower crust (Figure 5).

The electrical structure of the crust shown in the MT profile
(Figure 7; Xiao et al., 2012) reveals higher resistivity in NQLS
compared to HXBS and beneath the Huahai Basin. The MT data
display higher resistivity beneath the Huahai Basin, similar to the
characteristics beneath NQLS. Three areas with lower resistivity
beneath the basin, labeled C1, C2, and C3, align with the CCP image.
However, the CCP image’s alignment with seismic activities is more
pronounced.

FIGURE 8
The upper image is the geological section, corresponding to Panel (C) in Figure 2. And the lower image is the crustal profile of local seismic
superposition (the fine lines with the arrow are the ductile shear zone, and the arrows are the extension direction of the ductile shear zone. The fine
dashed lines are the brittle thrust faults in the upper crust; the fine solid lines are the imbricate structures and duplexes in the lower crust. The bold dashed
line represents the decollement. The Moho and the double Moho have been marked in the figure).

FIGURE 9
Sketch of the crustal deformation patterns across the North Qilian Shan fold-thrust belt and Huahai Basin. In the cross section, bold black lines are
crustal interfaces and Moho constrained by CCP stacking; dashed lines mark decollement; red lines are the brittle thrust faults in the upper crust; red
dashed lines are the imbricate structures and duplexes in the lower crust; and Moho ramp is marked in the lower crust.

Frontiers in Earth Science frontiersin.org07

Wang et al. 10.3389/feart.2023.1255813

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1255813


To the east of our study area, a deep reflection seismic profile
and a 1200-km-long deep seismic sounding were previously
acquired (Cui et al., 1995; Gao et al., 1999). Comparing the
crustal structures of our seismic imaging with the two active-
source seismic profiles along the NNE–SSW-trending survey
line (Figure 6), we find that the main crustal interferences
and features are relatively consistent, further validating our
observations.

5.2 Implication to the crustal deformation
mechanism

Extensive research on the Qilian Shan fold-thrust belt and
HXBS regarding their development, evolution, and outward
expansion within the northern Tibetan Plateau has been
conducted using active- and passive-source seismic
observations and MT soundings (Gao et al., 2001; Xiao et al.,
2012; Ye et al., 2015; Shen et al., 2020; Huang et al., 2021; Sun
et al., 2021; Ye et al., 2021). Different observations have led to
various proposed deformation mechanism models, yet the debate
persists. Our recent seismic imaging provides evidence
supporting a combination of underthrusting and decoupled
crustal shortening mechanisms in the western NQLS and
Jiuquan Basin.

The discovery of a double Moho (L1 and M1) in the western
Qilian Shan fold-thrust belt, a characteristic geodynamic feature of
underthrusting globally (Zhao et al., 1993; Kao et al., 2001; Ye et al.,
2015; Xu et al., 2019), suggests the southward underthrusting of the
Beishan Block–Alxa Block beneath the Qilian Shan fold-thrust belt.
This underthrusting might extend at least as far as NQLS. This
phenomenon has been substantiated by the electrical structure and
other seismic findings (Figure 7; Gao et al., 2001; Xiao et al., 2012;
Huang et al., 2021; Ye et al., 2021). Recent geophysical data
increasingly confirm the stable and rigid nature of the Beishan
Block, which could potentially underthrust beneath more active
units. The slow-dipping nature of the North Qilian fault along the
top of a high-resistivity body beneath the NQLS, as indicated by an
electrical structure (Xiao et al., 2012), points toward underthrusting
as the principal factor, contributing to the complex crustal structure
in the northern Tibetan Plateau.

The distributed shortening model has also played a role in the
crustal deformation of the northern Tibetan Plateau, as indicated by
the presence of D1 in our seismic imaging. A recent deep seismic
reflection profile also provided evidence for decoupled crustal
deformation (Huang et al., 2021), aligning with our observations
(Figure 8). Thrust faults are prevalent in NQLS, extending
northward into HXBS (Zheng et al., 2013; Zuza et al., 2018;
Xiong et al., 2019). Surface active fault surveys unveiled north-
directed overthrusting faults that traverse through HXBS and enter
the Beishan Block (Zheng et al., 2021;Wang et al., 2022). Combining
our seismic imaging with earthquake distribution, we deduced that
the primary mechanism accommodating upper crust deformation
involves folding and northward overthrusting. Notably, several
near-flat, arc-shaped positive amplitudes above the Moho suggest
that duplexing plays a crucial role in lower crustal shortening. This is
supported by prominent reflections recorded in deep seismic profiles
(Huang et al., 2021).

Our investigation unearthed a Moho ramp within the Jiuquan
Basin. Seismic phases indicate that M2 gradually deepens to
approximately 50 km beneath the Huahai Basin but abruptly
descends to 60 km below the Jiuquan Basin (Figure 8).
Although most studies suggest gradual Moho deepening in this
region, wide-angle reflection/refraction data confirm this trend
(Gao et al., 2001; Huang et al., 2021; Ye et al., 2021). The concept of
a lithospheric ramp, introduced by Zuza et al. (2018), posits that
both underthrusting and crustal shortening have been
continuously occurring since the Miocene on the same
lithospheric ramp. The disrupted stair-like Moho features
beneath the Jiuquan Basin, gradually deepening toward the
southwest, closely resemble the lithospheric ramp model
(Vergne et al., 2002; Zhou and Murphy, 2005; Hazarika et al.,
2017; Lu et al., 2019; Tan et al., 2019). We contend that
compressive stress generated by the Moho underthrusting ramp
propagates from the Jiuquan Basin to NQLS and HXBS to the
south, thereby inducing crustal deformation above this ramp. The
Moho ramp model we propose strongly supports the crustal
compression model in the Qilian Shan Block–Huahai Basin
region (Figure 9).

6 Conclusion

Drawing on our receiver function image and the analysis
presented previously, we have outlined a comprehensive tectonic
representation on a crustal scale that encapsulates our observations
and interpretations beneath the North Qilian–Huahai Basin
(Figure 9). By amalgamating our seismic imaging with
additional geological and geophysical data, we propose the
existence of a potential decoupling plane situated at a depth of
12–20 km. Within this framework, south-dipping brittle thrust
faults govern upper crustal deformation, while imbricate
structures and duplexes operate in the lower crust. Notably,
we conjecture that the underthrusting of the Beishan Block
beneath NQLS might be accountable for the occurrence of a
double Moho. In addition, we posit that a Moho ramp could be
developing beneath the Jiuquan Basin to accommodate the
pronounced compression. In the western stretch of NQLS and
HXBS, we propose that coupled distributed shortening and the
underthrusting of the Beishan Block beneath the Qilian Shan
fold-thrust belt might collaboratively contribute to the intricate
crustal deformation.
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