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With the implementation of the “Belt and Road” initiative, tunnel projects were
designed in accordance with Russian design specifications and constructed by
Chinese companies in countries along the route. Design companies and
construction companies use different rock classification methods, which will
increase the safety risk and cost of the tunnels. Therefore, it is necessary to
study the correlation between Chinese engineering rock mass classification and
Russian rockmass classification. The goal was to establish the correlation between
rock mass basic quality (BQ) and Protodyakonov coefficient (f) for rock mass
classification. Firstly, based on the equivalence principle of uniaxial compressive
strength (UCS), the relationship between BQ and f containing the velocity index of
rock mass (Kv) was established by comparing the relationship between f and BQ in
the empirical formula of UCS. Secondly, through the equivalent principle of
volumetric joint count of rock mass (Jv), we compared the empirical formula
between the intactness index of Kv and rock quality designation (RQD) and
conducted linear regression analysis on a large amount of data. The
relationship between Kv and RQD was established. Finally, the relationship
between BQ and f is quantitatively expressed and a classification table
corresponding to the Russian rock classification and the Chinese engineering
rock classification is obtained. The method is applied to Kyrgyzstan mountain
tunnels.
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1 Introduction

Rock mass basic quality (BQ) and Protodyakonov coefficient (f) are the rock classification
methods in China and Russia respectively. Due to the different methods of rock classification,
serious communication problems arose during the tunnel project, which was designed
according to Russian norms and built according to Chinese standards. Coupled with the
implementation of the “Belt and Road” initiative, there will be tunnel projects designed
according to Russian norms and built by China in the countries along the route (Song et al.,
2019; Tian et al., 2019; Wang et al., 2022). Differences in the methods of rock classification can
lead to lots of problems. For example, the North-South Crossing Tunnel in Kyrgyzstan was
designed according to Russian standards, built according to Chinese tunnel construction
concepts, and supervised by Kyrgyzstan. The surrounding rock is classified according to the
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Russian Code of Rock Strength. However, according to the Chinese
Code for Design of Highway Tunnels (JTG-D70-2004), the tunnel
surrounding rock should be classified according to the Standard for
Engineering Classification of Rock Mass (GB/T 50218-2014). Due to
different construction concepts and standard systems, it was difficult
to communicate on site (Song et al., 2020). Therefore, in order to
ensure smooth tunnel construction, it is necessary to establish the
correlation between Chinese engineering rock classification BQ and
Russian rock classification f.

Regarding the classification method of Engineering rock mass,
there is no uniform standard across the world. There are several
methods such as the RQD classification method (Li et al., 2022; Ren
et al., 2022), the Protodyakonov coefficient method (Barton, 1974),
theQ system classification method (Bieniawski, 1978), geomechanical
RMR classification method (Nicholson and Bieniawski, 1990; Hoek
and Brown, 1997), Geological Strength Index method (Palmström,
1996), the Rock Mass Index method, and China’s Engineering rock
mass classification BQ method (Yan-jun et al., 2017). The rock mass
classification method has been widely used (Zhao et al., 2021; Zhao
et al., 2017). During tunnel construction, rock classification needs to
take into account not only the effect of rock physical properties on
rock hardness (Du et al., 2020; Song et al., 2022), but it is also
necessary to consider the effect of tunnel excavation on variable
slopes, leading to the deformation of the rock (Du et al., 2023;
Chen et al., 2023). Rock classification is influenced by multiple
factors, but there is no doubt that there is a relationship between
the physical properties and integrity of rocks (Zhang and Einstein,
2004). Some scholars have gained new insights into the research and
application process. They improved the BQ surrounding rock
classification method and proposed a new surrounding rock
classification method (Liu et al., 2019; Guo et al., 2020) There are
also some scholars who conduct research on the relationship between
grading standards. Barton (2002) proposed a rock mass classification
method based on the rock mass quality index BQ. In order to
eliminate the differences between various engineering rock mass
classifications, many experts have tried to establish the correlation
between various rock mass classifications. Dai et al. (2022) studied the
correlation between RMR and Q. Palmstrom and Broch (2006)
analyzed the individual parameters and discussed their relevance to
the natural geological features they were trying to simulate. Results
show that the RMR and the Q, theHC and the Q, and the BQ and the
Q are in logarithmic correlation. Luo et al. (2015) analyzed the effects
of freezing and thawing on rocks and established a linear relationship
between the Geological Strength Index (GSI) and the Tianshan slope
rock mass rating (TSMR) system. Chen and Liu (2007) proposed a
rock mass quality evaluation model combining AHP and the Fuzzy
Delphi Method (FDM). Zhang et al. (2019) analyzed the correlations
between rock mass rating (RMR) and geological strength index (GSI).

The study of the various rock classification systems mentioned
above basically focuses on RMR, GSI,Q, andBQ, and does not address
the correlation between the Protodakonov coefficient f classification of
Russian rocks and the BQ classification of engineering rocks in China.
Therefore, it is important to study the correlation between the two
systems to provide a reference for tunnel construction in countries
along the “Belt and Road.” In this paper, the similarity relationship
between BQ and f is established. Firstly, the relationship between f and
BQ is established by UCS, and the relationship between BQ and f
containing parameter Kv is obtained. Furthermore, the relationship

between Kv and RQD is obtained through the equivalent volume joint
coefficient (Jv) and the linear regression analysis of a large amount of
data. Finally, the quantitative relationship between BQ, f, and RQD
was obtained, and the rock mass classification table corresponding to
BQ and f was established through this relationship, which was applied
to the north-south cross-ridge tunnel in Kyrgyzstan and achieved
good construction results.

2 Analysis of the correlation between
BQ and f

The BQ method of Chinese engineering rock classification is a
comprehensive method to reflect various indexes of rocks. The
Protodyakonov coefficient f takes into account the physical factors
of the rock (Wang et al., 2020) and numerically reflects the solidity of
the rock. Although bothmethods can reflect the firmness of rocks, the
number of rock solidity indicators varies considerably due to the
different classification methods used. However, both methods use
rockUCS to evaluate rock firmness, which shows that there is a certain
correlation between the two methods. We established the correlation
between BQ and f based on the UCS equivalence principle.

2.1 Russian rock Protodyakonov coefficient
classification

The solidity of rock reflects the ability of the rock to resist
damage from an external force, such as rock stability, explosibility,
and resistance to disturbance. In the construction process of
underground engineering, most of the rocks are in the state of
compression, so the compressive strength method has better
applicability. Protojakonov modified the previous formula for f
and proposed Eq. 1 for calculating f using compressive strength.
The Protodyakonov coefficient f corresponds to the classification of
the rock mass as shown in Table 1.

f � R
10

(1)

Where R is the UCS of rock.
Guo et al. (2008) explored the correlation between a variety of

rock fragmentation functions in underground engineering disasters
through rock fragmentation and rock UCS experiments. The linear
correlation between rock strength coefficient and UCS was obtained
by linear regression on the experimental results of f and UCS of
different rocks as in Eq. 2.

R � 19.078f + 18.361 (2)
This correlation is highly correlated, and the correlation

coefficient is 0.984.
A distinctive feature of rocks compared to other materials is the

high variability of data when solidity measurements are repeated
(Gökceoğlu et al., 2000). Therefore, the f established by
Protodyakonov and Guo differs significantly from the correlation
formula of the UCS. The non-homogeneity of the rocks, which leads
to the inevitable dispersion of the measured data, makes the
difference between the two indistinguishable. Equations 1, 2
should be used as a basis for derivation.
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2.2 China’s engineering rock mass
classification

Qualitative classification of engineered rocks was carried out by
integrating rock strength, rock integrity, degree of rock weathering, and
degree of cementation of structural surfaces (Hashemi et al., 2010).UCS
and Kv are the main influencing factors of the rock quality index, and
the relationship between BQ, Kv, and UCS is given in the Standard for
Engineering Classification of Rock Mass using the following equations:

BQ � 90 + 3R + 250Kv (3)
Where R is the UCS of the rock, and KV is the integrity factor of

the rock mass.
Notes, in the process of applying Eq. 3, when R > 90Kv +30, R =

90Kv +30, and Kv should be taken into Eq. 3 to calculate BQ. When
Kv > 0.04R +0.4, Kv = 0.04R +0.4, and R should be taken into Eq. 3 to
calculate BQ. The corresponding rock mass classification of the BQ
method is shown in Table 2.

2.3 The correlation between BQ and f

Both classification methods use the indicator of the UCS of rock,
so the correlation between BQ and f can be established according to
the UCS equivalent principle.

Comparing Eqs 1, 3, we can obtain:

BQ � 90 + 30f + 250Kv (4)
Comparing Eqs 2, 3, we can obtain

BQ � 145.1 + 57.2f + 250Kv (5)
It can be seen from Eqs 4, 5 that the correlation between BQ and

f is obtained by equivalent substitution ofUCS. When f is known, the
basic quality BQ of the rock still cannot be obtained, because the
integrity factor Kv of the rock mass is still missing in the formula.
Therefore, the correlation between Kv and RQD can be further
investigated to improve Eqs 4, 5. In order to achieve the goal that the
Kv and f parameters in the classification method with known
Protodyakonov coefficients can be linked to the BQ classification
method.

2.4 The correlation between RQD and Kv

The correlation was calculated between rock mass integrity
coefficient Kv, rock quality designation RQD, and volumetric
joint count of rock mass Jv (Bieniawski, 1989; Jiang et al., 2013).

Kv � 0.85 − JV/35.15 (6)
RQD � 101 − 5.9JV (7)

According to the equivalent principle of volumetric joint count
of rock mass, comparing Eqs 6, 7, we can obtain

Kv � 0.00482RQD + 0.3692 (8)
Deere et al. (1969), China’s Ministry of Water Resources, the

Kunming Survey and Design Institute of the Ministry of Energy, and
The Southwest Research Institute of the Ministry of Railways
Science Research, China (Wang et al., 2007) studied the

TABLE 1 Rock mass classification by Protodyakonov.

Rock class Definition Description f

I The strongest rock The strongest, densest, and most resilient quartzite, basalt, and various other particularly sturdy rocks 20

II Very strong rock Very strong granite rock, quartz porphyry, very strong granite, hard schist, less solid quartzite than the upper
level, the strongest siliceous sandstone and limestone

15

III Solid rock Granite (dense) and granitic rock, very strong siliceous sandstones and limestone, a vein of quartz, strong
conglomerate, very strong iron ore

10

IIIa Solid rock Limestone (solid), unstable granite, solid sandstone, marble, dolomite, pyrite 8

IV Rather solid rock General ore rock 6

IVa Rather solid rock Shale sandstone 5

V Medium rock Solid clay rocks, unrugged sandstone and limestone 4

Va Medium rock Any of various shale (imfirm), dense marl rocks 3

VI Rather weak rock Weaker shale, very weak limestone, chalk, rock salt, gypsum, permafrost, anthracite, ordinary tuff, fractured
sandstone, cemented conglomerate, rock soil

2

VIa Rather weak rock Gravel soil, fractured shale, agglomerated conglomerate and gravel, solid coal, hardened clay 1.5

VII Soft rock (soft soil) Dense clay, soft bituminous coal, solid impact layer, clay soil 1

VIIa Soft rock (soft soil) Lightweight clay soil, loess, gravel 0.8

VIII Soil rock (soil) Humus, peat, light sandy soil, wet sand 0.6

IX Loose rock (loose soil) Sand, foothills, fine gravel, loose soil, extracted coal 0.5

X Quicksand rock (fluidity
soil)

Floating sand, swamp soil, water-bearing loess and other water-bearing soils 0.3
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correlation between rock quality designation and rockmass integrity
coefficients, which is as shown in Table 3.

Based on the data in Table 3, The curve of the correlation
between Kv and RQD is plotted (Figure 1), and linear regression is
performed to obtain Eqs 9–11.

Kv � 0.00934RQD − 0.04195 R2 � 0.973( ) (9)
Kv � 0.00913RQD − 0.03855 R2 � 0.961( ) (10)
Kv � 0.00942RQD − 0.00656 R2 � 0.987( ) (11)

Put Eqs 8, 9 into Eq. 4 respectively, we can obtain

BQ � 182.3 + 30f + 1.205RQD (12)
BQ � 79.51 + 30f + 2.335RQD (13)

Put Eqs 8, 9 into Eq. 5 respectively, we can obtain

BQ � 237.40 + 57.2f + 1.205RQD (14)
BQ � 137.61 + 57.2f + 2.335RQD (15)

Put Eqs 10, 11 into Eq. 4 respectively, we can obtain

BQ � 80.36 + 30f + 2.283RQD (16)
BQ � 80.36 + 30f + 2.335RQD (17a)

Put Eqs 10, 11 into Eq. 5 respectively, we can obtain

BQ � 135.5 + 57.2f + 2.283RQD (18)
BQ � 143.5 + 57.2f + 2.335RQD (19)

3 Discussion

In terms of the upper limit, when f is too large and RQD is not
large, such a hard but poorly intact rock mass has poor stability.
Although f is high, it plays little role in keeping stability. In terms of

the lower limit, when f is very low and the corresponding RQD value
is too high. The stability of such a complete and weak rock mass is
still not good. Therefore, when carrying out rock mass classification,
special attention should be paid to the upper and lower limits
(Laubscher, 1990).

RQD was taken as the abscissa, and f was the ordinate to draw
the BQ contour map. According to the limit value of the BQ index
of each surrounding rock grade in the highway tunnel
specification, the position of each surrounding rock in the
figure is determined. In Figures 2A–F correspond to the Eqs
12–19, respectively.

When RQD < 25, the integrity of such surrounding rock is
extremely poor, which is not conducive to tunnel excavation.
Even if the rock is hard, it cannot raise its surrounding rock level.
When RQD < 25, Figures 2A, C reach the grade III surrounding
rock, which is therefore unreasonable. When f < 1, even if the
integrity of such a soft stratum of dense clay, gravel, and sand is
very good, its stability is very poor. Figures 2D, G, H reach Class
III surrounding rock, which is therefore unreasonable. It can be
seen from Figure 2 that when RQD < 25 and f < 1, the grades in
Figures 2B, E, F are IV and V. They have good upper and lower
limits, which can fully reflect the characteristics of rock mass
classification. Figure 2F can best reflect the characteristics of rock
mass classification and meet the requirements of rock mass
classification. And the intermediate Eq. 11 for the derivation
of Figure 2F has the highest correlation coefficient. Therefore,
Figure 2F was recommended as the basis of rock mass
classification. In other words, Eq. 17a was selected as a basis
for the qualitative classification of rock mass.

BQ � 88.36 + 30f + 2.335RQD (17b)
According to the classification Table 1 of rockmass classification by

Protodyakonov, when f < 2, the surrounding rock is mostly weak and
broken rock, soil, and sand. According to China’s engineering rock

TABLE 2 China’s engineering rock mass classification.

Rock class Description BQ

I Hard rock, rock body integrity >550

II Hard rock and rock mass are relatively complete 550~451

Harder rock and rock body integrity

III Hard rock and rock mass are broken 450~351

Harder rock and rock mass are more complete

Soft rock, complete rock mass

VI Hard rock, rock mass broken 350~251

Harder rock and rock mass are broken ~ broken

Soft rock, rock mass integrity ~ broken

Soft rock, rock body integrity ~ relatively complete

V Soft rock, rock mass broken <250

Soft rock and rock mass are broken ~ broken

All extremely soft rocks and all and broken rocks
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mass classification, this kind of rock mass is divided into V rock mass.
Therefore, Eq. 17b is further modified to add a restriction condition,
when f< 2, BQ < 250.When applying the Eq. 17b, 1) when f> 0.08RQD
+ 2.94, f > 0.08RQD + 2.94, and RQD should be put in Eq. 17b to
calculate BQ. 2)When RQD > 42.46f + 41.7, RQD = 42.46f + 41.7, and f
should be put in Eq. 17b to calculate BQ. 3) When f < 2, BQ < 250.

For example, when f = 10 is solid rock, RQD = 50~75 is fine
rock, which corresponds to RQD = 451~550 as hard and fine II
rock. The correspondence between BQ and f is based on Eq. 17b.
However, since RQD, f, and BQ are all within a range, the
correspondence is subject to some error near the lower and
upper limits of the range. Eq. 17b is an empirical formula
established based on the North-South Crossing Tunnel in

Kyrgyzstan, which has application in similar stratigraphic
conditions, but the adaptive conditions in other stratigraphic
conditions need to be further verified.

4 Results

According to Eq. 17b, the correlation between Russian rock
Protodyakonov coefficient classification and China’s engineering
rock mass classification can be obtained, as shown in Table 4.
Russian rock Protodyakonov coefficient classification was divided
into corresponding engineering rock mass classifications according
to different RQD values. When RQD < 14, this kind of surrounding
rock is unfavorable to tunnel excavation, so the rock mass is divided
into V rock mass no matter what the value of f is. When f < 2, this
kind of surrounding rock is not conducive to tunnel excavation, so
no matter how large the RQD value, the rock mass is divided into V
surrounding rock.

5 Mechanical parameter estimation

Different rock classifications correspond to different
construction methods. Different rock physical parameters
have an important influence on the structural design. Such as
the weight γ(kN/m3), deformation modulus E(GPa), internal
friction angle φ(°), cohesion c(MPa), and Poisson’s ratio μ (Kaya
et al., 2017). For this purpose, according to the data in the table
of physical and mechanical parameters of rock bodies provided
by the specification for the classification of engineering rock
bodies, the curves of each physical and mechanical parameter are
plotted with BQ as the horizontal coordinate, as shown in
Figure 3.

TABLE 3 Correlation between RQD and KV.

Data sources RQD/% KV Rock mass quality

Merritt 0–25 0–0.2 Very poor

25–50 0.2–0.4 Poor

50–75 0.4–0.6 Fine

75–90 0.6–0.8 Good

90–100 0.8–1.0 Very good

China’s Ministry of Water Resources and the Kunming Survey and Design Institute of Ministry of Energy 0–25 0–0.2 Crushing

25–60 0.2–0.45 Poor

60–90 0.45–0.75 Good

90–100 0.75–1.0 Very good

The Southwest Research Institute of the Ministry of Railways Science Research, China 0–25 0–0.25 Crushing

25–50 0.2–0.45 Poor

50–75 0.45–0.65 Medium

75–90 0.65–0.85 Good

90–100 0.85–1.0 Very good

FIGURE 1
Correlation curve between KV and RQD.
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It can be seen from Figure 3 that there is a strong correlation
between rock mechanical parameters and BQ. Therefore, the fitting
method was used to analyze the relationship between each

mechanical parameter and BQ in Figure 3, and the following
empirical formula was obtained. The empirical formula is as
follows:

FIGURE 2
Classification diagram of rock mass quality: (A) BQ = 182.3 + 30f + 1.205RQD, (B) BQ = 79.51 + 30f + 2.335RQD, (C) BQ = 237.40 + 57.2f +
1.205RQD, (D) BQ= 137.61 + 57.2f+ 2.335RQD, (E) BQ= 80.36 + 30f+ 2.283RQD, (F) BQ= 88.36 + 30f+ 2.335RQD, (G) BQ = 135.5 + 57.2f+ 2.283RQD,
(H) BQ = 143.5 + 57.2f + 2.335RQD.
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γ � 30.63
1 + e−0.004 BQ−16( ) R � 0.992( ) (20)

c � 2.39
1 + e−0.014 BQ−413( ) R � 0.999( ) (21)

φ � 77.23
1 + e−0.006 BQ−349( ) R � 0.999( ) (22)

μ � 0.55
1 + e0.004 BQ−398( ) R � 0.999( ) (23)

E � 55
1 + e−0.013 BQ−520( ) R � 0.998( ) (24)

The fitting curve obtained by Eqs 20–24 is shown in Figure 3.
The weight γ(kN/m3), deformation modulus E(GPa), internal

friction angle φ (°) and cohesion c(MPa) tend to increase with the
increase of BQ value. The Poisson’s ratio μ tends to decrease with
the increase of BQ. However, the change speed of mechanical
parameters with BQ is not consistent, especially E, when BQ <
425, the speed of increase is slow, and when BQ > 425, it increases
rapidly. RQD cannot explain the trend of physical parameters
intuitively. Therefore, combining Eq. 17b with Eqs 20–24 can
establish the relationship between physical parameters and RQD,
f in the following equation.

γ � 30.63

1 + e−0.004 12.36+30f+2.335RQD( ) (25)

TABLE 4 The correlation between BQ and f.

Rock strength classification f RQD/% BQ Engineering rock mass classification

I~III 20~10 77~100 >550 I

57~77 550~451 II

36~56 450~351 III

15~35 350~251 VI

0~14 <250 V

IIIa 8 94~100 >550 I

57~93 550~451 II

36~56 450~351 III

15~35 350~251 VI

0~14 <250 V

IV 6 77~100 550~451 II

36~76 450~351 III

15~35 350~251 VI

0~14 <250 V

IVa 5 91~100 550~451 II

46~90 450~351 III

15~46 350~251 VI

0~14 <250 V

V 4 61~100 450~351 III

17~60 350~251 VI

0~16 <250 V

Va 3 73~100 450~351 III

30~72 350~251 VI

0~29 <250 V

VI 2 86~100 450~351 III

42~85 350~251 VI

0~42 <250 V

VIa~X 1.5~0.3 0~100 <250 V
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c � 2.39

1 + e−0.014 30f+2.335RQD−324.64( ) (26)

φ � 77.23

1 + e−0.006 30f+2.335RQD−260.64( ) (27)

μ � 0.55

1 + e0.004 30f+2.335RQD−309.64( ) (28)

E � 55

1 + e−0.013 30f+2.335RQD−431.64( ) (29)

From Eq. 1 to Eq. 8, f is related to uniaxial compressive
strength, which can reflect the nature of rock strength, and
RQD is related to the volumetric joint count of rock mass Jv,
which can reflect the nature of rock integrity. Therefore, Eqs 25–29
comprehensively consider the effects of multiple factors on rock
physical parameters.

6 Engineering applications

The Kyrgyz North and South Cross-Ridge Tunnel has a total
length of 3,750 m. The length of the main tunnel of the 3-A section is
1,850 m. The portal chainage is K 431+90. The boundary chainage is
K 450+40. The length of the service guide hole is 1,850 m, the portal
chainage is K 431+90, and the boundary chainage is K 450+40.
Tunneling is carried out on the Paleozoic stratum with sedimentary
rocks (Devonian, Carbon, and Early Permian sedimentary rocks),
which were medium-strength and relatively fractured. The tunnel
passes through some structural fault zones, which can range from
the first few meters to several tens of meters in the near-fault zone.
The tunnel, tunnel portal, and the borehole core are shown in
Figure 4.

According to the Russian code, the tunnel surrounding rock is
classified according to the Protodyakonov coefficient (f). However,

according to the requirements of the Chinese Highway Tunnel
Design Code, the tunnel surrounding rock classification is carried
out according to the BQ method. Therefore, in order to solve the
contradiction of construction methods, the correlation between
Chinese engineering rock mass classification BQ and Russian
rock Protodyakonov coefficient f was studied. At the same time,
it is also of great significance for improving construction quality,
ensuring completion, and optimizing design.

The tunnel is a small distance tunnel. Due to the complex
geological conditions, the construction adopts the pilot tunnel
sequential construction scheme. A drilling room is set every
100 m along the tunneling direction, and engineering geological
exploration is carried out throughout the tunnel. The property
information of the surrounding rock is shown in Figure 4. The
grade of the surrounding rock was estimated by the Protodyakonov
coefficient f method and BQ method. The results are shown in
Table 5.

It can be seen from Table 5 that the Russian rock Protodyakonov
coefficient classification has a clear correspondence with China’s
engineering rock mass classification. The IV surrounding rock of
Russian rock Protodyakonov coefficient classification corresponds
to the IV surrounding rock of BQ classification, and the V~VII
surrounding rock of Russian rock Protodyakonov coefficient
classification is equivalent to the V surrounding rock of BQ
classification. The main reason for the difference in the
classification of the two methods is that the rock strength
quantitative classification index only has the rock Protodyakonov
coefficient indicating the rock strength, while the BQ quantitative
classification index selects the compressive strength for
characterizing the rock strength and the integrity coefficient
characterizing the integrity of the rock mass.

At the same time, the physical and mechanical parameters of the
surrounding rock were estimated, which can provide a theoretical

FIGURE 3
Relationship between mechanical parameters of rock mass and BQ.
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TABLE 5 Classification of tunnel surrounding rock.

Chainage RQD/% f Rock strength classification BQ Engineering rock mass classification

K 431+90~K 433+59 2.74 1 VII 124.7 V

K 433+59~K 433+84 5.84 4 V 222.0 V

K 433+84~K 434+06 2.11 1.5 VIa 138.2 V

K 434+06~K 436+51 5.46 4 V 221.1 V

K 436+51~K 436+92 3.74 3 Va 187.0 V

K 436+92~K 437+14 2.64 1.5 VIa 139.5 V

K 437+14~K 437+91 3.22 3 Va 185.8 V

K 437+91~K 439+09 5.23 4 V 220.5 V

K 439+09~K 439+37 2.10 1.5 VIa 138.2 V

K 439+37~K 440+33 5.12 4 V 220.32 V

K 440+33~K 440+78 3.74 3 Va 187.0 V

K 440+78~K 440+97 5.32 4 V 220.7 V

K 440+97~K 441+72 3.64 3 Va 187.0 V

K 441+72~K 441+86 2.11 1.5 VIa 138.2 V

K 441+86~K 444+28 5.74 5 IVa 251.7 V

K 444+28~K 444+67 2.25 1.5 VIa 138.6 V

K 444+67~K 448+67 6.56 6 IV 283.6 IV

K 448+67~K 449+10 2.74 1.5 VIa 139.7 V

K 449+10~K 450+40 6.42 6 IV 283.3 IV

FIGURE 4
Engineering-geological cross-section along the axis of the tunnel.
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basis for the subsequent construction and optimal design. The
parameters are shown in Table 6.

7 Conclusion

The surrounding rocks of Kyrgyzstan’s north-south cross-ridge
tunnel are classified according to Russian standards. The tunnel is
built according to the tunnel construction concept of China.
Different grades of surrounding rock correspond to different
construction schemes, so the problem of on-site communication
difficulties appeared during the tunnel construction process.
Therefore, the correlation between the BQ classification of
Chinese engineering rock mass and the classification of Russian
rock Protodyakonov coefficient f is studied.

(1) This paper establishes a correlation between the basic quality
(BQ) of a rock mass and the Protodiakonov coefficient (f) for
rock classification. It solves the differences in construction
concepts due to the differences in the surrounding rock
classification system in engineering construction.

(2) Based on theUCS equivalence principle, the correlation between
BQ and f is deduced from the empirical formula between f, BQ,
and UCS. According to the equivalent principle of volumetric
joint coefficients (Jv), the correlation between Kv and RQD is
deduced by using the empirical formula and linear regression

analysis between Kv, RQD, and Jv. Then the relationship
between BQ, f, and RQD was obtained.

(3) The corresponding tables of rock mass classification for
Russian rock Protodyakonov coefficient classification and
China’s engineering rock mass classification are obtained.
Russian rock Protodyakonov coefficient classification is
divided into corresponding China’s engineering rock mass
classification according to different RQD values. When
RQD < 14, this kind of surrounding rock is unfavorable to
tunnel excavation, so the rock mass is divided into V rock
mass no matter what the value of f is. When f < 2, this kind of
surrounding rock is not conducive to tunnel excavation, so
no matter how large the RQD value, the rock mass is divided
into V surrounding rock.

(4) In the North and South Cross-Ridge Tunnel of Kyrgyzstan, The
IV surrounding rock of Russian rock Protodyakonov coefficient
classification corresponds to the IV surrounding rock of BQ
classification. The V~VII surrounding rock of Russian rock
Protodyakonov coefficient classification is equivalent to the V
surrounding rock of BQ classification.
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TABLE 6 Estimation of physical and mechanical parameters of rock mass.

Chainage Weight γ/kN/m3 Cohesion c/MPa Internal fractional angle φ/° Deformation modulus E/GPa μ

K 431+90~K 433+59 18.59 0.04 15.96 0.32 0.41

K 433+59~K 433+84 21.29 0.15 24.58 1.12 0.37

K 433+84~K 434+06 18.99 0.05 17.01 0.38 0.41

K 434+06~K 436+51 21.27 0.15 24.49 1.11 0.37

K 436+51~K 436+92 20.36 0.10 21.21 0.72 0.38

K 436+92~K 437+14 19.02 0.05 17.11 0.39 0.41

K 437+14~K 437+91 20.33 0.10 21.10 0.71 0.39

K 437+91~K 439+09 21.25 0.15 24.43 1.10 0.37

K 439+09~K 439+37 18.99 0.05 17.01 0.38 0.41

K 439+37~K 440+33 21.25 0.15 24.41 1.10 0.37

K 440+33~K 440+78 20.36 0.10 21.21 0.72 0.38

K 440+78~K 440+97 21.26 0.15 24.45 1.10 0.37

K 440+97~K 441+72 20.36 0.10 21.21 0.72 0.38

K 441+72~K 441+86 18.99 0.05 17.01 0.38 0.41

K 441+86~K 444+28 22.04 0.23 27.66 1.63 0.35

K 444+28~K 444+67 19.00 0.05 17.04 0.38 0.41

K 444+67~K 448+67 22.81 0.34 31.14 2.44 0.34

K 448+67~K 449+10 19.03 0.05 17.13 0.39 0.41

K 449+10~K 450+40 22.80 0.33 31.11 2.43 0.34
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