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Landslides are a natural disaster that exists widely in the world and poses a great
threat to human life and property, so it is of great importance to identify and locate
landslides. Traditional manual interpretation can effectively identify landslides, but
its efficiency is very low for large interpreted areas. In this sense, a landslide
recognitionmethod based on the Dual Graph Convolutional Network (DGCNet) is
proposed to identify the landslide in remote sensing images quickly and
accurately. The remote sensing image (regional remote sensing image) of the
northern mountainous area of Tuergen Township, Xinyuan County, Xinjiang
Province, was obtained by GeoEye-1 (spatial resolution: 0.5 m). Then, the
DGCNet is used to train the labeled images, which finally shows good
accuracy of landslide recognition. To show the difference with the traditional
convolutional network model, this paper adopts a convolution neural network
algorithm named GoogLeNet for image recognition to carry out a comparative
analysis, the remote sensing satellite images (single terrain image) of Xinyuan
County, Xinjiang Province is used as the data set, and the prediction accuracy is
81.25%. Compared with the GoogLeNet model, the DGCNet model has a larger
identification range, which provides a new method for landslide recognition of
large-scale regional remote sensing images, but the performance of DGCNet is
highly dependent on the quality and characteristics of the input image. If the input
data quality is poor or the image structure is unclear, the model’s performance
may decline.
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1 Introduction

In recent years, the identification of geological disasters using
remote sensing images has become a prominent research area within

the realm of natural disasters. Landslide geological disasters are
widespread across the globe and pose a severe threat to human life
and property. In 2021, a total of 367 severe natural disasters occurred
worldwide, including 11 significant landslides. These landslides

TABLE 1 List ofmachine learning techniques practiced for landslide susceptibility analysis (Breiman, 1996;Wan, 2013; Alimohammadlou et al., 2014; Bien Bui et al.,
2016; Tien Bui et al., 2016; Wang et al., 2016; Kavzoglu et al., 2019; Du et al., 2020; Mohan et al., 2020; Chen et al., 2023).

Methods Category Purpose Advantage Disadvantage

Random Forest Tree-based Feature selection, regression, classification Limited samples can be fully applied Overfitting on some noisy problems

Advantage of versatility and accuracy

Highly adaptable

Rotation Forest - Generation of accurate and diverse
classifiers

Training is faster Sensitive to noise data

Functional Tree - To develop a decision tree for separating
two classes from the training set

Advantage of versatility and accuracy Overfitting on some noisy problems

Logistic Model
tree

- - Advantage of versatility and accuracy Overfitting on some noisy problems

Decision Tree - Description of structural pattern in data
without having relation with input variable

to objective variable

Low complexity Overmatching issues may arise

Insensitive to missing intermediate values

Can handle uncorrelated feature data

Bagging - Classification and regression Has a very high accuracy rate On certain sample sets that are relatively
noisy, the model tends to fall into overfitting

Can handle very high dimensional data
without feature selection

SVM Kernel-based Find optimal hyperplane Low generalization error rate Sensitive to parameter tuning and choice of
kernel function

Low computational overhead Raw classifiers unmodified are suitable for
dealing with two-class problems

Results are easy to interpret

Kernel Logistic
Regressor

Kernel-based Find discriminant function for separating
discriminating classes

Can be applied to continuous and categorical
independent variables

Sensitive to multicollinearity of independent
variables in the model Can be applied to
continuous and categorical independent

variables

Self-
organizing map

Neural
network

Dimensionality reduction The final clustering results produced have a
relatively high level of visualization and

interpretability

Without a defined objective function, it is not
easy to compare different clustering results

Fuzzy Clustering Fuzzy-based Arrange objects with similarity in a group Will calculate the affiliation of each sample
to all classes, has a sample classification

results reliability of the calculation method

Higher computational volume

Sample categorization is more accurate

Deep Learning - By combining low-level features to form
more abstract high-level representations of
attribute categories or features, one can

discover distributed feature representations
of the data

Highly adaptable Time-consuming training, model validation
is complex and troublesome

Strong learning ability and wide coverage Poor portability and high hardware cost

Artificial Neural
Network

- Simulating biological neural networks High accuracy; High learning ability Need a large number of parameters

Cannot observe the learning process, the
results are difficult to interpret

Long learning time

Logistic
Regression

- To develop a regression formula for
classification borders based on existing data

Computationally inexpensive Easy to underfit

Easy to understand and implement Classification accuracy may not be high

Not very complex
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impacted 12 countries or regions, predominantly in Asia and South
America, resulting in a tragic loss of 224 lives, affecting the
livelihoods of 56,600 people, and causing direct economic
damages totaling $250 million (Beijing Normal University, 2021).
Therefore, timely and accurate identification of landslide locations
and the implementation of corresponding prevention and control
measures are of paramount importance. As artificial intelligence
continues to advance, the integration of artificial intelligence with
remote sensing imagery for the identification of geological disasters
is gradually evolving. In recent years, numerous studies have been
conducted on landslides using deep learning algorithms (Hu et al.,
2019; Piralilou et al., 2019; Ye et al., 2019; Prakash et al., 2020; Yu
et al., 2020; Zhu et al., 2020). For instance, Cheng et al. (2013)
introduced a new scenario classification method for automatic
landslide detection based on remote sensing images. Danneels
et al. (2007) presented a landslide recognition method utilizing
the maximum likelihood classification (MLC) approach for
multispectral remote sensing images. Zhan et al. (2022) devised a
method for extracting landslide trails using the Fire Extinguishing
Model. Shao et al. (2021); Shao et al. (2022) proposed the Novel
Multiscale Decision Fusion approach for unsupervised change
detection in high-resolution images, as well as an unsupervised
change detection method using Fuzzy Topology-Based Majority
Voting. Fu et al. (2022) introduced the Novel Higher-Order Clique
Conditional Random Field for unsupervised change detection in
remote sensing images. Zhang et al. (2001) employed a support
vector machine (SVM) for hyperspectral data classification.
Nikoobakht et al. (2022) conducted a landslide susceptibility
assessment using convolutional neural networks, and Azarafza
et al. (2021) presented a deep learning-based approach for
landslide susceptibility mapping. Each of these AI algorithms
applied to landslide identification possesses distinct properties, as
summarized in Table 1.

A general convolutional neural network operates on an
Euclidean structure so that the data from the convolutional
operation shows a very neat matrix. However, most of the data
are irregular, such data usually do not follow obvious patterns or
rules and are characterized by diversity, complexity, and
uncertainty. The data interact with each other to form the shape
of the graph in the data structure. The Dual Graph Convolutional
Network (DGCNet) is characterized by its ability to operate on
graph-structured data, treating nodes and their connections as
fundamental elements. DGCNet employs dual graph convolution
layers, allowing it to capture both local and global structural
information efficiently. It can integrate diverse data sources,
adapt to graph data, and excel in tasks involving spatial
relationships and complex networks, making it particularly
suitable for applications such as social network analysis,
geospatial data, and recommendation systems. DGCNet offers a
powerful framework for addressing problems with graph-based
data. Zhang et al. (2019) used the model for semantic
segmentation and achieved good results.

In this study, we employed two different network models to
identify landslide geological disasters in remote sensing images from
Xinyuan County. Firstly, the regional remote sensing images of
Tuergen town (a mountainous area in Xinyuan County) are
annotated, which was trained and predicted by the DGCNet
model. To show the difference between the DGCNet model and

the traditional convolutional network model, one of the traditional
convolutional network models named GoogLeNet is used to identify
the landslide geological disaster of remote sensing image (single
terrain image) in Xinyuan County. Compared with the GoogLeNet
model, the DGCNet model has a wider recognition range. The
identification of landslides requires the consideration of various data
sources such as geographical information, topography, vegetation,
and more. DGCNet allows the integration of these diverse data
sources into a unified graph structure, making it more suitable for
this type of task. It can effectively amalgamate multi-source
information, account for spatial relationships, adapt to graph
data, and offer novel, advanced approaches for landslide
recognition. This will contribute to improving the accuracy and
timeliness of landslide identification, thereby safeguarding human
lives and property. The DGCNet model is introduced into the field
of landslide recognition, which provides a new method for landslide
recognition of large-scale regional remote sensing images.

2 Geological background and data
selection

Xinjiang province is located in the northwestern part of China,
with a vast territory of rolling mountains, wide topographic height
difference, strong neotectonic movement, and a complex and
changeable climate and natural environment. The underground
cavities formed by underground projects (underground mining
and air defense work) have led to ground collapse geological
disasters to some extent. Therefore, the geological disasters in
this region are characterized by many types, high frequency, wide
affected areas, and serious hazards. Due to the frequency and
severity of landslides, it was decided to use Xinjiang province as
the study area. The location of Xinjiang Province and the study area
of the DGCNet model are shown in Figure 1.

Geological disasters in Xinjiang Province are of significant
concern, as they have consistently posed severe threats to the
safety of towns, critical engineering facilities, and the lives and
properties of residents. A statistical analysis conducted during the
investigation of geological hazards in Xinjiang Province revealed
that out of the 90 counties (cities) examined, 81 of them have
experienced geological hazards. A total of 4791 geological disasters
have occurred in Xinjiang province, resulting in 541 deaths, and
$65 million of direct economic losses. Among the geological
disasters that occurred in this area, according to the classification
and grading standards for geological hazards issued by the China
Association of Geological Hazard Prevention and Control
Engineering (T/CAGHP 018-2016) (China Association of
Geological Hazard Prevention and Control Engineering, 2016),
there are 10 super large disasters, 9 large disasters, 79 medium
disasters, and 4693 small disasters (Xinjiang Geological
Environment Monitoring Institute, 2014).

Xinyuan County is situated at the eastern end of the Yili River
Valley in the northern region of Xinjiang Province. This area falls
within the North Temperate Continental Semi-Arid climate zone,
characterized by mild winters and cool summers, owing to the
influence of moist air currents moving from west to east. The
average annual temperature stands at 8.5°C, with the coldest
month (January) averaging −14.4°C, and the hottest month (July)
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registering an average of 27.95°C. Extreme temperature fluctuations
have been observed, ranging from a minimum of −27.7°C to a
maximum of 39.8°C. Annual precipitation ranges between 270 and
880 mm, while water evaporation levels vary from 1300 to 2000 mm.
Rainwater infiltrates through cracks at the rear edge of slopes,
causing erosion at the front edge, ultimately leading to landslide
occurrences. Different types of landslides occur under the influence
of various rock mass structures, which can be classified into the
following six types.

(1) When the upper part of the slope is the slope deposit and the
lower part is the bedrock structure type, the main groundwater
type is mainly pore water, and the deformation characteristics
are the overall surface sliding. The landslide type is shallow
sliding landslides.

(2) When the upper part of the slope is aeolian deposit loess and the
lower part is bedrock structure type, the main groundwater type
is fissure water and the deformation characteristic is the overall
surface sliding collapse. The landslide type is collapse landslide.

(3) When the upper part of the slope body is aeolian deposit loess,
the middle part is the terrace, and the lower part is bedrock
structure type, the main groundwater type is fissure water, and
the formation of cracks at the back edge of the slope. The
landslide type is a fluid landslide.

(4) When the upper part of the slope body is the terrace, and the
lower part is the bedrock structure type, the main groundwater
type is fissure water and the deformation characteristic is
collapse. The landslide type is collapse landslide.

(5) When the slope is a deep gully structure of loess, the main
groundwater type is mainly pore water, and the deformation
characteristic is slope creep, resulting in lateral diffusion or flow
landslide.

(6) In the case of high and steep fracture rock mass structures, the
main groundwater type is fissure water, and the deformation
characteristics are mainly rock fracture expansion. The
landslide type is collapse landslide.

To solve the identification problem of geological disasters in
Xinyuan County, the DGCNet model is used to identify landslides,

because it is suitable for the identification in a large area. Based on
the remote sensing image data of Tuergen Township in Xinyuan
County, three remote sensing images in the northern mountainous
area of Tuergen Township were selected for labeling and training,
and another one for testing and identification. The labeling was done
with Labelme software, which is a graphical interface image labeling
software. The first step is to import the image into the software,
select the landslide area to label as a landslide, and then save and
export the file. The remote sensing images of Tuergen Township
used are GeoEye-1 image data (spatial resolution: 0.5 m) from
Google Earth, and the location area is shown in Figure 1. The
training set is shown in Figure 2.

On the other hand, the GoogLeNet model is selected to
identify and classify landslide terrain images. A total of
102 landslides and 152 other topographic images from satellite
images were selected based on known landslides in several areas
throughout Xinyuan County. The images used are GeoEye-1
image data (spatial resolution: 0.5 m), Figure 3 and Figure 4
show some landslides and other topographic images in the
sample set respectively. The sample is divided into two parts:
the training set and the test set. 80% of the images of landslide
terrain and other terrain are selected as the training set, and the
other 20% are selected as the test set for analysis.

The process of data and model application is shown in Figure 5.

3 Model introduction

3.1 ResNet network model

The ResNet50 is used as the basic network for training. It was
proposed by four Chinese scholars, including Kaiming of Microsoft
Research Institute (He et al., 2016). By using residual units, a 50-
layer deep neural network was successfully trained with an error rate
of 3.57%. At the same time, the number of parameters is lower than
the Visual Geometry Group Network (VGGNet), and the effect is
very prominent. The structure of the ResNet 50 model can accelerate
the training of the ultra-deep neural network, and the accuracy of
the model is also greatly improved. Assuming that a shallow neural

FIGURE 1
The study area of the DGCNet model (Tuergen Township, Xinyuan County, Xinjiang province).
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network has reached the saturated accuracy, then add several
congruent mapping layers of y = x, at least the error will not
increase, that is, a deeper network should not lead to an increase
in the error on the training set. Assuming that the input of a neural
network is x and the expected output is H (x) if we directly transfer
the input x to the output as the initial result, then the goal we need to
learn is f (x) = H (x) - X. The ResNet is equivalent to changing the

learning goal. Since it is no longer learning a complete output H (x),
the difference between output and input H (x) - x, is the residual.

The residual block is implemented using a shortcut connection,
where the input and output of the block overlap with the shortcut.
This straightforward addition does not introduce additional
parameters or computational overhead to the network.
Simultaneously, it significantly enhances training speed and

FIGURE 2
Schematic diagram of training set: (a1, b1, c1) remote sensing images, (a2, b2, c2) landslide labeling, (a3, b3, c3) landslide areas.

FIGURE 3
The terrain images of landslides in the sample set.

FIGURE 4
The other terrain images of the sample set.
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improves the model’s training effectiveness. This simple structure
can effectively address the degradation problem that arises when
deepening the layers of the model. In traditional convolutional or
fully connected layers, issues like information loss can occur. ResNet
partially addresses this problem by directly bypassing input
information to the output, thus preserving the integrity of the
information. Consequently, the entire network only needs to
learn the differences between input and output, simplifying the
learning objectives and reducing complexity.

3.2 DGCNet model framework

3.2.1 Principle
The DGCNet models the global context of the input feature by

modeling two orthogonal graphs in a single framework. The first
component models spatial relationships between pixels in the image,
whilst these cond model interdependencies along the channel
dimensions of the network’s feature map. This is done efficiently
by projecting the feature into a new, lower-dimensional space where
all pairwise interactions can be modeled, before reprojecting into the
original space (Zhang et al., 2019).

It consists of two branches, each consisting of a graph
convolutional network (GCN) to model contextual information
in the spatial and channel dimensions in a convolutional feature
map. The model has the following main components, the specific
model structure explanation refers to the Reference (Zhang et al.,
2019).

3.2.1.1 Input graph data
The input to DGCNet is a graph data representation, consisting

of nodes and edges. Each node represents an element of data, and
edges indicate relationships between nodes. This forms the
foundational data structure for DGCNet.

3.2.1.2 Graph convolutional layers
DGCNet employs graph convolutional layers to process the

input graph data. These layers perform convolution operations to
capture relationships between nodes and facilitate feature
propagation.

3.2.1.3 Dual graph convolution layers
A distinguishing feature of DGCNet is the presence of dual

graph convolution layers, typically comprising two parallel graph
convolution operations. These layers simultaneously capture local
and global structural information.

3.2.1.4 Feature propagation
Within each convolutional layer, features propagate from one

node to its neighboring nodes, facilitating the capture of inter-node
relationships and information dissemination. This is crucial for
feature extraction.

3.2.1.5 Pooling layers
Pooling operations are often applied after each convolutional

layer to reduce the graph’s size and extract the most salient features.
This helps in reducing computational complexity.

3.2.1.6 Fully connected layers
Following the convolutional layers, one or more fully

connected layers can be included to map the extracted
features to the desired output space, such as classification or
regression.

3.2.1.7 Activation functions
Between layers, activation functions are commonly used to

introduce non-linearity and enhance the model’s expressive
power. Common activation functions include ReLU, Sigmoid,
and Tanh.

These components collectively form the basic structure of a
DGCNet model, enabling it to effectively handle semi-supervised
learning tasks on graph-structured data.

3.2.2 Model structure
The model used in this paper consists of two branches:

1) The GCN of coordinate space models the spatial relationships of
pixels, enabling the network to produce continuous predictions
and consider all objects in the graph.

2) The feature space GCN captures the correlation among more
abstract features. The features of the two parts of the inference

FIGURE 5
Data and model application process.
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are mapped to the original coordinate space and added to the
original features.

The backbone of the model is a ResNet series. The ResNet
series is connected to the DGCNHead. DGCNHead consists of
coordinate branches and channel branches. The input features
are first learned in the coordinate branch, the original input
features are mapped into new dimensions and convolution
learning is carried out. Then, the feature map is combined
with some features of the channel to output the final feature
result.

As is shown in Figure 6.
The overall process is as follows:

1) Training stage: The supervision loss function of training is the
cross-entropy loss function.

2) In the training process, the results of the last round will be
verified in each training, and the relevant loss value will be
printed.

3) The trained model is used to test the accuracy of the test set.

PASCAL-VOC represents the sample dataset.
As is shown in Figure 7.

3.3 GoogLeNet model

GoogLeNet is a Convolutional Neural Network (CNN)
architecture introduced by Christian Szegedy and his team at
Google, which secured the championship in the Imagenet
competition in 2014. The GoogLeNet model consists of 22 layers
in total, featuring 9 inception structures. Despite its depth of
22 layers and 5 million parameters, the number of parameters is
significantly lower than that of both the AlexNet and VGG models.
In fact, GoogLeNet has only 1/12 of the parameters of AlexNet and
1/36 of those in VGG. Therefore, when facing limitations in memory
or CPU and GPU resources, GoogLeNet emerges as the preferable
choice.

The standout characteristic of GoogLeNet lies in its utilization of
the inceptionmodule. This module is designed to create a network with
a robust local topology. It achieves this by performing multiple
convolution and pooling operations on input images and then
combining all the output results into a deep feature map. As various
convolution and pooling operations, such as 1 × 1, 3 × 3, or 5 × 5,
capture different information from the input images, processing these
operations in parallel and merging the results yields a superior image
representation. For a detailed explanation of the specific model
structure, please refer to Reference (Szegedy et al., 2015).

FIGURE 6
Schematic diagram of the model structure.
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The model has the following characteristics.

(1) It can integrate feature information from different scales and
retain more input information. Before this, most other
commonly used convolutional neural networks improved the
performance of the network by stacking more and more
convolutional layers.

(2) A 1 × 1 convolution kernel is used for reduction and mapping
processing. Compared with AlexNet and VGGNet, there is only
one output layer.

(3) Two auxiliary classifiers are added in the middle of the network to
helpwith training, with a total of three output layers, the problemof
gradient disappearance in the training process is solved.

(4) The average pooling is used instead of the fully connected layer,
which greatly reduces the number of model parameters.

3.3.1 Inception structure
The Inception structure is a crucial component of the

GoogLeNet model, and its core idea is to approximate or directly
replace the optimized local sparse component structure with a dense
component structure. This structure retains the original Inception
design, consisting of four convolutional branches:

Branch 1 employs a 1 × 1 convolutional layer with a step size of
1. The convolution kernel does not alter the length and width of the
feature map but directly modifies its depth.

Branch 2 utilizes a 3 × 3 convolutional layer with a step size of
1 and padding of 1, aimed at extracting feature maps of varying sizes.

Branch 3 incorporates a 5 × 5 convolutional layer with a step size
of 1 and padding of 2, also intended to extract feature maps of
different sizes.

Branch 4 is a max-pooling layer with a pool core size of 3 × 3, a
step size of 1, and padding of 1. This layer suppresses non-maximal
information in the original image, replacing it with the most
significant neighborhood information while preserving the
image’s size.

When the feature matrix is input, all four branches can
simultaneously apply convolutional or pooling operations,
resulting in four parallel outputs. As the step size for all branches
is 1, the convolution or pooling dimensions remain unchanged. This
allows them to be concatenated in the same dimension to produce
the final output. Compared to the series-structured models like
AlexNet and VGGnet, GoogLeNet alters the input into a parallel
structure. It combines inputs after various operations and then
proceeds to the subsequent layers. In contrast to other
convolutional neural network architectures, where the next
convolutional layer can only process the feature map from the

preceding layer, GoogLeNet’s approach helps prevent information
loss from the earlier stages, ensuring it can still be accessed in
subsequent layers.

3.3.2 Auxiliary classification structure
The GoogLeNet model incorporates two auxiliary classifiers and

structures to facilitate training. The first level comprises a 5 ×
5 average pooling layer with a step size of 3. The second level
consists of a 1 × 1 convolutional layer with a step size of 1, featuring a
total of 128 convolution kernels. The third and fourth levels consist
of fully connected layers with 1024 and 1000 nodes, respectively. It is
important to note that the auxiliary classifier is solely utilized during
training and not during testing. It is introduced into the overall
network loss with a weight of 0.3 to counteract gradient vanishing
and provide regularization.

4 Training process and recognition
results

4.1 Recognition result of landslide by
DGCNet model

The training set consists of three remote sensing satellite images.
The verification set consists of one remote sensing image, and the
test set consists of one remote sensing image. The number of
training epochs is set to 20, the batch size is set to 8, and the
input picture size is set to 600. In the training process, the loss value
will be displayed in the window, the Excel data generated in the
training process will be saved as pictures, and the network model
generated in the training will be saved at the same time. The device
model used in this work is NVIDIA Geforce GTX 3080 GPU (8 GB
memory) on the Windows system, which applies Pycharm editor,
and uses Python for programming. The curves of training accuracy,
training loss, training precision, DSC, F1, and M-IOU are shown in
the figure. Ideally, the training loss value should decrease rapidly in
the first few epochs. When 20 epochs are trained, the accuracy of the
training set tended to the maximum, the loss rate tended to the
minimum. The results are shown in Figure 8.

Similarly, the verification accuracy, verification loss, verification
precision, and verification M-IOU curves of this work are shown in
Figure 9. As can be seen in Figure 9, the lowest value of the loss is
found at the 20 epochs, the DSC is 0.8815, the M-IOU is 0.77, the
precision is 0.82, the F1 is 0.86, and the accuracy is 0.96.

The test set results are shown in Figure 10, it can be seen from
Figure 10 that the landslide identification accuracy using this

FIGURE 7
Schematic diagram of the process.
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method is high. Large-scale landslides can be identified. The
unrecognized area is mainly the landslide boundary, and the
incorrectly identified area is mainly the exposed area on the top
of the mountain, but the area is small. Because this model training
uses fewer training sets, which may have a certain impact on the
results, the training sets can be added later to improve the accuracy
of the model.

4.2 Recognition result of landslide by
GoogLeNet model

During the process of model training, optimizing parameters to
minimize the loss function is a crucial parameter-tuning step. The
optimizer’s task is to compute the gradient of the loss function in
each epoch and consequently update the parameters. The Adam

FIGURE 8
Line chart of the DSC, M-IOU, accuracy, loss, precision, and F1 in the training data set experiment.

FIGURE 9
Line chart of the DSC, M-IOU, accuracy, loss, precision, and F1 in the validation data set experiment.
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optimizer, developed by Kingma and Ba in 2014, amalgamates the
strengths of the AdaGrad and RMSProp optimization algorithms. It
takes into account both first-moment and second-moment
estimations of the gradient to determine the update step.

An image is an array of pixels organized in a specific sequence,
with colors represented by the three primary channels of red, green,
and blue. These pixels assume values ranging from 0 to 255; for
instance, (0, 0, and 0) represents black. When employing a
convolutional neural network for image recognition, pixel values
are transformed into an array. The values within this array represent
the image’s features, and any changes in the image result in
corresponding alterations in these pixel values. Furthermore, it is
essential to preserve the spatial arrangement of images as much as
possible when feeding image features into a neural network. In the
process of identifying images of landslides and other topographic
features through convolution layers, distinct convolutional kernels
are utilized to generate corresponding output values, determining
which one best characterizes the landslide features. When a
convolution kernel yields high output values for landslide
features and low output values for non-landslide terrain, it
effectively extracts the desired features from the image. The
optimal convolution kernel is then passed through a pooling
layer after multiplication with the image’s corresponding feature
matrix. This step serves to reduce the number of trainable
parameters, retain the most pertinent landslide information from
the terrain images, and mitigate the risk of overfitting.

For the training process when the image data is small, when
there are a small number of incorrect labels in the sample, the
incorrect labels will have an impact on the accuracy of the
prediction. Therefore, label smoothing is adopted to reduce
overfitting and improve the model’s generalization ability.
Weight_ Decay can adjust the complexity of the model and

reduce the impact on the loss function. With a smaller weight,
the complexity of the network is lower, and the fitting of the data will
be better. Picture size through img = cv2 Resize [img, (224)] is scaled
to the size format of 224 pixels * 224 pixels. The parameter batch size
is 32, the optimizer is Adma, the learning rate is 0.0001, and the
weight_decay is 0.001.

During the training of the model, the loss rate and accuracy of
the training set and validation set are used to evaluate the model. A
total of 100 epochs were trained. After training 20 epochs, the curves
of the loss rate and accuracy rate of the training set tended to be flat.
After 60 epochs, the accuracy rates of the training and validation sets
become close to the peak Figure 11 and Figure 12 show the images of
the change in loss rate and accuracy of the training and validation
sets during the training process.

The loss and accuracy rates of the training set and validation set
after 100 epochs of training iteration were saved as a document file.
The accuracy of the validation set fluctuates between 78.125% and
81.25%, with the highest prediction accuracy of 81.25%.

Also, the trained optimal model was saved and applied to predict
the label of the input picture. Some prediction results are shown in
Figure 13.

The GoogLeNet model used in this paper has the highest
prediction accuracy of 81.25%, while Zhang et al. (2020)
proposed a model for seismic landslide recognition based on
deep learning, and the accuracy of this model on the validation
set is 88.15%. It is 6.9% higher than the GoogLeNet model. It can be
seen from Figure 9 that the accuracy of the DGCNet Model is also
higher than that of the GoogLeNet model. In addition, the two
models have different applicable situations, the DGCNet model can
identify and label landslides in a satellite remote sensing image that
contains dozens of slopes, while the GoogLeNet model can only
classify whether a single slope in a remote sensing satellite image is a

FIGURE 10
The test set prediction results: (A) the sample to be tested; (B) manual interpretation area; (C) model identification area; (D) identification area
distribution characteristics.
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landslide, which is relatively inefficient. Therefore, the DGCNet
model has a better recognition effect and plays a good reference role
in landslide identification, which can quickly identify large-scale
landslides and provide a basis for emergency rescue and disposal in
the later stage of landslide disasters.

5 Discussion

DGCNet typically demands some data for training to achieve
optimal performance. In the context of landslide image recognition,
when datasets are limited in size, the model may face challenges related
to overfitting or decreased performance. The effectiveness of DGCNet is
highly dependent on the choice of hyperparameters, including the
number of convolutional layers, kernel sizes, and learning rates. Fine-
tuning these parameters for different applications can be time-
consuming and computationally intensive. DGCNet may require
significant computational resources, including high-performance
GPUs, especially when dealing with large graph-based data. This can
be impractical in resource-constrained environments. DGCNet is a
deep learning model with complex internal mechanisms, making it
challenging to interpret. In applications where decision explainability is
crucial, the model’s lack of interpretability may be a limitation.

FIGURE 11
Epoch loss curve of the training set and validation set.

FIGURE 12
Epoch Accuracy curve of the training set and validation set.

FIGURE 13
Prediction results of some topographic images.
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DGCNet excels at integrating diverse data sources, such as
topography, vegetation information, etc. This capability enables a
comprehensive analysis of landslide image recognition. DGCNet
can capture spatial correlations between nodes (representing
geographical locations) within the graph, emphasizing the
importance of geographical context, thereby enhancing the
accuracy of landslide image recognition. Landslide data is often
represented as a graph, where locations and their interconnections
constitute nodes and edges. DGCNet is purpose-built for handling
graph-based data, making it well-suited for such tasks. Employing
DGCNet for landslide image recognition represents a relatively
novel approach. It offers the potential to introduce fresh research
perspectives and technological advancements to the field, ultimately
improving the efficiency and accuracy of landslide recognition
assessment.

In summary, DGCNet shows promise in landslide image recognition
but also presents certain limitations. Addressing issues related to data
requirements, hyperparameter tuning, and computational complexity,
while enhancingmodel interpretability, will facilitate its broader adoption
and utility in landslide recognition analysis.

6 Conclusion

The identification and location of landslides are of paramount
importance due to their significant threat to human life and property
worldwide. Traditional manual interpretation methods, while
effective, are inefficient for large areas. In response to this
challenge, this study introduced a landslide recognition method
based on the Dual Graph Convolutional Network for quick and
accurate identification of landslides in remote sensing images. The
results demonstrated the efficacy of the DGCNet model in accurately
identifying landslides within the regional remote sensing images of
Tuergen Township, Xinyuan County, Xinjiang Province. A
comparative analysis was conducted with the traditional
convolutional network model, GoogLeNet, using single terrain
images from Xinyuan County. The DGCNet model exhibited a
broader recognition range, making it a valuable tool for large-scale
regional remote sensing image analysis. However, it is important to
note that the performance of the DGCNet model is highly
dependent on the quality and characteristics of the input graph
data. Poor data quality or unclear graph structures can lead to a
decline in performance. Therefore, data preprocessing and quality
assurance remain essential aspects of landslide recognition using
DGCNet. In the future, other landslide databases can be used to train
the model to improve the accuracy of the model. DGCNet has
stronger learning and transmission ability than other methods and
can handle more data types. This research contributes to the

growing body of knowledge in this field, offering a new approach
to address the challenges associated with landslide recognition in
large-scale regional remote sensing images.
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