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To determine near-surface winds within and above vegetation canopies for
operational environmental applications, a wind model must run at high-
resolution (O(1–10 m)), in a few minutes, using limited input information, and
requiring minimal computing resources (e.g., personal computers). Current
research models simulate large domains at coarse resolution or small domains
at fine scale, but canopy simulations can take days. Fast-modeling approaches
are used to solve large complex wind fields, but they oversimplify the roughness
elements’ distribution impact on momentum exchanges. To overcome these
deficits, the fast-running wind model QUIC-URB (Quick Urban and Industrial
Complex) was augmented with a high-resolution canopy wind solver. The wind
model includes a non-local factor that describes how momentum propagates
through the canopy and how sub-canopy jets appear under certain conditions.
QUIC-URB was also coupled with the mesoscale WRF (Weather Research and
Forecasting) model to downscale wind fields from a few kilometers to a meter.
The newQUIC Canopy Model resolves 3-D wind fields over hundreds of millions
of cells in less than 30 s per time step on a personal computer. It was compared to
two canopy models for real quasi-homogeneous and heterogeneous canopies.
An error analysis shows that the model was relatively accurate with a normalized
root-mean-square error of about 0.2 m s−1 in the quasi-homogeneous canopy,
and a mean absolute error of 0.3 m s−1. The new model is suitable for coupling
with pollution dispersion, wildfire spread, and numerical weather prediction
models over weakly complex terrain, defined here as a mildly undulating
environment with gradual changes in elevation and a heterogeneous distribution
of plants.
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1 Introduction

Knowledge of the complex wind patterns ubiquitous in nature is essential to our
understanding of many environmental applications. Wind provides energy to turbines
(Porté-Agel et al., 2020), dissipates pollution (Amorim et al., 2013), transports seeds
(Nathan et al., 2002), carries pests and pathogens in crops (Mahaffee et al., 2023), and drives
wildfire propagation (Moody et al., 2022). Accurately forecasting the winds at relevant scales
for human applications (meters to kilometers, every few minutes to days), at every location
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in a 3-D space, and in particular close to the ground surface, is
needed to support the development and safety of communities
at risk from natural catastrophes. Unfortunately, high-resolution
wind forecasts are very costly in terms of computer resources. They
are orders of magnitude more computationally expensive when
individual buildings, forests, canyons, etc., are accounted for, and we
are seemingly decades away from possessing the suitable technology
to solve this issue without dramatically simplifying the problem. An
exhaustive assessment of the numerical windmodels’ grid resolution
range recently achieved is available in Figure 4 and Section 4, in
Stoll et al. (2020).

In the atmospheric boundary layer, three factors primarily
define a wind field (e.g., Stull, 1988): the distribution of roughness
elements including trees, buildings, and terrain elevation changes;
the atmospheric stability, a measure of the influence of temperature
gradients on the fluid motion; and the synoptic conditions, how the
wind flows above the atmospheric boundary layer.The combination
of these elements often gives rise to turbulence, which governs
wind motion from planetary scales to dissipation scales, where
the smallest eddies convert mechanical energy into thermal energy
at the Kolmogorov scale (a few millimeters). In nature, urban or
plant canopies can generate highly coherent turbulent structures
that dominate turbulent fluxes (Brunet, 2020; Finnigan et al.,
2020). Understanding these structures is key to modeling wind
fields and particle dispersion because they govern how the wind
momentum is absorbed and dissipated within and above a canopy.
Indeed, observations and modeling show that the distribution of
canopy elements is directly linked to the wind attenuation in
dense environments (Nieto et al., 2019), and recirculations near
ground-level or channeling between elements [e.g., streets in
Neophytou et al. (2011), or forest edges in Hoffman et al. (2015)].
In this article, we restrict our scope to the impact of vegetative
canopies on 3-D wind fields. Vegetation elements are assumed to be
homogeneously distributed within small volumes of air close to the
surface, so spatial averaging methods remain reliable at a few-meter
resolution. As shown in Figure 1, denser regions of the forest tend
to strongly reduce the wind speed. It is particularly true closer to the
ground, but the canopy hardly affects the wind velocity above two or
three times the effective tree height, in general (Brunet, 2020).

In order to forecast winds, the conservation equations for
mass, momentum, and energy are solved using computational
fluid dynamics (CFD) models that integrate environmental effects
via boundary conditions and supplemental forcing terms. The
accuracy of the predictions from these simulations depends on
the simplifications made to the governing equations as well as
the numerical implementation of the equations. Direct numerical
simulations (DNS), the highest-fidelity method available, solve
the flow equations down to the Kolmogorov scale (Moin and
Mahesh, 1998). Large-eddy simulations (LES) solve the NSE
for scales where the turbulence contains the most energy and
apply parameterizations to the filtered quantities (Piomelli, 1999;
Stoll et al., 2020). These techniques have contributed considerably
to our understanding of how the wind flows in a complex
environment, e.g., along slopes, within canopies, and on hillsides
with vegetation (Bailey and Stoll, 2016; Ma et al., 2020; Sharma and
García-Mayoral, 2020). Despite their achievements, DNS and LES
remain highly time-consuming and require hours of computation on
supercomputers to simulate domains of tens ofmeters.While Table 1

shows that simulations were run for highly idealized canopies,
the authors have no knowledge of DNS results in realistic canopy
conditions to date.

Less accurate but significantly faster, Reynolds-averaged Navier-
Stokes (RANS) models compute statistically averaged quantities.
After the averaging procedure, NSE non-linearity leads to a closure
problemwithmore unknowns than equations, and a turbulent stress
term arises (cf. Eq. 8). RANS models then differ in the number and
type of equations used to model this additional term. Typically,
vegetation influence is represented by adding a body force term in
the RANS equations (Shaw, 1977; Macdonald, 2000; Segalini et al.,
2016).

Numerical weather prediction (NWP)models rely on the RANS
approach and observational data assimilation to produce mesoscale
(103–105 m) wind forecasts and analysis. State-of-the-art NWP
models, such as theWeather Research and Forecastingmodel (WRF,
Skamarock et al., 2008), represent the effects of turbulence with
a high level of sophistication. In most routine WRF simulations,
the surface elements (e.g., canopy, streams, buildings, glaciers) are
associated with broad land-use categories (LUC, Golzio et al., 2021).
As expected, LUC fail to provide precise information for high
spatial resolution simulations. In tools likeWRF-SFIRE (a modeling
system that combinesWRFwith a semi-empirical fire-spreadmodel,
Mandel et al., 2011; Mallia et al., 2020), the WRF LUC is replaced
and canopy cover influence is instead resolved with a high level
of detail using surface fuels in-situ measurements (Ottmar et al.,
2016b) and a canopy sub-model based on Massman et al. (2017).
Other recent approaches have also incorporated the variation of
vegetation canopy elements and modeled canopy winds in WRF
simulations (Arthur et al., 2019; Ma and Liu, 2019). Nonetheless,
high-resolution NWP simulations over large domains presently
require a large amount of computational resources.

Diagnostic wind models (DWMs) deliver high-resolution wind
fields over large domains much faster than the aforementioned
models (see Ratto et al., 1994, for a review). DWMs achieve this
time gain by simulating a three-dimensional steady-state mean
wind field and solving fewer conservation equations than DNS,
LES, and RANS models. In particular, mass-consistent DWMs only
solve mass conservation and use corrective schemes to improve
accuracy. This category of models is often employed for simulations
in urban terrain (Pardyjak and Brown, 2003; Ludwig et al., 2006;
Wang et al., 2008; Delle Monache et al., 2009). For example, the
QUIC-URB (Quick Urban and Industrial Complex, Pardyjak and
Brown, 2003) and QES-Winds (Bozorgmehr et al., 2021, Quick
Environmental Simulations) models support parameterizations for
circulations around buildings (Pol et al., 2006) and vegetation
(Speckart and Pardyjak, 2014; Margairaz et al., 2022; Ulmer et al.,
2023). DWMs and NWP can also be coupled to downscale results
and obtain a greater forecasting resolution, notably near the surface
(Beaucage et al., 2012; Kochanski et al., 2015; Liu et al., 2017).

At the lower end of the spectrum, in regard to the representation
of reality, empirical models have been developed for very specific
applications [e.g., windbreaks (Wilson et al., 1990) or sub-canopy
winds (Sypka and Starzak, 2012)] and therefore lack versatility
and robustness when not associated with more advanced solvers.
Their principal asset is the extremely fast speed of execution,
a consequence of the drastic simplification of the physical
hypothesis. A short synthesis of the computation time associated
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FIGURE 1
Wind velocity vector field at 10 and 50 m above ground level. Here, the QCM simulation domain covers the RxCADRE campaign L2F site. The terrain
elevation scale starts at the lowest simulation domain altitude. As shown, the forest was heterogeneous, with dense patches on the southwest and
northwest sides. Winds were stronger in clearings or outside of the forest. Average tree height was 12 m and the canopy did not impact the wind field
above three times its height. At 50 m above ground level, the winds were more homogeneous and a function of the synoptic wind conditions rather
than the terrain elements.

TABLE 1 Comparative performance of themost commonly used numerical windmodels for simulations with a vegetation canopy arranged frommost accurate
to simplest.

Wind model Example of recent canopy wind
simulation

Average running time

Direct numerical simulation1 Dense filaments canopy Several days

Large eddy simulation2 Sparse, row-oriented canopy Several hours to several days

Mesoscale RANS simulation (e.g., NWPs)3 Heterogeneous pine, and shrub forest Several hours

Microscale RANS simulation4 Grass, brush, and trees Several minutes to hours

Diagnostic wind model5 Homogeneous vegetation cover A few minutes to a few seconds

Empirical wind model6 Dense, tall forest on a mountain slope Nearly instantaneous

1Turbulent flows over dense filament canopies, Sharma et al., 2020.
2Turbulence in sparse, organized vegetative canopies: a large-eddy simulation study, Bailey, 2013.
3Incorporating a Canopy Parameterization within a Coupled Fire-Atmosphere Model to Improve a Smoke Simulation for a Prescribed Burn, Mallia, 2020.
4Development and Evaluation of High Resolution Simulation Tools to Improve Fire Weather Forecasts, Lamb, 2014.
5QUIC-fire: A fast-running simulation tool for prescribed fire planning, Linn, 2020.
6Simplified, empirical model of wind speed profile under canopy of Istebna spruce stand in mountain valley, Spyka, 2013.

with different types of numerical wind models is presented in
Table 1.

Ultimately, the goal of this research is to provide more
informative responses during emergencies, for risk management, or
for prospective studies, by improving the 3-D wind fields accuracy
with a more advanced canopy wind model. To achieve this, a
canopy sub-model is implemented into the QUIC-URB wind solver
(hereafter QUIC) in the current study. QUIC simulated wind fields
have been used with a wide variety of models to study air pollution
distributions (Brown et al., 2013), fire spread (Moody et al., 2022),
emergency hazardous release dispersion (Williams et al., 2004), and
solar and wind energy potential (Girard et al., 2018; Anjewierden,

2020). Furthermore, QUIC has been extensively evaluated against
RANS and LES models and is demonstrably two to three orders of
magnitude faster, respectively (Neophytou et al., 2011; Hayati et al.,
2017; Hertwig et al., 2018; Hayati et al., 2019).

The new wind model must satisfy the following properties:
be fast (run in a few seconds), have high-resolution (1–10 m), be
adapted to complex terrain, and require limited input information.
We propose to adopt a hybrid approach to achieve these objectives,
taking advantage of the strengths of different models. Specifically,
we have derived a 1-D non-local momentum equation, following
the canopy wind model in Zeng and Takahashi (2000), improved
its formulation to partially reflect the impact of the atmospheric
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stability conditions, implemented it in the 3-D wind solver QUIC,
and used WRF upper-air simulation results or ground-based sonic
anemometers data to initialize the model. The new QUIC canopy
model (hereafter, QCM) retains the reliability of the NWP model,
versatility of the DWM, and fast speed of execution of the simple
canopy wind model. The QCM implementation is described in
Section 2, including an extensive characterization of the new canopy
model andhow it is derived (Section 2.2).We show that itmeets all of
the conditions mentioned above for different types of plant canopies
presented in Section 3, and we compare the results to the original
QUIC canopy model, based on Cionco (1965) and implemented in
Pardyjak et al. (2008), as well as against the Massman et al. (2017)
model in Section 4 before summarizing our findings in Section 5.

2 The wind model

Overview

TheQCM computational domain is composed of solid (ground)
or fluid (air) 3-D cells forming an orthogonal staggered grid, a
configuration ideal for the representation of near sharp or vertical
structures such as buildings or steep slopes. The terrain elevation is
derived from digital elevationmodels (DEM). Solid cells are stacked
from the bottom of the domain to the local ground altitude level,
and fluid cells constitute the rest of the domain above the ground.
Vegetation cells are porous fluid cells that are located within the
canopy.

The program computes a 3-Dwind field in three steps (Figure 2).
To start, a first-guess, or boundary-layer wind field, is obtained by
interpolating and extrapolating wind data over the domain. The
model can be initialized from scattered or limited observations from
single-measurement or vertical profile instruments (Section 2.1.1).
Alternatively, WRF simulation results can be assimilated to define
the initial wind field (Section 2.1.2). Next, the wind field is adjusted
for turbulence effects arising in complex terrain. Within and above
forested regions, these effects are parameterized independently at
each grid location (Section 2.2). Finally, an iterative divergence
minimization process computes a mass-consistent wind field that
combines the various adjustments made to the initial wind and
includes the effects of changes in elevation (Section 2.3). SinceQCM
is a DWM, the wind field results are independent of time and can be
run in any order, and we can take arbitrarily large time steps.

Throughout the article, we used index notation and denoted u1,
u2, and u3 the wind components in the x1, x2, and x3 directions
(respectively, easterly, northerly, and vertical). The horizontal wind
speed is described with s = (uiui)

1
2 , for i = 1,2. For a given variable

Φ, we noted Φn, the nth observation, Φ0, the initial-guess, and Φf

the final value field.

2.1 Boundary-layer wind

2.1.1 Initializing the wind field
The fast-response model QUIC can readily simulate 3-D wind

fields in urban or flat terrain from different types of wind data,
including single observation data points, vertical profiles, or other
models. After reading in observation wind magnitude and direction

FIGURE 2
QCM computational framework. It takes three steps (blue arrows) to
compute a 3-D mass-consistent wind field constrained by
environmental conditions (in orange). This fast and versatile approach
is used for a large range of applications (in green).

(both horizontal wind components, un1 and u
n
2), and their location in

space, the horizontal wind field is initialized in two steps. For each
input wind data n at a given location (xn1 ,x

n
2), the vertical profile

of the horizontal wind speed sn = (uni u
n
i )

1
2 , i = 1,2, is computed

using Monin and Obukhov (1954) similarity theory (MOST).These
profiles are then assimilated into a 3-D wind field with the Barnes
(1973) method. It is recommended to have at least three initial data
points for accurate interpolation. In QUIC, MOST wind profiles are
defined as

sn (x3) =
u*
κ
(ln(

x3
z0
)+Φm(

x3
L
)), (1)

with κ, the Von Karman constant, u*, the friction velocity, z0, the
aerodynamic roughness, x3/L, a dimensionless stability parameter,
Φm, the stability function (Businger et al., 1971), and the Obukhov
length, L, defined as

L = −
u3*θv

κg(u′3θ
′
v)s

, (2)

with θv, the mean virtual temperature, g, the gravitational
acceleration, and (u′3θ

′
v)s, the surface virtual potential temperature

flux. We used the standard notation for the decomposition into
mean and perturbation elements such that, for a given variable ϕ,
we have = ϕ = ϕ+ϕ′.
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u* is determined by evaluating Eq. 1 at the lowest wind
measurement available at (xn1 ,x

n
2), ideally unaffected by terrain

roughness elements. The aerodynamic surface roughness, z0, is
estimated from the type of land cover underlying the forest, since
canopy effects are only considered later on. Typically, it varies from
10–2 m above flat terrain to 10–1 m above crops (e.g., Silva et al.,
2007). x3/L andΦm reflect the impact of atmospheric stability on the
wind profile and can be computed from vertical gradients or fluxes
of velocity and temperature records, as shown in the equation above
(Arya, 2001). In the absence of data, we assume neutral stability and
Φm = 0.

Subsequently, the 3-D horizontal wind field s0 is constructed
in two passes using a Barnes interpolation scheme (Barnes, 1973).
Firstly, an intermediate wind field, s′0, is estimated as

s′0 =
∑

n
ωnsn

∑
n
ωn
, (3)

and, in a second time,

s0 = s′0 +
∑

n
ω′n (sn − s′0)

∑
n
ω′n

. (4)

Here, ωn and ω′n are exponential weight parameters defined as
functions of the distance between each grid point and wind data
location within a given radius (tens to thousands of kilometers
depending on the domain size). More precisely, they are defined as

ωn = exp(− 1
Λ
Δ), (5)

and,

ω′n = exp(− 1
γΛ

Δ), (6)

with Λ = 5.052(2Δn

π
)
2
, an estimation of the wind wavelength

(Koch et al., 1983), Δn, the average distance between each data point,
γ = 0.2, a parameter controlling the level of detail (e.g., a smaller
value would correspond to a better rendition of short wavelengths),
and Δ = (xni − xi)

2, the squared distance between a data point and
a grid point. The scheme is designed to work well with unevenly
distributed or sparse observations, e.g., coarser NWP simulation
results or a limited number of ground-based instrumentation.

2.1.2 QUIC data assimilation
As mentioned earlier, the QCM model can be initialized from

observation data or other simulation models results. In the present
study, we used an offline one-way coupling between theNWPmodel
WRF and QCM. WRF often rely on staggered grids for which the
wind velocity components are resolved on the cell faces rather than
at the center. To avoid an extra interpolation at the cell center that
could result in data loss, QUIC independently computes the first-
guess wind fields for u01 and u02 onto the same final grid. For each
input data point, un1 and u

n
2 , the elevation above ground level (AGL)

is computed by dividing the sum of the base-state and perturbation
geopotential (computed by WRF) by the gravitational acceleration,
g. Since the NWP domain simulations typically generate results
over millions to billions of cells, the number nWRF of WRF input
points used for the QCM initialization is set as a model parameter

to better study the impact of the input resolution on the final wind
field accuracy. Depending on that parameter and others specified in
Section 3.2, the QCM selects different sets of nWRF WRF data points
such that they cover the domain as homogeneously as possible. In
Section 4.2, we show how this parameter only slightly impacts the
QCM results. WRF simulations using LUC to model the woods and
forests’ influence are unlikely to accuratelymodel the impact of small
forest patches on the wind flow, especially near the ground, without
using canopy sub-models such as Arthur et al. (2019); Ma and Liu
(2019). In that case, the QCM is expected to deliver more accurate
results at a higher resolution.

At a given horizontal location, (xn1 ,x
n
2), for which a data

point is selected as input, the wind profiles for both the un1 and
the un2 components are defined by Eq. 1. The friction velocity is
computed for the lowest WRF data point available at that location,
preferentially far enough above the canopy. Above the highest WRF
data point, the profile is extrapolated from a gradient defined by
the progression of the data at the closest available altitude levels.
Using a cubic spline, the vertical profile is parameterized at each
point located between the lowest and highest points. Finally, the
first-guess horizontal wind field s0 is computed by assimilating un1
and un2 simultaneously into the same 3-D computational domain,
following the method developed in Section 2.1.1.

2.2 Canopy-adjusted wind

2.2.1 Background
The canopy wind is computed in the QCM from atmospheric

stability, vegetation cover height and density, and boundary-layer
wind data taken above the canopy. An important element of our
model is its capacity to simulate sub-canopy jets (SCJ). Before
deriving the model equations, we review our current understanding
of the canopy wind patterns to identify how this phenomenon
arises. In the next Section 2.2.2, we derive the canopy wind model
and determine what hypothesis leads to more accurate results in
modeling the SCJ and the other prominent features of the mean
canopy wind.

Boundary-layer winds are affected by the presence of vegetation
below about two to three times the canopy height (Brunet, 2020),
namely, in the roughness sublayer (RSL). This range of values
corresponds to a theoretical limit commonly reported in the
literature, but alternative definitions accounting for the atmospheric
conditions and variations in canopy density indicate that the RSL
height may be up to five times the canopy height (Thomas et al.,
2006). The mixing-layer analogy is commonly used Raupach et al.
(1996) to understand these interactions between the surface layer
and the canopy layer. In short, plant elements absorb momentum
from above, and an inflection point develops near the canopy
top. The inflection sustains the development of Kelvin-Helmholtz
instabilities, which evolve into spanwise roller vortices. These
vortices may extend and stretch into 3-D coherent mixing-layer-
like structures or form pairs of head-up and head-down vortices
sustained by the strong asymmetric shear (Bailey and Stoll, 2016).
The strong decrease in momentum at the canopy top leads to
a characteristic exponentially decreasing wind profile just below.
Quadrant analyses (e.g., Guan et al., 2018) help to explain the
momentum distribution within the canopy. Upward ejections (s′ < 0
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FIGURE 3
Schematic illustrating (A) average canopy wind speed profile and (B) momentum transfer in and above the canopy layer. (A) Shows that, at
approximately three times the tree height, in the mixed layer, the wind is unaffected by the canopy. Below, in the roughness sub-layer, the wind profile
is commonly approximated by a displaced logarithmic wind profile (the displacement height is a function of physical parameters such as LAI, drag
coefficient, and tree height). The wind speed within the forest is attenuated, logarithmically proportional to the density of plant elements. A
sub-canopy jet can be observed close to the ground when the sub-canopy vegetation is sparse and the trees sufficiently tall. (B) Shows that the
downward fluxes in the mixed layer and the roughness sub-layer carry momentum from the overlying flow to the top of the canopy layer. The
vegetation absorbs a large part of that momentum and typical turbulence structures appear near the canopy top (Bailey and Stoll, 2016). As a result of
these complex interactions, sweeps (in red), and ejections to a lesser extent (in blue), dominate the turbulent momentum balance and cause an
injection of momentum in the lower sub-canopy layer. A sub-canopy jet may form as a consequence of this non-local contribution.

and u′3 > 0) are themost commonly observed events, and downward
sweeps (s′ > 0 and u′3 < 0) transport the most momentum across
the canopy layer. In a forest with a low plant density near the
ground, the momentum flux advected by sweeps is not completely
absorbed before reaching the ground, and a SCJ may form (see, for
example, Grant et al., 2015). The relevant atmospheric wind layers,
wind momentum, and wind speed profiles are available in Figure 3.

Modeling the complex turbulent canopy wind structures is
beyond the scope of this work. However, it is possible to simulate
the most prominent features of the canopy flow, like the SCJ,
wind attenuation within the canopy, or displaced logarithmic profile
above, thanks to ameanwindmodel derived from theNavier-Stokes
equations. The following subsection derives and presents a canopy
model that rapidly runs using input of vegetation density and height
and wind speed above the RSL.

2.2.2 Averaged Navier-Stokes equations
Within each cell, we assume a static and horizontally

homogeneous canopy over terrain with moderate slope angles (a
few degrees or less). The fluid is assumed incompressible and the
Coriolis effects negligible. The momentum equations may then be
written as

∂ui
∂t
+
∂uiuj
∂xj
= −1

ρ
∂P
∂xi
+ ν ∂

∂xj
∂
∂xj

ui. (7)

As mentioned earlier, ui represents the ith component of the
velocity vector in the xi direction, following standard index notation.
P is the thermodynamic pressure, ρ the air density, and ν the
air kinematic viscosity. At higher slope angles, effects due to
temperature gradients non-orthogonal to the surface play a more

significant role in momentum conservation. They can be modeled
by adding a buoyancy term in Eq. 7 (Oldroyd et al., 2014).

For a fast-response model, we choose to compute the ensemble-
and volume-averaged wind field. Classically, the Reynolds-averaged
Navier-Stokes equations are given by

∂ui
∂t
+
∂uiuj
∂xj
= −1

ρ
∂P
∂xi
+ ν ∂

∂xj
∂
∂xj

ui −
∂u′iu
′
j

∂xj
. (8)

The overbar represents the ensemble average operator and the
primes are departures from the mean. Analogously, a given model
variable φ = φ(x1,x2,x3, t) can be decomposed in its volume-
averaged component and the variation from it: φ = ⟨φ⟩ +φ′′. The
superficial volume average definition for a cell in the canopy with an
homogeneous distribution of plant elements, pioneered in Raupach
and Shaw (1982), is given by Schmid et al. (2019) as

⟨φ(xi, t)⟩ =
1
V
∫
Vf

φ((xi + dxi) , t)dV , (9)

with V , the cell volume, V f ⊆ V , the volume occupied by fluid, dV =
dx1dx2dx3 an infinitesimal volume element, dxi, an infinitesimal
change in xi. In a plant canopy, the solid regions are small compared
to the fluid ones such that V f = V . The volume averaging operator
does not necessarily commute with differentiation. Instead, we have

⟨
∂φ
∂xi
⟩ =

∂〈φ〉
∂xi
+ Iφi , (10)

where Iφi = I
Si
φi + I

S0
φi is the sum of the integral of φi over the plant

elements surface, Si, and the outer cell surface, S0. In what follows,
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we neglect the horizontal advection of φi across horizontal cells to
assume IS0φi < I

Si
φi . If φ is constant along the interface Si, then ISiφi = 0

(Raupach and Shaw, 1982), and the two operators commute. Now,
applying the volume averaging operator to Eq. 8 gives

⟨
∂ui
∂t
⟩+⟨

∂uiuj
∂xj
⟩= −⟨ 1

ρ
∂P
∂xi
⟩+⟨ν ∂

∂xj
∂
∂xj

ui⟩−⟨
∂u′iu
′
j

∂xj
⟩.

(11)

2.2.3 One-dimensional canopy wind momentum
In a static canopy, the wind remains constant (zero) along the

plant elements surface Si. Then, the two operators commute for

⟨
∂ui
∂t
⟩ =

∂⟨ui⟩
∂t
,

⟨
∂uiuj
∂xj
⟩=

∂⟨uiuj⟩
∂xj
,

⟨
∂u′iu
′
j

∂xj
⟩=

∂⟨u′iu
′
j⟩

∂xj
. (12)

The extra surface-integral terms appearing in Eq. 10, IPi and I∇2i ,
remain only for the pressure and viscous drag force terms. Using
∂⟨uiuj⟩
∂xj
= ∂

∂xj
(⟨ui⟩⟨uj⟩+⟨u

′′
i u
′′
j ⟩), and substituting Eqs 10, 12 into

(11), we obtain

∂⟨ui⟩
∂t
+ ∂
∂xj
(⟨ui⟩⟨uj⟩+⟨u

′′
i u
′′
j ⟩)

= (1
ρ

∂⟨P⟩
∂xi
+ IPi)+ ν(

∂
∂xj

∂
∂xj
⟨ui⟩ + I∇2i)−

∂⟨u′iu
′
j⟩

∂xj
.

(13)

Details of the physical meanings of each term are available in
Brunet (2020). Further hypotheses are required to simplify Eq. 13
and establish a fast canopy wind model. If we assume that the
ensemble- and volume-averaged momentum is conserved along the
fluid particle trajectories, then

D〈ui〉
Dt
=
∂⟨ui⟩
∂t
+
∂⟨ui⟩⟨uj⟩

∂xj
= 0. (14)

Equation 13 can be divided into its kinematic and dynamic
components. The rate of exchange of momentum due to the air
motion is modeled by the volume-averaged kinematic momentum
flux τij as

∂τij
∂xj
= − ∂

∂xj
(⟨u′iu

′
j⟩+⟨u

′′
i u
′′
j ⟩)+ ν

∂
∂xj

∂
∂xj
⟨ui⟩ . (15)

Terms on the right-hand side of Eq. 15, are turbulent, dispersive,
and molecular stress components, respectively. The aerodynamic
drag (Shaw, 1977), due to pressure and viscous forces fluctuations
imposed by the canopy, is modeled as

IPi + I∇2i = −CdA⟨ui⟩ |〈u〉|, (16)

with A, the leaf area density (LAD), and the drag coefficient
Cd = 0.2 (identical to Massman (1997), which is the typically used

coefficient value). Cd measures the effectiveness of canopy elements
in absorbing wind momentum. Finally, |⟨u⟩| = √⟨ui⟩⟨ui⟩.

Using Eqs 14–16 and neglecting the pressure perturbation
gradient in Eq. 13 gives

∂τij
∂xj
= CdA⟨ui⟩ |〈u〉|. (17)

In order to simplify the tensor components, we made
two assumptions. First, based on experimental observations
(Raupach et al., 1986), we assumed that spatially averaged flow
properties in dense canopies are to a good approximation functions
of x3. Then, we assumed that the wind direction remained equal to
that at the reference point along the profile. Therefore, Eq. 17 solved
for the ensemble and spatially-averaged horizontal wind speed, ⟨s⟩,
simplifies to the 1-D canopy wind momentum equation,

dτ
dx3
= CdA⟨s⟩

2. (18)

In this context, the term τ represents the shear stress tensor
coefficients acting in the horizontal wind direction on a plane
normal to the vertical axis.

2.2.4 Turbulent stress modeling
In the original work of Boussinesq (1877), the turbulent stress

was parameterized with the eddy-viscosity K such that: τ = K d⟨s⟩
dx3

.
This formulation only accounts for small-scale (local) transport. Yet,
canopy sweeps are hypothesized to lead to non-local transport of
momentum into the canopy and a secondary wind speed maxima
close to the ground (Guan et al., 2018, and illustrated in Figure 3).
This phenomenon is clearly noticeable in numerous other studies
(Shaw, 1977; Su et al., 2008). To account for this effect, a new variable
CNL can be introduced, yielding

τ = K
d⟨s⟩
dx3
+CNL. (19)

The term CNL represents the non-local advection of momentum,
derived from the wind-shear intensity within the RSL. Here, we
follow the definition ofCNL proposed by Zeng andTakahashi (2000),

CNL = C1⟨sref⟩(⟨sref⟩− ⟨s⟩)
x3
H

exp{−LAIx3,H} , (20)

with C1 = 0.01, a model coefficient obtained from numerical
experiments of flow over corn fields,H, the local forest patch height,
LAIx3,H = ∫

H
x3
CdAdx3, the leaf area index (LAI) down to a specific

depth x3 multiplied by the drag coefficient Cd, and ⟨sref⟩ = s0(x3,re f),
the first-guess wind velocity from Eq. 4 defined at a reference height
x3,ref above the RSL. Equation 20 links the transport of surface layer
momentum into the canopy to the advection of wind from the top
of the RSL, and assumes that it is gradually absorbed by the canopy
elements.

The eddy-viscosity, K, in Eq. 19 is defined by Prandtl (1932) as

K = l2
d⟨s⟩
dx3
. (21)

The term l is a mixing length based on a traditional canopy-layer
length scale, κ(x3 − d), with modifications to account for stability
above the canopy height so that

l(x3 ≥H) =
κ(x3 − d)

Φm
, (22)
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with d, the displacement height, or the mean level of momentum
absorption in the canopy.The displacement height can be computed
from LAD data following Raupach (1994) as

d =H(1−
1− exp{−√7.5LAI}

√7.5LAI
), (23)

with LAI = ∫Adx3. Within the canopy, the mixing length is defined
following a definition similar to Zeng and Takahashi (2000),

l(x3 <H) =
κx3

1+C0CdAx3
, (24)

where C0 is an empirical coefficient in the original Zeng’s model.
Here, we compute it by assuming continuity of the mixing length at
the canopy top. Setting Eqs 22, 24 equal at x3 =H, we find

C0 =
(Φm (H/L) − 1) + d/H

CdA (H) (H− d)
. (25)

Other models for the displacement height and the mixing length
were implemented and tested (see Supplementary Material SA1).

2.2.5 Non-local canopy wind momentum
For a very sparse canopy, A, LAI, and d tend towards zero, such

that Eqs 22, 24 define a mixing length for the mean wind similar to
the classical logarithmic MOST profile extending from a few cells
above the ground level to the top of the domain. In high LAD cases
the mean wind speed rapidly reduces to zero within the canopy, and
the logarithmic profile is observed closer to the canopy top. This is
equivalent to solving the displaced logarithmic profile with a large
displacement height value. Besides these limiting cases, the wind
profile is mainly controlled by the LAD distribution and the non-
local momentum transport magnitude. It is rarely logarithmic but
rather resembles a profile similar to the one shown in Figure 3B.
Finally, we use Eqs 19–21 with Eq. 18, and obtain the QCM canopy
flow equation,

d
dx3
((l

d⟨s⟩
dx3
)
2
)+C1⟨sref⟩(⟨sref⟩− ⟨s⟩) ×

x3
H

exp{LAIH,x3}

= CdA⟨s⟩
2. (26)

Equation 26 is solved numerically for the mean horizontal
wind velocity vertical profile, ⟨s⟩, at each grid location,
(x1,x2,x3),x3 ∈ [0,x3,ref]. Above x3,ref, the wind remains identical
to the first-guess wind field described in Section 2.1. Below the
reference height, the two horizontal wind components, (⟨u1⟩, ⟨u2⟩),
are computed from the wind speed ⟨s⟩ above, and the first-guess
wind direction value at (x1,x2,x3,ref).

To solve Eq. 26, each term is explicitly differentiated and
discretized using an order-1 explicit scheme with a semi-step
precision and a functional, F , is defined as F(⟨s⟩) = 0. The
tridiagonal system, J d⟨s⟩ = F , is solved using the Thomas
algorithm (Weickert et al., 1998) for d⟨s⟩, with J = J (F), the
Jacobian matrix. Then, ⟨s⟩ is updated with d⟨s⟩ and the linear
system is solved until convergence. This procedure can be done in
parallel throughout the domain since every canopy wind profile is
solved independently. The vertical wind profiles computed at every
grid location form the 3-D, canopy-adjusted, initial wind field and
overwrite the boundary-layer flow computed fromWRF simulation
results or instrument observations. After this step, u0i refers to
the canopy-adjusted values for ui, instead of the first-guess values
(Section 2.1.1).

2.2.6 Massman’s and Cionco’s approaches
The QCM makes use of the vertical distribution of plant

elements and parameterizes the local momentum counter-gradient
effects with a non-local turbulent transfer coefficient (Zeng and
Takahashi, 2000). The simulation results are compared with the
original canopywind implementation inQUIC, based on theCionco
(1965) model, and against an implementation of the Massman et al.
(2017) model. The Cionco’s canopy wind model is still used for fast-
modeling applications (Cionco et al., 1999), despite its simplicity.
It relies on the LAI and an empirical attenuation coefficient, a
(table of values in Cionco, 1972), and it does not consider the
vertical variation in vegetation density. When the coefficient a is
chosen carefully, the Cionco’s model manages to yield very plausible
canopy wind values. The equation for the horizontal wind-aligned
velocity component can be obtained by solving the 1-D momentum
equation, Eq. 18, using a first-order closure model as in Eqs 19, 21,
but without non-local effects (i.e., CNL = 0), and assuming a mixing
length and LAD that are constant with elevation

s(x3) = s (H)exp{a(x3/H− 1)} . (27)

This approach reproduces the strong inflection below the canopy
top thanks to the exponential formulation, but it does not converge
to zero at the ground surface. It performs well within vertically
homogeneous canopies, such as the corn or rice fields for which
it was developed, but can be inaccurate when the underlying
assumptions (e.g., constant drag with height) are violated.

The Massman’s method is based on an integrated plant area
density (PAD) that varies with height. It is faster than the non-
local solver, which is iterative, because it only solves a 1-D analytical
expression that is based on a first-order turbulence closure Albini
(1981).The resulting profile is a combination of a strongly attenuated
wind near the canopy top st, and a simple logarithmic profile near the
ground sb which does not consider potential non-local momentum
transfers. The wind profile is defined as

s(x̃3) = sb (x̃3) st (x̃3) , (28)

with x̃3 = x3/H, the non-dimensional height, and

sb (x̃3) =
log(x̃3/ ̃z0)
log(1/ ̃z0)

, ̃z0 < x̃3 < 1,

0, x̃3 ≥ 1,
(29)

and,

st (x̃3) =
cosh(Nζ(x̃3)/ζ (H))

cosh (N)
. (30)

Here, ̃z0 = z0/H, N is a model coefficient that is a function of the
friction velocity and wind speed at canopy top, and ζ(x̃3) is the
cumulative canopy drag area (Massman, 1997). Because it relies on
variables and model coefficients defined continuously within the
canopy and at the canopy top, the final result is more realistic than
those from the Cionco’s model. Unlike the model shown in this
study, the Cionco’s and Massman’s models require prior knowledge
of the wind at the canopy top, whereas the QCM can run from wind
data generated from the first-guess wind field, with a reference level
far above the canopy.
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2.3 Mass-consistent wind model

Data assimilation and correction schemes carry uncertainties
that can be minimized by enforcing mass consistency over the
simulation domain. The variational analysis developed by Sasaki
(1970) and refined by Sherman (1978) keeps the final wind field
(u f

1,u
f
2,u

f
3) as close as possible to the canopy-adjusted wind field,

(u01,u
0
2,u

0
3), computed in the previous section, while enforcing

mass conservation. The resulting mass-consistent wind field also
demonstrates upstream acceleration and downstream deceleration
over small obstacles or flow channeling in canyons and narrow
valleys, for an increased accuracy over weakly complex terrain that
could not be achieved by the original QUIC model (defined for
flat urban environments). These terrain-induced effects are more
noticeable over steep slopes and abrupt elevation changes. Notably,
the variational analysis attenuates the differences in wind speed
between neighboring cells resulting from the canopy wind being
modeled independently at each grid location.

Details of the mass-consistent flow solution process used herein
are available in Bozorgmehr et al. (2021), therefore only the main
steps are summarized here. We start by defining a cost function J,

J = ∫
V0

[

[
α2xi(u

f
i − ⟨u

0
i ⟩)

2
+ λ

∂u f
i

∂xi
]

]
dV0, (31)

with αxi , theGaussianmoduli, λ, the Lagrangemultipliers for finding
the function extrema, and V0, the domain volume. The ratio of
the moduli controls the correction made in the horizontal and
vertical directions during that last computational step. Generally, the
horizontal contributions are the same in both x1 and x2 directions:
αx1 = αx2 . Here, we also assumed

αx1
αx3
= 1 such that no additional

correction is performed besides enforcing mass conservation. The
Lagrange multipliers are obtained by solving the Poisson equation,

∂2λ
∂x21
+ ∂

2λ
∂x22
+(

αx1
αx3
)
2 ∂2λ
∂x23
= −2α2x1R, (32)

with R, the divergence of the initial wind field. Solid and fluid cells
define Eq. 33 boundary conditions. Solid elements oppose the wind

movement, so ∂λ
∂xi
= 0 across horizontal or vertical faces. Inlet and

outlet surfaces have boundary conditions given by λ = 0. Finally,
J is minimized over V0 under a physical constraint given by the
continuity equation. The final solution for u f

i is

u f
i = u

0
i +

1
2α2xi

∂λ
∂xi
. (33)

3 Validation cases

3.1 CHATS - Full-scale idealized
homogeneous canopy

3.1.1 Environmental conditions
A series of measurements were made during the Canopy

Horizontal Array Turbulence Study (CHATS, Patton et al., 2011),
which investigated the wind field in a walnut orchard near Cilker
Orchards, CA, between March 15 and 12 June 2007. The areas
surrounding CHATS and our simulation domain are shown in
Figure 4. The orchard extends over 0.64 km2 of flat terrain. The
canopy is quasi-homogeneous, with trees regularly spaced every
7 m, reaching a uniform height (10 m). Leaves grew between April
14 andMay 13, during which the LAI increased threefold (from 0.77
to 2.635). Data taken before leaf-out is referred to as BLO, while
data acquired after leaf-out is ALO. Very little plant materials was
observed near the ground, and therefore the sub-canopy vegetation
is considered sparse and neglected in the simulations.

During CHATS, sonic anemometers were mounted at 13
elevation levels on a tower. The highest wind observation was
made at 29 m AGL, thus above the RSL (Patton et al., 2011),
and indicated dominant northerly and southerly wind directions.
The atmospheric stability, determined by the inverse Obukhov
length, varies throughout the diurnal cycle: unstable during
the day; and stable during the night. These variations in the
environmental conditions were propitious to study the changes
of humidity, temperature, and velocity (Dupont and Patton,
2012), the ozone exchange (Brown et al., 2020), or the wind

FIGURE 4
(A) and (B) satellite views along with (C) ground view of the CHATS walnut orchard. The windrose for every fifth percentile indicates the wind at 29 m
above ground level and above the roughness sub-layer, Ws, were southerly or northerly. The simulation domain, highlighted in red in (A) and (B), was
centered around the observation tower (yellow star) and far from the orchard boundaries to avoid edge effects. (C) Shows the distribution of tree
elements significantly varied seasonally.
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TABLE 2 Environmental conditions, model inputs, and numerical simulation setup parameters for the CHATS and RxCADRE experimental campaigns.

Environmental conditions CHATS RxCADRE

Canopy type Homogeneous walnut orchard with sparse subcanopy Heterogeneous forest of shrubs and pine trees

Canopy height 10 m 12 m on average, and 17 m maximum

Topography Flat terrain Low-rolling hills

Dominant synoptic conditions Northerly and southerly wind (5 ms−1 at 29 m above
ground level)

Northwesterly wind (7 ms−1 at 50 m above ground
level)

Model inputs

Canopy layer Two LAD profiles, before and after leaf-out. Unique
canopy height

LAD profiles and tree heights at every location

Terrain layer Flat terrain Digital elevation model at 16 m resolution

Underlying terrain roughness length (z0) z0 = 0.1 m z0 = 0.12 m

Atmospheric stability (H/L) Unstable during the day, −20 ≤ H/L ≤ −0.01. Stable at
night, 0.6 ≤ H/L ≤ 20

Moderately unstable, −1.8 ≤ H/L ≤ −0.16

References wind speed (⟨sref⟩)
7 Horizontal wind speed from a sonic anemometer at

29 m above ground level
Horizontal wind speed fromWRF simulation results,
every minute, at different resolutions and altitudes
(above the roughness sub-layer)

Numerical setup

Domain size 100 x 100 x 100 m3 1880 x 1880 x 150 m3

Spatial resolution dx = 1 m, dz = 1 m dx = 5 or 25 m, dz = 1 m

Simulation time One week before leaf-out, 1 week after leaf-out Three hours in the early afternoon

Time step 30 min 1 min

Wind model initialization Wind speed and temperature at 29 m above ground
level

WRF simulation results between 50 and 100 m above
ground level

7Horizontal wind speed at a reference height three times above the canopy.

stationarity (Pan and Patton, 2020). For a more detailed analysis
of CHATS stability regimes see Dupont and Patton (2012). The
environmental conditions are summarized in Table 2, together with
the model input and numerical setup described in the next two
subsections.

3.1.2 Model inputs
QUIC requires observations or simulation output to estimate

the first-guess wind field and, whenever available, flux data to
compute stability conditions. In the CHATS experiment, the wind
measured at the top of the tower (x3,ref = 29 m) defines the reference
wind unaffected by the canopy. Velocity and temperature gradients,
calculated between the two highestmeasurement elevation levels (23
and 29 mAGL), are used to compute the heat andmomentum fluxes
necessary to define the diurnally alternating stability conditions.
The LAI was obtained using LI-COR LAI-2000 measurements
(Patton et al., 2011). It is common to model the roughness length
as a fraction of the roughness elements height (Garratt, 1992). Here,
it is defined as one-10th of the canopy height (cf.Observationsmade
by Grimmond and Oke, 1999).

3.1.3 Numerical setup
The CHATS wind fields were modeled in a 100× 100×100 m3

domain (including 100,000 vegetation cells) with horizontal and
vertical resolutions set to 1 m. Two different time periods were
evaluated: a week before leaves appeared (March 25 to March 31)
and a week after leaf out (June 1 to June 7). The periods used for
validation were selected to maximize the amount of data available
at all levels on the sonic anemometer tower. Wind velocities mostly
changed duringmorning and evening transitions andwere relatively
constant throughout the day and the night, so we deemed that 30-
min averages were representative enough of the simulated wind field
diurnal variations.

3.2 RxCADRE - Heterogeneous forest

3.2.1 Environmental conditions
For the second validation case, we considered a 3.6 km2

heterogeneous forest of longleaf pines and small bushes where winds
were observed during the Combustion-Atmospheric Dynamics
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Research Experiments (RxCADRE, Ottmar et al., 2016a) before
and during a series of prescribed burns on the Eglin Air Force
Base, FL, in 2012. The terrain is moderately hilly, with slopes
ranging from 1% to 5%, and the largest slopes near a stream
on the northeast side of the forest. Unlike the CHATS case,
the RxCADRE vegetation varies considerably and only covers
parts of the simulation domain. Different species of vegetation
cohabit with distinct LAD distribution and height. The LAD was
estimated based on high-resolution aerial LiDAR data collected
during the RxCADRE campaign using the approached described
in Halubok et al. (2021). LAD was computed on a voxel grid of
5× 5×3 m3 or 25× 25×3 m3 (both cases are used). Figure 5 shows
the heterogeneity of the domain, with tree heights ranging from 2
to 20 m AGL (12 m, on average), and LAI varying between 0.1 and
6. The canopy height and the LAI share a low positive correlation
(R = 0.48). The tallest trees and densest vegetation patches are
located at the southeast, northeast, and northwest corners.

Synoptic wind conditions and atmospheric stability were
estimated fromWRF simulations taken above the RSL. The average
winds at the site were southwesterly, at 7 m s−1 (Figure 1) at 50 m
AGL. For the most part, atmospheric stability conditions were
unstable. To validate our simulation results, we compared the results
obtained from the coupled QCM-WRF simulation with those from
a network of 31 cup-and-vane anemometers mounted at 3.3 m AGL
that measured wind speed and direction every 3 s, and two 1-
Hz sonic anemometers at 3.8 and 8.7 m height on a tower. The
locations of observation instruments in the forest are plotted in
Figure 5. For the rest of the study, observation locations are sorted
into four geographic regions: Region 1 along a road in the woods
on the southeast side; Region 2 close to a stream on the northeast
side; Region 3 in the northwest part and central region of the
forest; Region 4 near the road at the southwest corner. Table 2
shows a synthesis of the environmental conditions, model input and
numerical setup.

3.2.2 Model inputs
The reference wind above the RSL was obtained from WRF

simulation results at different resolutions and located between
50 and 100 m AGL, above the RSL (the choice for the upper
boundary did not influence the results near the surface). The WRF
model typically runs environmental simulations over domain cells
extending over kilometers, at mesoscale levels (at least 10 km).
For the RxCADRE campaign, it was run at an exceptionally high
horizontal grid resolution, very close to the ground, within the RSL.
Using a nested approach over seven domains, horizontal grid cell
spacing were set to 12, 4, 1.33 km, 444, 148, 49, and 16 m (with a
1:3 ratio). The number of grid points ranged from 97× 97×41 cubic
cells for the first six domains, to 115× 115×41 cubic cells for D-
7 (Figure 6). The vertical grid resolution was a few tens of meters
for the first ten levels, and quickly increased to 1 km at the top
of the domain, around 15.2 km. The planetary boundary layer was
modeled with the Yonsei University scheme (or, YSU PBL scheme,
Hong et al., 2006). Surface layer physics were derived from MOST,
the land-surfacemodel came fromNoah (Niu et al., 2011).The setup
is exactly as described in Mallia et al. (2020).

The roughness length was estimated as in the CHATS case. The
inverse Obukhov length was derived from WRF surface heat fluxes
and friction velocity estimations. The canopy height is specified at

FIGURE 5
3-h averaged wind vectors from observations (black arrows) and QCM
(red arrows) interpolated to the observation height and plotted with
(A) canopy height and (B) LAI, at 5-m resolution for the RxCADRE
case. The vegetation density was greater in the northwest corner and
along the roads (brown lines). LAI rarely exceeded 3 so the color scale
was edited to reflect the heterogeneity of smaller values. The LAI and
the tree height shared a low positive correlation (R = 0.48). WRF
simulations were used to drive QCM to simulate wind fields every
5 min and at 5-m resolution. Results were validated against a network
of anemometers (1–30) and a tower (31), divided into four regions.
Region 1, near the road along the southeast border (1–9); Region 2,
close to the stream on the northeast corner (10–17); Region 3, within
the forest, away from edges (18–24, 30, and 31); Region 4, on the road
along the southwest forest corner (25–29). Simulation results and
observations frequently pointed in the same direction, except at the
southeast corner, due to forest edge effects not being resolved, and at
the northeast corner, possibly because of an important terrain
gradient along a nearby stream bed.

5 and 25 m horizontal resolution and vertical variation in LAD
is specified every 3 m. The terrain elevation was obtained from
the WRF dataset at 16 m resolution and linearly interpolated to 5
and 25 m. LUCs were also taken from the 16 m resolution dataset
and interpolated with the nearest neighbor method to the final
resolution. In both cases, the minimum and maximum terrain
elevation were around 15 and 45 m, respectively.
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FIGURE 6
(A) to (C) nested WRF simulation domains (D-1 to D-7) for the RxCADRE campaign and (D) photograph of the forest taken at ground level. The first
three domains in (A) were generated at spatial resolutions of 12, 4, and 1.3 km. For D-4 to D-7, in (B) and (C), the resolution increased threefold, until
16.5 m. The blue region in (C) corresponds to the L2F site, at which high-resolution LAD and tree height data were available. (D) Shows the tree cover
was relatively sparse and the forest very heterogeneous. On the windrose, the average wind speed at 63 m, Ws, was northerly at 7 m s−1, on average.
Circles represent the 16th percentile.

3.2.3 Numerical setup
Two QUIC simulation domains were generated at 5 and 25 m

horizontal resolution to match the input LAD resolution. In
both cases, the domains extended over 1,880× 1,880×150 m3, and
vertical resolution was set to 1 m. The background wind field was
computed every minute, 3 h before the prescribed burn on the
morning of 11 Nov 2012. WRF simulation results were assimilated
at different resolutions and with different numbers of points to help
determine which parameter has the most impact on the QCM-
WRF coupling. Starting with a reference configuration defined as
NWRF=100 points from the highest-resolution WRF simulation, D-
7, and the finest definition of LAD available at dx = 5 m, we varied
the number of input WRF data points, the simulation resolution
(Figure 6), or the canopy spatial resolution for the following
setups.

a) NWRF=1, located at the center of the domain.
b) NWRF=100, evenly distributed throughout the domain.
c) NWRF=10,000, also evenly distributed throughout the domain.
d) NWRF=100, WRF domain is D-5 (148 m horizontal resolution).
e) NWRF=100, WRF domain is D-6 (49 m horizontal resolution).
f) NWRF=100, WRF domain is D-7 (16 m horizontal resolution),

LAD and DEM horizontal resolution set to dx = 25 m.

To quantify error, we used an absolute and a normalized metric,
the mean absolute error (MAE) and the normalized root-mean-
square error (NRMSE) in Figure 7. The former is commonly used
to compare results perceptible at the human scale, and the latter is
the proportion of the root-mean-square error (RMSE) related to the
range of the modeled variable. To provide more context, we also
added a relative error metric, the mean fractional bias (MFB). The
MAE, NRMSE, RMSE, andMFB errors are presented in Table 4, and
discussed later in Section 4.2.

4 Results and discussion

4.1 CHATS - Full-scale idealized
homogeneous canopy

The orchard in CHATS evolved across the seasons (Figure 4C).
While the average tree height stayed constant, the LAI increasedwith
upper canopy leaf growth. Figure 8 indicates that, as expected, the
wind speeds at all heights were stronger BLO than ALO, since there
were fewer plant elements to absorb the momentum.The trees were
regularly trimmed, and the volume occupied by the trunkswas small
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FIGURE 7
Mean absolute error (MAE, in blue) and root-mean-square error normalized by the observational variance (NRMSE, in red) of the horizontal wind speed
for different simulation parameters for the RxCADRE case. (A–C) correspond to 5-m horizontal resolution simulations run from 1, 100, and 10,000 WRF
D-7 domain input points. (D,E) show results for 100 input points from the D-5 and D-6 WRF domains. The errors were larger than for the D-7 cases
because here the WRF simulations were generated from coarser topography and land use inputs. (F) Shows the error for a WRF simulation run with 100
points in D-7, using a LAD and tree height resolution at 25 m, was higher than the other cases. This indicates that the forest spatial resolution was a
critical parameter for determining the canopy wind field accuracy in our simulations due to the vegetation heterogeneity.

compared to the total canopy volume supporting the assumption
that the LAD is the most relevant parameter influencing canopy
winds. Hence, the sub-canopy vegetation layer always remained
sparse (the LAD from 0 to 2 m AGL was only a tiny fraction of the
localmaximumLAD, cf.Figure 8A). It formed an ideal configuration
for the development of the SCJ (as theorized by Shaw (1977)).
The canopy and the synoptic conditions were constant over the
domain, and as a result all wind models gave similar results at every
location except near the forest edges. The numerical scheme for
the QCM converged rapidly (in ten iterations). The other canopy
wind sub-models tested (Cionco’s and Massman’s) computed the
canopywind instantly since they donot rely on an iterative approach.
Besides the adjustment to the complex terrain, the QCM wind-
field initialization (cf. Section 2.1) and convergence towards mass-
consistency only took a fraction of a second to solve on the relatively
small CHATS domain. Specifically, the program run serially on a
personal computer (2.30 GHz processor, 16 GB RAM) took about
half a second for one time step, and less than 7 min to run 2 weeks
of physical time at 30-min resolution.

Seasonal variationwas themost important factor in determining
the wind profiles. Figure 8 shows the one-week-averaged observed
and simulated horizontal windmagnitude for the different evaluated
wind models. In both cases, a low-level secondary maximum was
observed in the sub-canopy layer. BLO, all models resulted in good
wind attenuation near the canopy top and magnitude close to
the ground, but for different reasons (Figures 8B–D). The Cionco’s
model relies on an empirical attenuation coefficient (cf. Cionco,
1972) that controls the exponential reduction in wind speed below

the canopy top. Above the canopy, the wind follows a displaced
logarithmic profile shape. In the original QUIC model, both wind
profiles are combined by requiring that their derivative matches
at the canopy top, and this is done by slightly adjusting the
displacement height of the logarithmic profile above the canopy
(Speckart and Pardyjak, 2014).TheMassman’s approach alsomodels
the wind above the canopy with a displaced logarithmic profile,
but unlike the QUIC original and new model, the derivatives
are not matched and it remains discontinuous at the canopy
top. Within the canopy, the wind profile is a function of the
integrated plant density and a logarithmic function parameterizing
the wind near the ground. This model assumes that vegetation
layers gradually absorb the vertical wind momentum, until the
wind speed reaches zero at ground level. Thus, it cannot reproduce
secondary wind maxima. The QUIC non-local canopy model
performs better because it accurately predicts the SCJ magnitude
and computes the wind within and above the canopy with a single
equation (and different boundary conditions at top). This approach
yields a more continuous wind profile near the canopy top than
Massman’s model, and the wind speed is more attenuated in denser
canopy layers than Cionco’s and Massman’s models results. ALO
(Figures 8E–H), the observed wind speed was highly impacted and
decreased much faster with depth into the canopy. The observed
SCJ was also weaker than BLO.The Cionco’s and Massman’s models
still overestimated the horizontal wind, and could not predict its
speed at canopy top as accurately as BLO. The QCM consistently
overestimated the wind speed but outperformed the Cionco’s and
Massman’s models at almost all levels. These better results can be

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2023.1251056
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Renault et al. 10.3389/feart.2023.1251056

FIGURE 8
Monthly-average LAD (red line) and 1-week average horizontal wind profiles before and after leaf-out for the CHATS case. Tree height (black line)
remains constant throughout the year. Before leaf-out, the LAD (A) was low because only woody plant elements were present. After leaf-out, the LAI
increased threefold and the LAD (E) was five times higher near the canopy top. The wind profiles (in blue) of the original model (B,F), the Massman’s
model (C,G), and the current QCM (D,H), are plotted against observations (red dots) in the last three columns.

explained by the greater heterogeneity in the vertical distribution
of LAD, favoring the application of the non-local canopy wind
solver.

General model performances across seasons are presented in
the scatter plots in Figure 9. Simulation results defined every
meter starting from x3 = 0.5 m were linearly interpolated to the
observation elevation level. Pairs of observation and simulation data
points were randomly selected to offer an overall comparison at
different times and heights representative of the simulation. For
cases occurring BLO, the Massman’s model (Figure 9B) had the
largest departure from observations both within and above the
canopy, followed closely by the original model (Figure 9A). These

results confirm that both models did not resolve the SCJ and
underestimated the canopy attenuation, as observed in Figure 8.The
QCM (Figure 9C) results were generally within 25% of observations.
ALO, both the Massman’s (Figure 9E) and the original (Figure 9D)
models displayed a bias that was often 25% more than the observed
wind speeds, for the same reasons discussed for BLO. The QCM
(Figure 9F) also overestimated the wind speed but the error spread
was smaller. It is worth noting that all models performed well for
high wind speeds above the canopy. At that altitude, near the top of
the RSL, the wind speed were nearly independent from the forest-
induced attenuation and the displaced logarithmic models were
accurate.
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FIGURE 9
Randomly selected wind magnitude observations against simulation results before leaf-out (A–C), after leaf-out (D–F) for the CHATS case (for 50
instantaneous time moments). Red dots and blue circles represent values below and above the canopy top, respectively. The central black diagonal line
denotes a 0% error between model results and observations; black dashed lines represent a 25% deviation from it. The wind speed attenuation within
the canopy was weaker before leaf-out for all models. The original model and the Massman’s model overestimated the measured wind speed, and the
new non-local model underestimated it.

Aside from changes in vegetation density, diurnal cycles
play an essential role in defining the average wind profile and
atmospheric stability conditions. Figure 5 in Brunet (2020) provides
a comprehensive diagram illustrating how the mechanisms of
canopy wind (as detailed in Section 2.2.1) change under stable,
near-neutral, and unstable atmospheric conditions across various
vegetation densities. In short, the attenuation of wind momentum
through the canopy is weaker during unstable conditions because
the mean flow is driven by the rising buoyant plumes rather than
the mean shear, and the inflection near the canopy top is stronger
in stable conditions, as the buoyancy acts to damp the vertical
momentum transfer. As a result, themost effective windmomentum
transport tends to occur during neutral conditions. In QCM, the
stability effects are integrated in the definition of the first-guess wind
field. The most significant influences modeled are the reproduction
of faster wind from a reference height, driven by larger temperature
gradients during daytime (after sunrise and before sunset), and vice
versa at night. Observations and simulation results for the daytime
and nighttime time periods are compared in Figure 10.

Every model yielded better results during the day than at night.
The original model (Figure 10A) andMassman’smodel (Figure 10B)
still overestimated the wind speed, but gave mostly accurate results
above the canopy. Most wind model simulations showed a more
significant departure from the observations near the ground, in
particular at night. It likely happened at times when stability acted

more strongly against the conveyance of wind momentum through
the canopy. The QCM (Figure 10C) yielded better results than the
two other canopy models, but underestimated the high wind speed
values above the canopy and overestimated the lowest wind events
within the canopy. In some cases, Massman’s model and QCM
also underestimated the low wind speed events (near the ground
level). It could be caused by thermodynamically-driven energy
exchanges driving a very local increase in wind speed, an effect
not resolved by momentum equation solvers. At night, the original
model (Figure 10D) and Massman’s model (Figure 10E) displayed
a clear 25% overestimation, except for the strongest winds above
the canopy. In this case too, the QCM (Figure 10F) has better
agreement with measurements. Since the QCM was the only model
that explicitly solves for the SCJ observed at that location, it was the
best-performing model overall.

Table 3 shows an absolute and a relative error metric, the
bias and the RMSE during four environmental conditions with
different configuration of daytime, nighttime, before and after leaf-
out periods. The simulation results are linearly interpolated to the
anemometer tower observations’ elevation (Figure 4). Both metrics
confirmed the good performance of the QCM. In every case,
the errors were at least two times smaller for the QCM results,
compared to the two other models. The best results for the QCM
bias and the RMSEwere realized during daytime, ALO, and at night,
BLO. It means the model performed similarly well independently
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FIGURE 10
Similar to Figure 9, for wind observations and simulations results during daytime (A–C) and at night (D–F) for 25 moments before and 25 moments
after leaf-out. Typically, the wind speed was greater during the day due to stronger synoptic winds. All models overestimated the wind speed at night.

of environmental conditions. The Cionco’s and Massman’s models
consistently overestimated the observed wind speed, as observed in
Figure 8, with better results for both error metrics ALO.

4.2 RxCADRE - A heterogeneous forest

The RxCADRE validation case lasted 3 h and covered a much
more heterogeneous forest site than the CHATS case (Section 4.1).
The LAD varied in both horizontal and vertical directions, with
several types of plants sharing a cell location. The large forest site
(named L2F, cf. Figure 1B in Ottmar et al., 2016a) was bordered by
a stream on the northeast side, and dirt roads on the southeast,
southwest, and northwest corners (Figure 5). The canopy layer
was defined from ground level to an effective height observed by
LiDAR. Out of the forested part of the domain, QUIC simulated a
logarithmic profile as a function of the roughness length, stability,
and synoptic conditions. Effects due to forest edges or single tree
wakes were not implemented here (see Margairaz et al., 2022, for a
model implemented inQES-WINDS). As discussed in Section 2.1.2,
QUIC can assimilate WRF data at different resolutions to define
a first-guess wind field. The nested domain approach for the
RxCADRE case, introduced in Section 3.2.3 and presented in
Mallia et al. (2020), proved successful in improving wind results
over and within the L2F canopy, when implementing the Massman’s
model (Massman et al., 2017) in WRF-SFIRE. In this section, we
compare QUIC’s original and new canopy wind models. For both
cases, the wind boundary conditions were derived from WRF

simulations for different environmental conditions (Table 2). At
5-m resolution, the simulation domain was comprised of more
than 21 millions cells, including nearly 632,000 vegetation cells.
QUIC solved the 3-D wind field in 11–12 s per time step on
average, whenmeasured on the same personal computer mentioned
above. Computation of the final divergence-free wind field was
the most time-consuming task (about 10 s), while the initialization
and canopy adjustment (with the non-local method) took about
0.01 and 1 s each. Three hours of simulation, with 1 minute time
increments, took 35 min. The initialization time increased linearly
with the number of input data points, NWRF.

Figure 5 shows the distribution of 3.3-m anemometer locations
inside the L2F forest site, along with 3-h averaged QCM simulation
results and horizontal wind velocity observations at those locations.
The results were linearly interpolated to the observation elevation
level. A simple correlation analysis showed that the wind speed
decreased with increasing LAI, but was not clearly associated with
the local tree height.This can be explained by observations being less
affected by effects present near canopy top since its height was often
several times the anemometer altitude (3.3 m AGL). Overall, the
QCMperformedwell within and outside the canopy, but the average
model performances varied from region to region. In Region 1, the
southeast road was oriented in the normal direction of the synoptic
wind direction, so the channeling effect was limited. Moreover,
the observations were recorded close to a dense part of the forest,
surrounded by 10–15-m tall trees. As a result, the canopy elements
density essentially determined the wind, and the simulation results
compared well with observations (except at locations 1 and 3). In
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TABLE 3 Error statistics for threemodels in four different environmental conditions during the CHATS experiment at all heights and times. The first and third
simulation cases correspond to results recorded after sunrise and before sunset fromMarch 25 toMarch 31, and from June 1 to June 7, respectively. The second
and fourth cases correspond to the rest of the time during these 2 weeks.

Simulation case Wind model Simulation results
minus observations (m

s−1)

Root-mean-square
error (m s−1)

R-Squared

Before leaf-out, daytime

Non-local −0.297 0.416 0.986

Massman 0.814 1.321 0.859

Original 0.747 1.1041 0.911

Before leaf-out, nighttime

Non-local 0.197 0.364 0.966

Massman 1.143 1.422 0.787

Original 1.087 1.275 0.858

After leaf-out, daytime

Non-local 0.177 0.316 0.969

Massman 0.573 0.985 0.736

Original 0.537 0.709 0.906

After leaf-out, nighttime

Non-local 0.327 0.417 0.967

Massman 0.756 1.088 0.703

Original 0.718 0.829 0.907

Region 2, the QCMdid not capture a local change in wind direction,
likely due to the presence of a stream. Indeed, the stream is bordered
by tall and dense vegetation and edge effects can significantly
influence the wind direction in the surroundings. The difference
in direction did not exceed 45°, and the wind magnitude was the
most accurately reproduced in that region of the domain. Observed
wind speeds were much weaker than the simulation results in
Region 3. This discrepancy could be caused by underestimation
of the LAD by LiDAR within the forest, where the vegetation
heterogeneity made it difficult to measure accurate values even at
5-m resolution (Halubok et al., 2021, details how the heterogeneity
and clumping cause a negative bias in LAD). Finally, there were
no trees in Region 4 and the southwest road was aligned with the
wind direction. As a result, the wind was channeled along the forest
edge, and the observed wind magnitude was stronger. Since the
QCM solved for mass-consistency (Section 2.3), the simulated wind
field reproduced this physical phenomenon, but the unresolved
variations in wind directions were likely due to forest-edge effects
that were not modeled.

As synthesized in Figure 2, we noted that the QCM operates in
three steps: 1) the first-guess wind field is computed by assimilating
the synoptic winds throughWRF; 2) the initial wind field is adjusted
to account for the vegetation cover; 3) the final velocity field
is forced to conserve mass and thus accounts for effects due to
changes in terrain elevation across the domain. The results for (1)
to (3) with the original and the new QUIC canopy model were
normalized by thewind speed at x3 =H to reinforce the contribution
of each computational step, and plotted in Figure 11 against four
observations. The four locations (anemometers 1, 15, 31, and 28

in Figure 5) were selected to better evaluate the impact on the
wind profile of variations in LAD distribution and trees height.
The normalized results for the original model based on Cionco’s
work consistently yielded a exponentially decreasing wind profile,
very similar at every location with vegetation elements. Indeed, the
empirical attenuation coefficient a did not vary much between the
different anemometer locations.

In Figures 11A–C, the sub-canopy layer was denser than the
rest of the canopy, except near the top of trees. As a result, the
QCM did not predict a strong SCJ. The final wind profiles were
stronger than the initial ones thanks to the corrections made during
step (3) to account for changes in terrain elevation in neighboring
cells. In Figures 11D–I, the upper-canopy layer was distinctly denser
than the sparse sub-canopy. The QCM showed a more substantial
reduction in wind speed just below the canopy top than Cionco’s
model results, and a more continuous decrease to zero indicative
of the canopy absorbing all momentum. This result was verified
for all locations within the canopy. Results in Figures 11J–L were
plotted for reference purposes only. Since there was no vegetation
at the last location plotted, and since the local terrain elevation was
flat, the wind was not adjusted for canopy effects, and the final
wind profile remained very close to the first-guess boundary-layer
profile.

While the terrain only slightly varied across the domain, results
for bothQUICmodels were always influenced by these local changes
during the last computational step. Such influence depends on the
terrain gradients’ magnitude, and the wind may be positively or
negatively corrected, if it is located at a crest or bottom of the
terrain, to conserve the mass flow rate over obstacles. Nonetheless,
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FIGURE 11
Profiles of LAD (A,D,G,J) and wind speeds computed with the original model (B,E,H,K) and QCM (C,F,I,L) for the first-guess (blue), the canopy-adjusted
(black), and the mass-consistent (red) solutions for the RxCADRE case. The horizontal black line represents the average tree height. Each line
corresponds to a different location in a different part of the domain. From top to bottom: location 1 in Region 1, location 15 in Region 2, location 30 in
Region 3, location 28 in Region 4. There were no trees in Region 4. The wind profiles were normalized with the wind speed at the domain-average
canopy height, 12 m. For the other three locations, the average tree heights were 8, 10, and 14 m, respectively. The first-guess wind profiles were
always logarithmic. Profiles in (B,C,H,K) decreased exponentially within the canopy and abruptly converge to zero near the ground.
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FIGURE 12
Similar to Figure 7. Here, the errors are averaged for the observations made over the four regions detailed in Section 3.2. They confirm that the best
results were obtained in Region 2 and Region 1, as observed in Figure 5. For the first three regions, the relatively low MAE indicates that the model
could perform reasonably well in a very complex canopy. High NRMSE values can be explained by the large range of values reached by the canopy
wind speeds in domain regions with very different canopy cover, and the presence of outliers in the data that makes statistical results more difficult to
interpret. Region 4 showed the worst results because the wind observations were more impacted by forest-edge effects and tree wakes, not modeled
in the present study.

we showed that the local vertical variation in vegetation elements
had more impact on the canopy wind profiles. Most of all, SCJs
determined the shape of the profile in the lower half of the canopy
layer. They appeared when the sub-canopy region was relatively
sparse and the trees tall enough, and they were accurately modeled
with the QCM.

We conducted a detailed analysis of the errors between
observations and QCM simulation winds averaged over the
observations located in the four regions defined in Figure 5. In
Figure 7, we showed the results for the five test cases defined in
Section 3.2.3, with errors averaged over all observations. Lower
values of NRMSE can indicate better model performance, but
because it is normalized by the variance of the observations, a
term often smaller than one here, it can reach high values that
need to be interpreted relative to the other configurations’ errors.
The reference configuration errors were plotted in Figure 7C. We
investigated the impact of different numbers of WRF input data
points (Figures 7A–C), WRF input resolutions (Figures 7C–E), and
canopy layer resolution (Figure 7F).

We expected QUIC to depend on the number of WRF wind
input data points, but, overall, the errors were only marginally
affected by this variable. Since the WRF nested domains share the
same vertical resolution, and because the YSU PBL scheme is a 1-
D model not designed to resolve microscale horizontal fluxes over
complex terrain (Hong et al., 2006), the results of the coupling for
different horizontal resolutions (16, 49, or 148 m for domains D-7
to D-5) did not present a significant variation in errors, although
the results were slightly better for wind inputs fromWRF’s highest-
resolution domain, D-7. The most noticeable changes were due to
switching between an LAD and DEM horizontal resolution of 5 or
25 m.These results illustrate that, in our study, high-resolution fast-
model accuracy is determined by the level of details of the input data.

But, we also observed that, when coupled over short periods where
synoptic conditions did not vary significantly, the QUIC model
errors were of the same order. We note that the errors doubled when
domain canopy and terrain data resolution was five times coarser,
as shown in the last column (Figure 7F). Results for other setup
configurations are available in the Supplementary Material SA1.

Beyond the differences between the numerical setups, Figure 12
shows QCM performance when averaged over locations with
different LAI, vegetation height, and LAD profile. In terms of the
MAE and NRMSE, the simulation output compared to anemometer
measurements located in the dense forested area along the stream
in the northeast corner Region 2 yielded the best results. This is
explained by the fact that the model was designed to perform better
in regions with a homogeneous canopy and simulate the effects
due to weak terrain elevation change on the mass flow. Relatively
good results were also observed in the forest along the southeast
road that was normally oriented to the dominant wind direction
Region 1, presumably because the plant element density was also
very high at that location. Results were mixed in Region 3, which
encompassed all observations made farther away from the forest
borders, likely due to the heterogeneity in canopy definitions at every
cell location, and the difficulty of averaging over every observation
in that region. Interestingly, the QCM obtained a better NRMSE
error in Region 4 than in Region 3. Indeed, anemometers in Region
4 were located along a road in the southwest corner, which caused
higher winds, unaffected by canopy elements and channeled along
the road, explaining why the MAE is maximal. The NRMSE in
Region 4 was still lower than in Region 3 because the first-guess
wind field simulated the wind over flat terrain like roads accurately
(no canopy parameterization was applied where no vegetation
elements were present). It is worth noting that averaging more than
thirty observation locations can lead to obscuring excellent results
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TABLE 4 The first six rows are error statistics for the six different numerical setups of the RxCADRE experiment described in Section 3.2.3. The third case is our
reference configuration, and the last four rows present errors for the four regions shown in Fig. 5 with this reference setup. Simulation results were interpolated
at the observation location and computed everyminute during the 3 hours of the simulation.

Simulation case Mean absolute error
(m s−1)

Root-mean-square
error (m s−1)

Normalized
root-mean-square

error

Mean fractional bias

WRF: D-7. QCM resolution:
5 m. Input: 1 point

0.51 0.56 1.2 0.25

WRF: D-7. QCM resolution:
5 m. Input: 100 points

0.52 0.59 1.27 0.27

WRF: D-7. QCM resolution:
5 m. Input: 10,000 points

0.49 0.55 1.18 0.26

WRF: D-5. QCM resolution:
5 m. Input: 100 points

0.57 0.64 1.37 0.25

WRF: D-6. QCM resolution:
5 m. Input: 100 points

0.54 0.61 1.32 0.26

WRF: D-7. QCM resolution:
25 m. Input: 100 points

0.89 0.94 2.02 0.33

Region 1 0.56 0.71 1.52 0.09

Region 2 0.33 0.46 1.19 0.01

Region 3 0.61 0.82 1.92 0.58

Region 4 1.39 1.58 1.61 0.44

performed over many sites as a result of a single bad observation.
For example, the wind profile at the third anemometer location in
Region 1 was modeled for a region with no canopy because it was
very close to a road. Still, observations showed that the surrounding
canopy was largely affecting the profile. Such issues may occur
locally when a simulation domain cell type is defined from different
terrain elevation, wind, or canopy datasets. Table 4 combines the
results for every numerical setup cases implemented, and the
measurements made in the four regions. It is worth noting that the
MFB is consistently positive, indicating that the model consistently
overpredicts the observed wind speed, albeit only slightly in Regions
1 and 2.

5 Summary and conclusion

In this paper, we implemented a new mathematical framework
for canopy winds in the fast response model QUIC and examined
the frameworks performance in predicting high-resolution wind
fields in heterogeneous forested environments. The new canopy
wind model, QCM, takes advantage of the increasing availability of
high-resolution LiDAR data for plant canopies, and is particularly
useful for situations with limited data, time, and computational
power. The approach was compared against QUIC’s original
model, based on the work of Cionco (1965), and a more recent
model (Massman et al., 2017), using experimental data from a
horizontally homogeneous orchard surveyed with a high-resolution
observation tower (Patton et al., 2011), and a set of 31 ground-based
anemometers in a large heterogeneous pine forest (Ottmar et al.,

2016a). In the latter case, QUIC was coupled with the large-
scale prognostic model WRF for simulation results at different
resolutions.

Uniquely, the QCM solves for the non-local transfer of
momentum within the canopy layer, and does not rely on empirical
coefficients to model the canopy elements. It accurately depicts the
average canopy wind profile features, i.e., wind unaffected above
two to three times the effective canopy height, logarithmic wind
profile above the canopy, abrupt wind attenuation below the canopy
top logarithmically proportional to the vegetation density, and the
formation of a sub-canopy jet. Of the tested models, only QCM
could reproduce the SCJ feature due to its use of the canopy
wind sub-model inspired by Zeng and Takahashi (2000) while
using one less empirical coefficient than the original version. The
QCM outperformed the other models when applied to predict
the CHATS data over two different seasons and for all observed
atmospheric stability conditions, which was largely due to its ability
to predict the secondary windmaximum commonly observed in the
CHATS orchard. In the RxCADRE forest case, we demonstrated that
decreasingWRF simulation resolution (tens ofmeters to kilometers)
or the number of points to initialize the QCM wind field (tens to
tens of thousands of points), was not a critical factor in obtaining
the best results (at least for the RxCADRE case). It was expected
that theWRF horizontal resolution would not significantly affect the
results because the simulations used a one-dimensional PBL scheme,
as explained earlier (Section 3.2.2). The wind was more accurately
computed in denser parts of the forest, where the momentum was
mostly transferred vertically from winds above the canopy rather
than advected horizontally through the forest, and ideally far from
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edges’ effects, as assumed by the hypothesis made to derive the
model.

Fast-modeling applications are vast and cover many different
types of research fields. As introduced in Figure 2, improved
modeled wind fields in canopies can readily be applied to fire or
disease spread modeling to promote better health conditions and
preserve cities and natural resources. Moreover, since the model
relies on few user-defined coefficients and can run on personal
computers in a reasonable time (a few minutes for hours of physical
simulation time), it is accessible to non-expert users. The version
of QUIC presented in this study was only parallelized with Open
Multi-Processing (OMP) routines, but a more advanced and faster
version, called QES-Winds, that utilizes GPU-based parallelization
has already been developed by Bozorgmehr et al. (2021). The new
QUIC canopy wind model naturally integrates into the new code
framework as well as other similar frameworks, such as WindNinja
(Forthofer et al., 2014).

An important limitation of the current model is its potential
inaccuracy on steep slopes, where downslope and upslope flows
interact with the canopy flow in a complex manner (Finnigan et al.,
2020). To address this issue, including a model for slope with
vegetation would provide value for all applications taking place
in regions with forested mountains, hills, canyons, etc. A second
critical point to address is the definition of a clear threshold for
the resolution at which it is best to represent the vegetation as
a collection of single elements, or a patch of constant averaged
density. In other words, we need to quantify how homogeneous
a vegetation patch must be to allow the application of volume-
averaging operators, an essential transformation in the canopy wind
modeling framework. This question is now made relevant thanks to
the increased availability of high-resolution LiDAR instruments or
satellite data, and its answer will help to address the ever-growing
need to model how forest heterogeneity impacts wildfire rate of
spread (as studied by Moody et al., 2023) or the wind velocity field,
as examined in the present article. Finally, it would be interesting to
simulate the wind field in vegetated areas in urban environments,
like large parks in cities or nearby forests. Indeed, these locations
play a great role in the control of temperature and humidity
variations, as well as the attenuation or blocking of particles like
pollutants.
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