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Desert areas of China have important ecological functions, so analyzing changing
characteristics of ecosystem service values in this region is important for
sustainable development. Using land use change data for desert areas from
1978 to 2022, this paper combined the equivalent factor method and the
actual situation of the study area to revise value coefficients of ecosystem
services and study characteristics of land use and ecosystem service value
changes after reform and opening up. The results showed that after reform
and opening up, the area of plow, water, and other lands in the study area
decreased, while grassland, forest, construction land, and sandy land increased.
The conversion of a land use type mainly occurred as conversion of grassland and
other lands to other land use types. The value of ecosystem services increased,
increasing by 19.63 × 108 CNY. From the perspective of land use type in 2022, the
ecosystem service value of grassland was the highest, reaching 12.19 × 108 CNY,
an increase of 11.73 × 108 CNY compared with the early stage of reform and
opening up. From the perspective of ecosystem service types in 2022, the value of
maintaining soil ecological services was the highest, reaching 3.07 × 108 CNY, an
increase of 2.97 × 108 CNY compared with the beginning of reform and opening
up. From the perspective of the ecological sensitivity index, the sensitivity index
results for the ecosystem service value in the study area were all <1, and the
research results were credible. From the perspective of the land ecological
coordination degree, the overall land ecological coordination degree in the
study area was at a moderate coordination level, indicating that land use
change did not lead to environmental deterioration, but there was a crisis.
Therefore, increasing and maintaining ecological land is the key to improving
ESV in the study area.
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1 Introduction

Ecosystem services refer to the natural environmental conditions and utility that human
beings depend on for survival. They are formed andmaintained by ecosystems and ecological
processes (Aryal et al., 2022). The main indicators of ecosystem services include supply,
adjustment, support, and cultural services. With the in-depth study of global change, people
find that land use change is an important reason affecting the global environmental change
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(Chen et al., 2018). Land use change not only affects the climate
change but also further affects the spatial distribution of the
ecosystem service value and the ecological process of landscape
pattern change (Zheng et al., 2008; Chen et al., 2019; Xie et al., 2020).
Land use change plays a decisive role in maintaining the services of
an ecosystem (Fang et al., 2022).

With the deepening of social research on the ecosystem service
function, “environmental service function” has gradually evolved into
the ecological service value (Takacs and O’Brien, 2023). The method of
assessing the value of ecological services was systematically elaborated in
the 1997 book “The Services of Nature: Society’s Dependence on
Natural Ecosystems.” In 1999, Costanza estimated the economic
value of 17 types of global ecosystems, which clarified the
development of ecological service function value assessments. The
principles and methods of this research provided new ideas for
many global scholars to carry out further research. Subsequently,
Camacho studied the impact of land use in coastal cities on the
value of ecological services (Camacho-Valdez et al., 2014). Based on
the experimental method, Harpinder calculated the ecological service
value of organic cultivated land (Harpinder et al., 2007). Costanza’s
research results have played a significant role in promoting the research
progress on ecological service value in China. In 2003, Xie Gaodi et al.
carried out a study evaluating the ecological service value of various
grasslands on the Qinghai–Tibet Plateau (Xie et al., 2017). In 2008, Xie
Gaodi et al. constructed an “ecosystem service value (ESV) equivalent
factor table” applicable to China’s regional situation (Xie et al., 2017).
The ESV equivalent method, which is based on the current scale
developed by experts, has some credibility. Based on this method,
China has studied ESV from the scale of river basins (Liu et al., 2023),
urban agglomerations (Gong et al., 2023), provinces and cities
(Normyle et al., 2023), the country (Sharma et al., 2023), etc. At
present, the use of an economic value assessment mainly follows the
ESV assessment model established by Costanza et al. According to the
actual situation in China, Xie Gaodi et al. developed a table of ecological
service value per unit area based on this model, which has been widely
used (Jia et al., 2019; Yang et al., 2020).

Desert areas are unique natural ecosystems in northern China
(Xin et al., 2023) and play an important role in national ecological
security. Since the reform and opening up, with the rapid
transformation of China’s social economy and rapid urbanization,
rapid change in land circulation and land use types has been triggered
(Liu et al., 2023). At the same time, ecological and environmental
problems such as soil degradation and soil erosion in the area have
become increasingly prominent. Land use will not only cause major
changes to the earth’s surface structure and reshape landscapes but
also affect the supply capacity of regional ecosystem services by
changing regional climate, hydrology, soil, etc. (Hu et al., 2023)
and driving the value of ecosystem services to respond positively
or negatively (Tiandraza et al., 2023). However, since 2012, China has
placed the construction of ecological civilization in a prominent
position overall, and the environment in the area has significantly
improved. Therefore, it was important to carry out a long-term
quantitative evaluation and provide a scientific theoretical basis for
regional sustainable utilization and improvement of ecosystem
services. In summary, this study selected China’s desert region as
the study area, based on the land use data on the study area for many
years and supported by RS and GIS technologies (Jia et al., 2018),
adopted the service value measurement method of China’s terrestrial

ecosystem to analyze and process the land use data on the study area,
and studied the change characteristics and rules of land use and
ecosystem service value in the desert region since the reform and
opening up. The results are of great significance for the policy
formulation of ecosystem protection and restoration, and the
coordination of the relationship between regional economic
development and environmental protection.

2 Study area

Desert areas of China (30°–50° N, 75°–130° E) cover an area of
826,072.70 km2 (Dong et al., 2013; Ma et al., 2022), specifically
distributed in China’s inland arid and semi-arid climate regions,
including Heilongjiang, Jilin, Liaoning, Inner Mongolia, Shanxi,
Ningxia, Gansu, Qinghai, and Xinjiang (Wu et al., 2023)
(Figure 1). Influenced by the topography, such as the Tibetan
Plateau and Mongolian Plateau, climatic conditions, and
atmospheric circulation, annual precipitation gradually decreases
from southeast to northwest. The average annual precipitation in the
northwest arid region was less than 200 mm, and the average annual
precipitation in the eastern semi-arid region was less than 500 mm.
The wind force in the wind season was greater than level 5, with
20–100 sandstorm days and annual average temperatures of
-5–20°C. There were 2,600–3,400 h of sunshine, and the frost-free
period is 150–260 days. The underlying strata in the area provide
abundant sand sources for the formation of deserts, including river
alluvial deposits, alluvial lacustrine deposits, alluvial deposits, and
weathered residual deposits of bedrock.

3 Materials and methods

3.1 Data sources and pre-processing

Using the Google Earth Engine (GEE) platform, Landsat sequence
images of the study area were obtained for 1978, 1990, 2000, 2010, and
2022. The spatial reference is the Krasovsky coordinate Albers
projection, and the spatial resolution of all the calculated indicators
was resampled to 1 km × 1 km raster data obtained from the data
source (Jia et al., 2012). According to the conditions of the study area,
land use types were divided into eight categories: plow, forest,
grassland, water, construction land, sandy land, and other lands.
The deep learning method was adopted for interpretation, and the
accuracy of the interpretation results was evaluated using existing data
products (Yang and Huang, 2021). The random point method was
used to evaluate the results, and the precision was 97.23%.

3.2 Research method

3.2.1 Revision of the ESV model
The biomass of each land use type in the study area has the

following relationship with the net primary productivity of the
ecosystem (Fang et al., 2007; Guo et al., 2021; Wang et al., 2022;
Zhou et al., 2023).

h plough, grassland( ) � NPP/0.45, (1)
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h water( ) � NPP, (2)
h sandland( ) � 0.3982 ·NPP + 84.0181, (3)

h forest( ) � 0.045 ·NPP + 17.53, (4)
where h is the biomass of a given land use type (g·m-2) and NPP

is the net primary productivity of the ecosystem (t·km-2). Finally, the
biomass of each ecosystem in each year of the study area was
obtained (Table 1).

The ESV equivalent factor is defined as the value of the annual
natural grain yield of cultivated land with an average yield of 1 hm2.
After comparative analysis, the value of an ESV equivalent factor is
equal to 1/7 of the market value of grain yield per unit area of the
study area in the current year (Xie et al., 2015;Wu et al., 2023), and it
is calculated as follows:

M � m × n( )/7, (5)

where M is the value of an ESV equivalent factor in the study
area (CNY·km-2), m is the average unit price of grain in the study
area (CNY·kg), and n is the average grain yield of 1 km2 in the study
area (kg·km-2). The value of an ESV equivalent factor was
3 512.11 CNY based on the market economic value of the
average grain yield per unit area in the study area (CNY).

3.2.2 Calculation method of ESV
The benchmark unit price of ecosystem service functions was

calculated as follows:

Ai � M · ai, (6)
where Ai is the benchmark unit price of ecosystem service

functions in the study area (CNY), M is the value of an
ecosystem service function equivalent factor in the study area

FIGURE 1
Location of the study area. Note: This map is based on a standard map, no. GS (2022)4307, the standard map service website of the National
Administration of Surveying, Mapping and Geographic Information.

TABLE 1 Study area biomass (g·m-2).

Year Forest Grassland Plow Water Sandy land Total

1978 30.26 461.67 552.09 175.49 123.92 1572.13

1990 29.66 422.38 486.36 158.68 119.80 1428.88

2000 30.53 300.24 485.69 98.98 99.07 1194.16

2010 30.67 320.60 320.60 133.81 99.07 1111.22

2022 31.68 344.18 575.58 133.81 100.66 1407.74
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(CNY·km-2), ai is the equivalent factor of the service function value
for different ecosystems; i = 1, 2, 3, ... 9, respectively, represent
ecosystem service functions, such as food production, raw material
production, gas regulation, climate regulation, hydrological
regulation, waste disposal, soil conservation, biodiversity
maintenance, and esthetic landscape provision.

Based on the revised benchmark unit price of ecosystem service
functions, the ESV per unit area of the study area was constructed as
follows:

Aij � hi/H( ) · Ai, (7)

where Aij is the ESV per unit area of the study area (CNY), hj is
the biomass of a j-type ecosystem (g·m-2), H is the average biomass
per unit area of the study area (g·m-2·km-2), Ai is the benchmark unit
price of ecosystem service functions in the study area (CNY); j = 1, 2,
3, ... 6, respectively, represent plow, forest, grassland, water, sandy
land, and other ecosystem types. The total value of ecosystem
services was calculated as follows:

Dij � Aij · Aj, (8)

where Dij is the total service value of different ecosystems in the
study area (CNY), Aij is the ESV per unit area of the study area
(CNY), and Aj is the area of different ecosystems in the study
area (km2).

3.2.3 Sensitivity analysis
Sensitivity mainly reflects the degree of dependence of ESV

change over time on the change of the ESV coefficient or the ESV
change that was caused by the change in the ESV coefficient
(Hatamkhani et al., 2023). If the sensitivity index was greater
than 1, it indicates that ESV was elastic to the value coefficient.
If the sensitivity index was less than 1, it indicates that ESV in the
study area was not elastic to the value coefficient (Yang et al., 2022a),
and the research results were credible. The sensitivity index was
calculated as follows (Millennium, 2005):

CS � ESVj − ESVi( )/ ESVi( )
VCjk − VCik( )/ VCik( ) , (9)

where CS represents the ESV sensitivity index of the study area,
ESVi represents the total value of the original ecosystem services
(CNY), ESVj represents the adjusted ESV (CNY), VCik represents
the original value coefficient, VCkj represents the adjusted value
coefficient, and k represents the land use type.

3.2.4 Land ecological coordination degree
The degree of coordination refers to the harmonious balance

between systems or system elements in the development process
(Hatamkhani et al., 2023). In this paper, the land ecological
coordination degree (LEC) was used to represent the
coordination between land use change and ESV in the study area
(Table 2). The coordination degree was calculated as follows:

LEC � Vr

Lr
, (10)

Vr � Vj − Vi

Vi
, (11)

Lr � ∑n
i�1ΔLui−j
2∑n

i�1Lui
, (12)

where Vr is the change rate of ESV during the study period, Lr is
the change rate of the land use type area during the study period, Vi

and Vj represent ESV at the beginning and end of the study period
(CNY), respectively, Lui represents the area of the i land use type at
the beginning of the study period (km2), and ΔLui-j represents the
total area converted from the i land use type to other land use types
during the study period (km2).

4 Analysis results

4.1 Temporal and spatial characteristics of
land use change in desert areas

4.1.1 Status quo of land use in desert areas
In 2022, sandy land and grassland were the main types of land

use in the study area, with an area of 552,771.66 km2, accounting for
64.12% of the total study area. The area of grassland was
156,982.86 km2, accounting for 19.00% of the total study area.
The sizes of other land use types were as follows: the area of
other lands was 41,219.69 km2 (4.99% of the total study area),
plow was 40,425.77 km2 (4.89%), forest was 15,017.72 km2

(1.82%), construction land was 4,339.79 km2 (0.52%), and water
was 3,568.51 km2 (0.43%). In the past 44 years, the spatial
distribution pattern of land use in the study area showed that
grassland and sandy land were concentrated in the core area of
the study area, forest land and urban and rural construction lands
were concentrated in the edge area of the study area, and rivers and
wetlands were scattered.

4.1.2 Temporal changes of land use in desert areas
Since the reform and opening up, there has been a clear land

use change in this region, with the grassland area changing the
most (46,016.33 km2), followed by other lands (30,402.17 km2),
water area (826.15 km2), and construction land (1,487.06 km2).
The total area of plow, other lands, and water decreased, while the
total area of grassland, forest, construction land, and sandy land
increased.

From the perspective of land use type transformation, from
1978 to 2000, land use transformations mainly occurred when
grassland and sandy land were transformed into plow land
(Figure 2). After the implementation of the Western development
policy, with accelerated urban agglomeration and the increase in
population, the demand for food became more and more urgent,
and there were more projects to destroy grass and open fields,

TABLE 2 Type division of the land ecological coordination degree.

Indication range LEC≥1 0.5≤LEC≤1 0≤LEC≤0.5 −0.5≤LEC<0 −1≤LEC<−0.5 LEC<−1

Type High coordination Moderate coordination Low coordination Low-level conflict Middle-level conflict High-level conflict
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leading to the expansion of the plow area. From 2000 to 2022, land
use conversions in the study area mainly occurred as the conversion
of plow, sandy land, and other lands to grassland and forest. Among
them, the transfer of grassland wasmore significant because the state
proposed the construction of ecological civilization. This promoted
the “Three-North shelter belt” project in the north and implemented
a policy of returning farmland to forest, making the transfer of plow
to grassland obvious. In addition, social and economic development
is needed to develop other lands and occupy more plow and
grassland to meet the needs of construction land, such as the
construction of public facility land, industrial and mining land,
and urban and rural residential areas. This was another reason for
the increase in construction land after reform and opening up.

4.1.3 Spatial differentiation of land use in desert
areas

Sandy land and other lands were mainly concentrated in the
central and western parts of the study area, distributed in the
Taklimakan Desert, Gurbantunggut Desert, Badain Jaran Desert,
Kumukuri Desert, and Kumtag Desert (Figure 3). Grassland and
forest, as the main types of green land cover in the study area,
were mainly distributed in the Songnen Sandy Land, Horqin
Sandy Land, Hunshandak Sandy Land, and Mu Us Sandy Land in

the eastern part of the study area. From the perspective of land
use spatial differentiation, grassland changes from 1978 to
2022 were mainly distributed in the Badain Jaran Desert,
Gonghe Basin Desert, Hedong Sandy Land, Hulun Buir Sandy
Land, Horqin Sandy Land, and Songnen Sandy Land. Changes to
plow were mainly distributed in Hunshandake Sandy Land and
Songnen Sandy Land in the eastern part of the study area. The
variation in the water area was distributed in the Gonghe Basin
Desert in the central and southern parts of the study area.
Changes to sandy land were mainly distributed in the eastern
Badain Jaran Desert, the southern Qaidam Desert, the eastern
Gonghe Basin Desert, and the eastern Gurbantunggut Desert.
Changes to construction land were mainly distributed in Ulan
Buh and the northern part of the desert.

4.2 ESV variation characteristics in desert
areas

4.2.1 Changes in the total ecosystem service value
in desert areas

Since the reform and opening up, ESV in desert areas has
increased overall (Table 3) by a total of 19.64×108 CNY,

FIGURE 2
Dynamic change of land use in desert areas. (A) 1978–1990; (B) 1990–2000; (C) 2000–2010; and (D) 2010–2022).
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specifically due to the large-scale reclamation of plow. In the
order of ESV magnitude, the highest was grassland, followed by
plow, sandy land, water, and forest. After reform and opening up,
grassland ESV was always in the first place, which demonstrated
that grassland played a leading role in maintaining ESV in the
study area. ESV of all land types increased. Among them, ESV of
plow and grassland increased faster, and ESV of grassland
increased by 11.73×108 CNY, but ESV of grassland decreased
from 72.14% in 1978 to 60.15% in 2022. ESV of plow increased by

3.52×108 CNY, and the percentage of ESV for plow increased
from 9.03% in 1978 to 17.65% in 2022. ESV of forest, water, and
sandy land increased slowly, and ESV of forest increased by
0.19×108 CNY. The ESV percentage increased from 0.61% in
1978 to 0.97% in 2022. ESV of water increased by 0.46×108 CNY,
but the percentage of ESV in water decreased from 3.30% in
1978 to 2.37% in 2022. ESV of sandy land increased by 1.51×108

CNY, and ESV percentage of sandy land increased from 6.11% in
1978 to 7.62% in 2022.

FIGURE 3
Land use types of northern desert areas. (A) 1978; (B) 1990; (C) 2000; (D) 2010; and (E) 2022).
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4.2.2 Changes in the value of individual ecosystem
services in desert areas

After reform and opening up, ESV in the study area has been
mainly focused on soil conservation and biodiversity maintenance
(Table 4). Single ESV has increased, among which the fastest
increase occurred for soil function, from 0.11×108 CNY in
1978 to 3.07×108 CNY in 2022. The slowest increase was for the
production of raw materials, from 0.02×108 CNY in 1978 to
0.85×108 CNY in 2022.

4.3 ESV sensitivity analysis

The ESV sensitivity index of different periods ranged from 0 to
1, indicating that the ESV coefficient was inelastic and the research
results are credible (Table 5). The sensitivity index values for land
use types in descending order were grassland, forest, plow, water,
other lands, sandy land, and construction land. During the study
period, the sensitivity index of plow, forest, and other lands all

increased, while the sensitivity index of other land use types
declined.

4.4 Coordination degree between land use
and ESV

The overall land ecological coordination degree in the study
area was at a moderate level (Figure 4), indicating that land use
change did not lead to environmental deterioration, but there was
a crisis (Table 2). From 1978 to 2000, the land ecological
coordination degree was low but increasing, indicating that
land use change did not have a negative impact on the
environment and was developing in a good direction. From
2000 to 2010, the ecological coordination degree of land use
in the study area was at a moderate level, indicating that land use
change did not cause deterioration of the environment, but there
was a potential crisis. From 2010 to 2022, the land ecological
coordination degree was 0.51, which was still at a moderate level,

TABLE 3 Total value of ecosystem services in northern China, 1978–2022.

Year Project Plow Forest Grassland Water Sandy land Total

1978 Magnitude of value 0.06 0.01 0.45 0.02 0.03 0.63

Percent/% 9.03 0.61 72.14 3.30 6.11 100.00

1990 Magnitude of value 0.19 0.02 1.48 0.08 0.13 2.13

Percent/% 9.33 0.71 69.86 3.85 6.27 100.00

2000 Magnitude of value 0.49 0.03 2.42 0.08 0.30 3.71

Percent/% 13.26 0.96 65.22 2.35 8.14 100.00

2010 Magnitude of value 1.08 0.08 5.39 0.19 0.97 8.74

Percent/% 12.35 0.96 61.64 2.22 11.14 100.00

2022 Magnitude of value 3.57 0.19 12.19 0.47 1.54 20.26

Percent/% 17.65 0.97 60.15 2.37 7.62 100.00

TABLE 4 Single values of ecosystem services in northern China desert areas from 1978 to 2022.

Type of ecosystem services Year 1978 Year 1990 Year 2000 Year 2010 Year 2022

Food production 0.02 0.07 0.14 0.31 0.82

Raw material production 0.01 0.06 0.10 0.24 0.57

Gas regulation 0.06 0.22 0.37 0.84 1.94

Climate regulation 0.08 0.27 0.46 1.11 2.51

Hydrological regulation 0.08 0.27 0.45 1.07 2.43

Waste treatment 0.08 0.28 0.48 1.17 2.65

Soil conservation 0.10 0.34 0.58 1.32 3.07

Maintenance of biodiversity 0.09 0.32 0.55 1.31 2.87

Esthetic landscape provision 0.04 0.16 0.27 0.66 1.39

Total 0.61 2.04 3.45 8.07 18.29
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but it was decreasing compared to 2000–2010. This showed that
the development of urban agglomerations did not pay enough
attention to the irrational use of land, so the level of conflict
between the environment and land use was more obvious in the
later period of the study.

5 Discussion

Land use change is the main factor influencing ESV change, and
land use change can lead to a series of ecological processes, thus
affecting the supply of ecosystem services (Millennium, 2005; Hasan
et al., 2020). For example, the regulation and support services of forest
are high, while the food supply services are relatively low (Lei et al., 2021;
Gascoigne et al., 2011; Zhao et al., 2022). Agricultural product supply
services of plow are relatively high, while regulation, support, and
cultural services are relatively low (Yang et al., 2022b). The land use type
in the study area is mainly grassland, and the construction land area is
small. During 1978–2022, the forest land, grassland, water area, and
construction land in the study area increased, while the unused land
area decreased, which is consistent with the research results of Shao et al.
(2022). The contribution of the grassland ecosystem service value was
the highest, which was consistent with the research results of Zhang
et al. (2023). The degree of land use is negatively correlated with
ecosystem services. Contrary to the research results of Zhao et al. (2022),
the main reason is that the changing trend of the land use degree is

different due to the difference in land use change. In China, sandy land
and grassland were the main land use types, and the areas of grassland,
forest, construction land, and sandy land were all increasing. The areas
of plow, water, and other lands decreased. In particular, from 1978 to
2010, the area of construction land increased significantly, especially
because economic development and the construction of small towns
have led to urban expansion since the reform and opening up (Wang
et al., 2020). This also showed that human activities are an important
driving force for short-term regional landscape changes (Li et al., 2019).
In recent years, with policy support for poverty alleviation and
development and rural revitalization, China’s land use in desert
areas has shown new characteristics of change (Liu et al., 2014) and
has changed from “sand advancing and people retreating” (Moharram
and Sundaram, 2023) into a new situation of “harmony between man
and sand” (Parker-Shames et al., 2023).

After reform and opening up, there was an overall ESV increase of
19.64×108 CNY, but the increase in raw material production was the
slowest. Because the contribution rates of grassland and plow to ESV
were as high as 80%, the two had a significant impact on ESV change,
which was consistent with the research results of Sun Menghua (Yang
et al., 2022a). In terms of ESV, the values of food production and raw
material production were relatively low, specifically because the
productivity of desertification grassland resources was insufficient and
grassland resources were overexploited and utilized (Liu et al., 2017).
Therefore, it is necessary to strengthen the protection, restoration, and
management of desertification grassland. In the future, consideration
should be given not only to land classes with a high ESV but also to land
use types that play an important role in raw materials and food
production to maintain ecosystem service functions and stability.

ESV of the study area should be scientifically assessed, according
to the principles of ecological economics (Shao et al., 2022), and
intuitively reflected in monetary form, which is an important basis
for formulating regional ecological compensation policies (Yang and
Huang, 2021). However, the longitude span of the deserts in China is
large, and the geographical location, climatic characteristics, and
human environment of the deserts vary greatly. On the whole, the
land ecological coordination degree in the study area is at a moderate
coordination level, and the ecological environment management has
a long way to go. Ecological and environmental management
projects should be implemented in the study area to strengthen
environmental protection, reduce the damage of human activities to
the environment, and prevent further deterioration of the
environment. For ecologically fragile areas, the local governance
model should be maintained. Therefore, the next step will be to
revise the ESV coefficient, according to the characteristics of each
desert region to obtain more accurate calculation results.

TABLE 5 Sensitivity index of the ESV for each land use type in the study area.

Year Plow Forest Grassland Water Construction land Sand Other lands

1978 0.1126 0.1832 0.6301 0.0185 0.0009 0.0059 0.0062

1990 0.1251 0.1958 0.6258 0.0180 0.0009 0.0061 0.0063

2000 0.1387 0.1859 0.6247 0.0172 0.0008 0.0064 0.0064

2010 0.1459 0.1847 0.6123 0.0189 0.0007 0.0063 0.0064

2022 0.1599 0.1866 0.6051 0.0177 0.0006 0.0065 0.0065

FIGURE 4
Distribution map of the land ecological coordination level in the
study area.
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6 Conclusion

From the perspective of land use structure, the main land use
types in the study area were sandy land and grassland, accounting for
more than 80% of the total area. From the perspective of land use
change from 1978 to 2020, the areas of plow, water, and other lands all
decreased. Meanwhile, grassland, forest, construction land, and sandy
land increased, with the fastest change occurring in grassland. Over
the whole study period, the period of change rate was the largest from
2000 to 2010 and the smallest from 1978 to 1990. From the
perspective of land use transfer, the plow in the study area was
mainly converted into grassland, forest, and construction land. Forest
was mainly converted into grassland, grassland was mainly converted
into sandy land, construction land was mainly converted into plow,
and the area of other lands was mainly converted into grassland.
Therefore, the main reason behind land use change in the study area
was the implementation of returning plow to forest.

From 1978 to 2022, ESV in the study area increased from
0.63×108 CNY to 20.26×108 CNY, an increase of 19.63×108 CNY.
In terms of time period, the growth rate was the fastest from 2010 to
2022 and the slowest from 1978 to 1990. From the perspective of land
use type in 2022, ESV of grassland was the highest, reaching 12.19×108

CNY, while ESV of water was the lowest, at only 0.47×108 CNY. From
the perspective of the ecosystem service type in 2022, soil conservation
was the highest, reaching 3.07×108 CNY, and rawmaterial production
was the lowest, at only 0.82×108 CNY. From the perspective of the
ecological sensitivity index, the ESV sensitivity index results for the
study area were all less than 1. Grassland had the highest sensitivity
index, while construction land had the lowest. The ESV coefficient was
inelastic, so the research results were credible. From the perspective of
the land ecological coordination degree, the land ecological
coordination degree in the study area was between low and
medium coordination degrees. Therefore, land management and
planning should be strengthened to promote coordinated
development between land use and economic development.
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