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Coseismic deformation of large earthquakes causes significant property damages
and fatalities, which requires quantitative research of multiple disciplines such as
geodesy, geological investigation, seismic tomography, and seismic dislocation
theory. The finite element method accounts for material heterogeneity and
geometric complexity, making it suitable for studying the coseismic
deformation of large earthquakes. This paper develops a parallel elastic finite
element program that utilizes split nodes and high-performance parallel
computing technology on the FELAC software platform to study the coseismic
deformation of large earthquakes. We verify the accuracy of the parallel elastic
finite element program by comparing its results with the analytical solutions from
seismic dislocation theory for four ideal earthquake cases. Finally, we established
parallel elastic finite element models to study the coseismic deformation of the
2008 Wenchuan earthquake. The simulation results are consistent with the GPS
and InSAR data. Coseismic surface deformation results are significantly influenced
by medium regional heterogeneity with different layered structures besides the
Longmenshan fault. The finite element program lay the foundation for the
inversion of the coseismic fault rupture process based on the heterogeneous
medium model and complex geometric model.
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1 Introduction

Coseismic deformation by large earthquakes offers insights into the elastic properties of Earth’s
medium. It arises from the sudden release and modification of strain energy along the fault,
causing significant losses in terms of property and human lives. The complexity of coseismic
deformation induced by the 2008 MW 7.9 Wenchuan earthquake has been accurately captured
through Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR)
data. This study employs a series of parallel elastic finite element models to examine the influence
of crustal medium variations on the coseismic deformation caused by the Wenchuan earthquake.

The study of coseismic deformation hasmatured, withwell-established theoretical frameworks
providing analytical and semi-analytical solutions rooted in seismic dislocation theory. Steketee
(1958) initially proposed analytical dislocation solutions in semi-infinite elastic space, which were
later extended by Okada (1985, 1992) to include both surface and internal coseismic deformation
in three-dimensional semi-infinite elastic space. Sun et al. (1996, 2009) made significant
advancements in coseismic dislocation theory specifically for the spherical layered earth
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model. Wang et al. (2003) developed the program EDGRN/EDCMP for
coseismic deformation calculation in elastic or layered elastic Earth
media. Additionally, USGS introduced the Coulomb 3.3 software (Toda
et al., 2011) based on seismic dislocation theory in homogenous semi-
infinite elastic space, which was widely applied in the calculation of
coseismic deformation and the analysis of seismic hazard change. While
commonly employed for forward calculation of coseismic deformation,
the accuracy of the calculation results strongly depends on simple
geometry and material model, which hinders the accurate acquisition
of coseismic deformation calculations for complex geometric and
material cases. Large earthquakes frequently occur at plate boundaries
and interplate block edges, characterized by significant lateral variations
in the medium. Practical scenarios necessitate the development of
numerical simulation methods that account for the complex
geometry and transverse heterogeneity of materials in coseismic
deformation calculation.

Satellite geodesy, facilitated by recent advancements in space
observation technology, has proven pivotal in observing and
documenting surface deformation caused by large earthquakes, both
coseismic and postseismic.Massonet et al. (1993) conducted a pioneering
study using InSAR data to capture the coseismic deformation of theMW

7.3 Landers earthquake in Southern California. GPS and InSAR
technologies have become prevalent tools to observe crustal
deformation by large earthquakes. Numerous studies have employed a
combination of InSAR and GPS data to investigate coseismic and
postseismic deformation resulting from various earthquakes, such as
the 2001Ms 8.1 eastern Kunlun earthquake (Wan et al., 2008), the
2001MW 7.8 Kokoxili earthquake (Tu et al., 2016; Zhao et al., 2018), the
2008 MW 7.9 Wenchuan earthquake (Wan et al., 2017), the 2011 MW

9.0 Tohoku-Oki earthquake (Wang M. et al., 2011), and the MW

7.8 Gorkha, Nepal earthquake (Sreejith et al., 2016). Previous studies
have employed geodetic inversion techniques to estimate interseismic and
coseismic slips for various seismic events (Tong et al., 2010; Ozawa et al.,
2012).While image processing techniques effectively extract deformation
characteristics from observed data, these interpretations primarily offer
insights into observation results and do not comprehensively reveal
specific earthquake mechanisms.

The finite element method (FEM) is extensively employed for
numerical analysis of coseismic deformation. Freed and Lin (2001)
utilized a viscoelastic finite element model to calculate coseismic and
postseismic Coulomb stress changes associated with the 1992 Landers
earthquake sequence, providing a valuable understanding of the delayed
triggering of the 1999 Hector Mine earthquake. Zhang et al. (2015)
employed a 3D finite element program based on the equivalent physical
force method of seismic dislocation to investigate coseismic deformation
in a spherical Earth model. Hu et al. (2012) and Wang et al. (2021)
adopted the finite element method to analyze both coseismic and
postseismic deformation of the 2008 Wenchuan earthquake. In
addition, Hu et al. (2004) investigated postseismic deformation using
a 3D viscoelastic Burgers FEMmodel for notable earthquakes, including
the 1960 giant Chile earthquake, the 2004 giant Sumatra earthquake (Hu
and Wang, 2012), and the 2012MW 8.6 Indian Ocean earthquake (Hu
et al., 2016). Luo and Liu (2010, 2018) utilized a three-dimensional
viscoelastoplastic finite element model to calculate coseismic and
postseismic Coulomb stress changes caused by the 2008 Wenchuan
earthquake. Viscoelastic element models have also been applied
to significant earthquakes, such as the 2004 MW

9.2 Sumatra–Andaman, 2005 MW 8.7 Nias, and 2007 MW

8.4 Bengkulu earthquakes (Wiseman et al., 2015), as well as the
1964 MW 9.2 Alaska earthquake (Suito and Freymueller, 2009).
Numerical methods offer valuable tools for constructing realistic
models of complex problems, allowing for scientific explanations
grounded in mechanical mechanisms.

In this study, we developed a parallel finite element program based
on the PFELAC 2.2 software platform (Element Computing Technology
Co., Ltd, 2018a; Element Computing Technology Co., Ltd, 2018b; Xu
et al., 2022) to precisely simulate coseismic displacement and stress fields
associated with large earthquakes. To achieve this, we employed the split
nodes technique (Melosh and Raefsky, 1981) and high-performance
parallel computing technology. The surface coseismic displacement field
and stress field at a half fault depth were validated against analytical or
semi-analytical solutions provided by EDGRN/EDCMP (Wang et al.,
2003) and Coulomb 3.3 (Toda et al., 2011) for four fault models: pure
strike-slip, normal, reverse, and oblique thrust faults. Furthermore, by
manipulating the transverse elastic moduli of the model, we
quantitatively assessed the effects of medium heterogeneity on
coseismic deformation. We calculated the coseismic deformation of
the 2008 Wenchuan earthquake using the finite fault inversion model
proposed by Wan et al. (2017) and compared it with observed geodetic
GPS and InSAR data. The developed model captures the impact of
crustal heterogeneity on the coseismic deformation of the
2008 Wenchuan earthquake.

2 Method and model

2.1 Elastic finite element formula

Formula (1) represents the virtual work principle in the 3D
elastic finite element method, stating that the strain energy’s virtual
work is the sum of the virtual work of the body force and the virtual
work of the traction force (Hu, 2009; Hu et al., 2009; 2012).

∫
V
δεT · σdV � ∫

V
δuT · fdV + ∫

Γ
δuT ·TdΓ (1)

where σ and ε represent the column vector form of stress and strain
tensors, respectively, with σ � σxx σyy σzz σyz σxz σxy{ }T and ε �
εxx εyy εzz γyz γxz γxy{ }T (engineering strain). The column vectors

f � fx fy fz{ }T and T � Tx Ty Tz{ }T represent the body force in
the study area V and traction force on the boundary Γ, respectively.
δu � δu δv δw{ }T denotes the virtual displacement, and
δε � δεxx δεyy δεzz δγyz δγxz δγxy{ }T represents the virtual strain.

The 3D elastic constitutive equation is given by (Hu, 2009; Hu
et al., 2009; 2012)

σ � Dε (2)
The elastic matrix D can be expressed as

D � factp

1 − p] p] p]
p] 1 − p] p]
p] p] 1 − p]

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0.5 − p] 0 0
0 0.5 − p] 0
0 0 0.5 − p]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)
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where fact � pe
(1+p])(1−2pp]). The parameters pe and pν correspond to

Young’s modulus and Poisson’s ratio, respectively.
To calculate coseismic displacement and stress, we employ the

splitting nodes technique to convert coseismic dislocation on faults
into a load vector. In this case, there are no body forces
(f � fx fy fz{ }T) or traction forces (T � Tx Ty Tz{ }T). Instead,
we introduce the initial strain ε0 � εxx0 εyy0 εzz0 γyz0 γxz0 γxy0{ }T,
obtained from the splitting coseismic dislocation on faults.
Consequently, we derive the finite element formula (4) as follows
(Hu, 2009; Hu et al., 2009; 2012):

∫
V
δεT·σdV � ∫

V
δεT · σ0dV (4)

Expanding Formula (4), we have (Hu, 2009; Hu et al., 2009;
2012):

∫
V
(fact p 1 − p]( ) p εxxδεxx + fact p p] p εyyδεxx + fact p p] p εzzδεxx

+ fact p p] p εxxδεyy + fact p 1 − p]( ) p εyyδεyy + fact p p] p εzzδεyy
+ fact p p] p εxxδεzz + fact p p] p εyyδεzz + fact p 1 − p]( ) p εzzδεzz
+ shear pfact p γyzδγyz + shear pfact p γxzδγxz

+ shear pfact p γxyδγxy)dV
� ∫

V
(fact p 1 − p]( ) p εxx0δεxx + fact p p] p εyy0δεxx

+ fact p p] p εzz0δεxx + fact p p] p εxx0δεyy
+ fact p 1 − p]( ) p εyy0δεyy + fact p p] p εzz0δεyy
+ fact p p] p εxx0δεzz + fact p p] p εyy0δεzz
+ fact p 1 − p]( ) p εzz0δεzz + shear pfact p γyz0δγyz

+ shear pfact p γxz0δγxz + shear pfact p γxy0δγxy)dV (5)

where shear� 0.5 − p]. In the subsequent section, we will discuss the
computation of the initial strain ε0 � εxx0 εyy0 εzz0 γyz0 γxz0 γxy0{ }T,
obtained from the distribution of coseismic dislocation ΔU �
ΔUΔVΔW{ }T on seismogenic faults using the splitting nodes
technique.

2.2 Splitting nodes technique

The splitting nodes technique, pioneered byMelosh and Raefsky
(1981), offers a straightforward approach to calculate coseismic
displacement and stress, as outlined in formulas (4) and (5). The
underlying principle of the splitting nodes technique is depicted in
Figure 1 (Melosh and Raefsky, 1981).

The relationship between the nodal displacement of the element and
the global nodal displacement is given by (Melosh and Raefsky, 1981):

U1
1 � U1, U

1
2 � U2

1 � U2, U
2
2 � U3 (6)

where the displacement U1
2 � U2

1 � U2 consists of two components:
the average displacement �U and the half dislocation
ΔU/2 � ΔU1

2� −ΔU2
1.

The global finite element equations of elements 1 and 2 are
expressed as follows (Melosh and Raefsky, 1981):

K1
11 K1

12 0
K1

21 K1
22 + K2

11 K2
12

0 K2
21 K2

22

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ U1

U2

U3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � F1 − K1
12ΔU1

2

F2 − K1
22ΔU1

2 − K2
11ΔU2

1

F3 − K2
21ΔU2

1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (7)

The term [K] represents the global stiffness matrix, [U] denotes
the global nodal displacement vector, while [F] corresponds to the
global load vector.

Formula (7) expresses the determination of the coseismic load
vector, which is caused by the three-dimensional coseismic
dislocation ΔU � ΔuΔvΔw{ }T on the seismogenic faults.

2.3 Parallel technology

We developed a parallel elastic finite element program based on
the virtual work principle (formulas (4), (5)) and the splitting nodes
technique (formula (7)), utilizing the PFELAC 2.2 software platform
(Element Computing Technology Co., Ltd., 2018a, 2018b; Xu et al.,
2022). The parallel computation employed the domain

FIGURE 1
One-dimensional fault model illustrating the splitting nodes technique (adapted from Melosh and Raefsky, 1981). Elements 1 and 2, with U as the
displacement, are positioned adjacent to the seismogenic fault. The superscript denotes the element number, while the subscript indicates the node
number of the element. ΔU represents the total dislocation of an earthquake.
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decompositionmethod, consisting of a master process and a series of
sub-processes. The master process is responsible for the assembling
of the global stiffness matrix and global load vector, as well as the
parallel solution of the system of super-sized linear equations. The
subprocesses calculated the element stiffness matrix and element
load vector. This research analyzed coseismic deformations by four
different-type earthquakes using parallel finite element programs.
The developed finite element programs were validated with results
from Coulomb 3.3 and EDGRN/EDCMP to assess their accuracy.

3 Program testing

To validate our 3D elastic parallel finite element method (FEM)
programs, we tested with four ideal earthquake models: pure strike-
slip, normal, thrust, and oblique thrust faults, and compared the
results with analytical solutions. The parameters for each model are
listed in Table 1. Our finite element model has dimensions of
200 km × 200 km × 50 km, adequately encompassing the fault
dimensions. The seismogenic fault is positioned at the center of
the model and has a length of 20 km and a width of 10 km, extending
to the surface. The FEM model employed a homogeneous, elastic,
and isotropic material, with a uniform dislocation of 1 m assigned to
the pure strike-slip, normal, and thrust faults, respectively. In the
FEM model of the oblique thrust fault, the strike-slip and thrust
dislocation components were both


2

√
/2 m. We compared the

coseismic displacements and stresses obtained from our FEM
models with those from the Coulomb 3.3 and EDGRN/EDCMP
programs to validate our 3D elastic parallel finite element method
(FEM) programs. This study focuses on comparing the FEM
simulations and the results by EDGRN/EDCMP and Coulomb
3.3 specifically for Model 4 (oblique thrust fault). The
comparison for Models 1, 2, and 3 (pure strike-slip, normal, and
thrust faults) is available in the Appendix.

Figure 2 compares surface coseismic displacement fields (u, v, w)
of Model 4 (oblique thrust fault) with those by the Coulomb
3.3 program. The horizontal surface coseismic displacement (u,
v) and vertical surface coseismic displacement (w) exhibit an
asymmetric pattern for both the FEM model and the Coulomb
3.3 program. The overall patterns of the three coseismic surface
displacement components are highly similar between the FEM
model and the Coulomb 3.3 program.

Figure 3 illustrates the coseismic stress field
(σxx, σyy, σzz, σxy, σyz, σxz) at the half fault depth between the
FEM model and the Coulomb 3.3 program for Model 4 (oblique
thrust fault). The left column shows the FEM results, while the right

column displays the results from the Coulomb 3.3 program. Both
normal stresses (σxx, σyy, σzz)and shear stresses (σxy, σyz, σxz)
exhibit asymmetry. The patterns of six coseismic stress
components by the FEM and the program Coulomb 3.3 are
highly similar.

In Figure 4, we compare the surface coseismic displacements
along a profile, passing the midpoint of the surface trace of the fault
outcrop, perpendicular to the strike-slip direction using the FEM
model, Coulomb 3.3, and EDGRN/EDCMP programs for Model 4
(oblique thrust). The three components exhibit highly similar
patterns, with minor discrepancies that could be attributed to the
sparse mesh grid of the FEM model.

By comparing the coseismic surface displacement (Figures 2, 4)
and coseismic stress (Figure 3) of Model 4, we have validated the
accuracy and reliability of our 3D elastic parallel FEM programs.
Additionally, in the Appendix section, we have conducted similar
tests for the remaining three models (pure strike-slip, normal, and
thrust faults).

In this paper, a set of parallel finite element programs to study
the coseismic deformation of large earthquakes is developed on the
PFELAC software platform based on the domain decomposition
parallel finite element technique and the split node method. This
parallel finite element program can take into account the complex
geometry of the originating faults, the complexity of the coseismic
rupture process, the strong topographic relief, and the material
inhomogeneity of the Earth’s medium in the transverse and
longitudinal directions. Due to the use of the domain
decomposition parallel finite element technique, the node
number of finite element meshes can reach ten million, which
guarantees the calculation accuracy of the coseismic displacement
and stress fields in the study area. On this basis, we can also calculate
the coseismic Coulomb stress changes on the major faults around a
large earthquake based on this parallel finite element program,
which can be used to evaluate the seismic hazard changes on the
major faults after a large earthquake. We can also quantitatively
analyze the inhomogeneous distribution of coseismic stress drop on
the main earthquake fault plane, which can be used to judge the
range of aftershock distribution on the main earthquake fault plane.

4 Case study: the coseismic
deformation of the 2008 MW
7.9 Wenchuan earthquake

The 2008 MW 7.9 Wenchuan earthquake occurred in the
Longmen Shan fault zones, which include the Beichuan fault, the

TABLE 1 The geometry and material parameters of four earthquake fault models.

Model Type Young’s modulus
E/GPa

Possion’s
ratio ν

Strikeslip
direction/°

Fault
length /km

Fault
width /km

Dip
angle /°

Rake
angle /°

1 strikeslip 81 0.25 180 20 10 80 0

2 normal 81 0.25 180 20 10 65 90

3 thrust 81 0.25 180 20 10 35 90

4 oblique
thrust

81 0.25 180 20 10 35 45
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Wenchuan-Maowen fault, and the Pengguan fault (Shen et al., 2009;
Figure 5). The Longmen Shan fault zones, with a length of >300 km,
predominantly strike in the NE-SW direction. Their well-constrained

geometry is based on geological surveys (Xu et al., 2008), precise
aftershock positioning (Huang et al., 2008; Liu et al., 2019), seismic
tomography (Lei and Zhao, 2009; Liu et al., 2009), and deep seismic

FIGURE 2
Comparison of the coseismic surface displacements Model 4 (oblique thrust fault) between the FEMmodel and Coulomb 3.3 program. Left column:
u, v, and w components by the FEM (panels A, C, E). Right column: u, v, and w components by Coulomb 3.3 program (panels B, D, F).
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reflection profiles (Guo et al., 2013). The Longmen Shan fault zones
are one of the longest rupture zones observed in interplate thrust
earthquakes (Xu et al., 2008). The Longmen Shan fault zones exhibit

significant variations in topography and crustal structure, with an
elevation difference of around 4 km between the Qinghai-Tibetan
Plateau and the Sichuan Basin, and variations in crustal thickness by

FIGURE 3
Comparison of coseismic stress at half fault depth between the FEM and Coulomb 3.3 program. Left column: FEM results for σxx , σyy , σzz , σxy , σyz , σxz .
Right column: Coulomb 3.3 program results for σxx , σyy , σzz , σxy , σyz , σxz ., The x-axis label represents the eastward direction, while the y-axis label
represents the northward direction.
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tens of kilometers (Liu et al., 2015; 2018). Tomographic studies reveal
significant structural differences in the media on both sides of the
Longmen Shan fault zones (Lei and Zhao, 2016), providing direct
evidence of medium heterogeneity within and around the fault zones
through observed variations in seismic velocities. The jelly sandwich
model of the Qinghai-Tibet Plateau (Bürgmann and Dresen, 2008)
implies vertical stratification, indicating significant medium
heterogeneity in the adjacent regions to the fault zones. We will
introduce the 3D parallel elastic finite element models to provide
valuable insights into the impact of medium heterogeneity on the
coseismic deformation of the 2008 MW 7.9 Wenchuan earthquake.

The steep slopes surrounding the Longmen Shan fault zones
limit the number of GPS observation points. After the
2008 Wenchuan earthquake, the China Crustal Observation
Network project team initially provided data from 122 GPS

observation points, which was later increased to 158 points by
Shen et al. (2009). Wang Q. et al. (2011) contributed additional
coseismic and postseismic deformation data. Wang et al. (2021)
conducted an analysis of long-term deformation observations and
identified a deceleration trend in the GPS velocity field from
northwest to southeast when using the fault zones as a
boundary. The strain rate field exhibited significant variations
across the fault zones in the presence of continuous
deformation fields obtained through GPS velocity interpolation.
Localized abrupt changes in strain rate along the Longmen Shan
fault zones can be attributed to significant variations in medium
properties, corresponding to complex stress distribution. The
Japan Aerospace Exploration Agency (JAXA) and the European
Space Agency (ESA), using GPS and InSAR data revealed that the
2008 MW 7.9 Wenchuan earthquake predominantly involved
thrust-slip motion, with a moderate strike-slip component. The
coseismic deformation of the 2008 Wenchuan earthquake reflects
the opposing displacements on either side of the fault zones and
the consequent shortening of the crust. The observed coseismic
displacements were comparatively larger in the Songpan-Ganzi
region than those in the Sichuan Basin. The difference can be
explained by theoretical models indicating a weaker crustal
medium in the Qinghai-Tibet Plateau than that in the Sichuan
Basin and the special geometry of the fault zones. In our numerical
simulation, we employed seismic tomography (Lei and Zhao, 2009;
Liu et al., 2009) and deep seismic reflection profiles (Guo et al.,
2013) to construct a finite element model of the coseismic
deformation induced by the 2008 Wenchuan earthquake.

The coseismic vertical displacement of the 2008 Wenchuan
earthquake is significant, yet direct measurements of this
component remain limited. Based on direct topographic
measurements, previous studies revealed the following coseismic
vertical displacement patterns during the 2008 Wenchuan
earthquake: (1) The Yingxiu-Beichuan rupture zone experienced
vertical displacements ranging from 0.2 to 11 m, with an average of
2–4 m. The maximum displacement of 11 m occurred on the eastern
side of Beichuan town, marking the highest coseismic vertical
displacement within the surface rupture zone (Li et al., 2008;
Dong and Chen, 2009). (2) The Hanwang rupture zone exhibited
vertical displacements ranging from 0.5 to 4 m, with the highest
point at Shaba Village, Jiulong Town, Mianzhu City, reaching
approximately 4 m (Li et al., 2008). (3) The Xiaoyudong rupture
zone demonstrated vertical displacements ranging from 0.2 to 3 m,
with an average of 1–1.5 m (Li et al., 2008). Previous studies utilized
first-class precision level measurement to determine the coseismic
vertical displacement components of the Wenchuan earthquake
along specific level routes. The findings revealed that: (1) The
western hanging wall of the main rupture zone in the Longmen
Shan Central Rupture predominantly experienced significant
coseismic uplift. The vertical displacement decreases rapidly with
distance from the fault. The highest uplift, approximately 4.7 m, was
observed at the Beiyun 1 level point in Beichuan town. (2) The
maximum vertical sinking occurred within the Beichuan-Guixi fault
valley, with a coseismic sinking of approximately 0.6 m (Wang et al.,
2010; Dong et al., 2012).

Several research teams have focused on surface rupture and
quantified the coseismic dislocation distribution of the
2008 Wenchuan earthquake (Xu et al., 2010; Zhang et al., 2011;

FIGURE 4
Comparison of surface coseismic displacement along a profile,
passing the midpoint of the surface trace of the fault outcrop,
perpendicular to the strike-slip direction using the FEM model,
Coulomb 3.3, and EDGRN/EDCMP programs for Model 4
(oblique thrust fault). The x-axis represents the eastward direction, and
the y-axis represents the displacement components.
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FIGURE 5
The tectonic background and coseismic dislocation distribution of the 2008 MW 7.9 Wenchuan earthquake. (A) Tectonic background: blue arrows
denote coseismic GPS data, gray lines represent the main active faults, black and red lines denote the Beichuan fault, the Wenchuan-Maowen fault, and
the Pengguan fault. The red star denotes the epicenter of the 2008 Wenchuan earthquake. (B) Coseismic dislocation distribution of the 2008 MW

7.9 Wenchuan earthquake (Wan et al., 2017).

FIGURE 6
The coseismic surface displacements of Model B and the absolute residuals of the coseismic surface displacements by Model A and Model (B).
Panels (A-C) represent the u, v, w components of the coseismic surface displacements of Model B, respectively. Panels (D-F) show the absolute residuals
of the coseismic surface displacements (u, v, w) by Model A and Model (B).

Frontiers in Earth Science frontiersin.org08

Shi et al. 10.3389/feart.2023.1245677

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1245677


Tan et al., 2015). Previous studies employed various approaches,
such as joint inversion of InSAR and GPS data (Tong et al., 2010; Xu
et al., 2010) and Okada’s static elastic dislocation model (Bai et al.,
2012), to characterize the fault’s coseismic rupture. However, these
models have limitations in accounting for the heterogeneity of the
medium in the Longmen Shan fault zones. To overcome this
limitation, we adopted Wan’s (2017) coseismic rupture model,
which incorporates the layered structure of the medium and the
spatial complexity of the fault rupture plane.

In this study, we utilized a large finite element model with
dimensions of 1,000 km*1,000 km*100 km to comprehensively
compare with fault sizes. Two parallel finite element models,
Model A and Model B, were constructed based on the coseismic
dislocation inversion model proposed byWan et al. (2017). Model A
represents a uniform medium with Young’s modulus of 8.1E10 Pa
and Poisson’s ratio of 0.25. Conversely, Model B incorporates
heterogeneity by including different material properties in seven
vertically divided layers, as derived from Wan et al. (2017).
Furthermore, there are significant horizontal variations in the
medium on both sides of the fault zones.

Figure 6 illustrates the coseismic surface displacements of Model
B and the absolute residuals of the coseismic surface displacements
by Model A and Model B, respectively. The results confirm that the
2008 Wenchuan earthquake is predominantly characterized by
thrust slip, with a moderate component of strike-slip motion.
The simulated coseismic vertical displacements reveal significant
uplift exceeding 4 m in the western hanging wall of the Longmen
Shan fault zones, consistent with the first-class precision level
measurements (Figure 6C; Wang et al., 2010; Dong et al., 2012).
These simulated vertical displacements align with findings from
first-class precision level and direct topographic measurements,
indicating a sharp decrease with increasing distance from the
fault (Figure 6C; Li et al., 2008; Dong and Chen, 2009; Wang
et al., 2010; Dong et al., 2012). The absolute residuals of Models
A and B exceed 8 cm, highlighting the significance of accounting for
the vertical and transverse heterogeneity of the medium. The
comparison of simulated coseismic horizontal displacements and
GPS data is shown in Figure 7.

Figure 7 compares the coseismic surface deformation by Model
B with GPS observation data. The root mean square error (RMSE)

FIGURE 7
A comparison between the coseismic surface deformation predicted by Model B and the corresponding GPS data.
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between the east component of the finite element model and GPS
data is 7.98 cm, while for the north component, it is 5.61 cm. The
GPS observation data uncertainty is quantified by RMSE values of
1.56 cm (east component) and 1.81 cm (north component). The
finite element computation results demonstrate coherence with the
actual characteristics of coseismic surface deformation.

Figure 8 compares the coseismic deformation between Model B
and InSAR data. The left column represents the results of Model B,
while the right column shows the InSAR data. Figures 8A, B present
the ascending Line Of Sight (LOS) displacement with a root mean
square error (RMSE) of 11.0 cm. Figures 8C, D display the
descending LOS displacement with an RMSE of 9.11 cm. By
employing the complex rupture model proposed by Wan et al.
(2017), Model B demonstrates consistency with both GPS and
InSAR data.

5 Discussion

We have developed a parallel elastic finite element program with
the splitting nodes technique for accurate computation of coseismic
displacement and stress fields by large earthquakes. To validate the
effectiveness and accuracy of our FEM program, we conducted a
comparative analysis of four earthquake cases using results from
programs EDGRN/EDCMP and Coulomb 3.3 based on seismic
dislocation theory. The parallel elastic finite element method offers
advantages in handling geometric complexity, material heterogeneity,
and complex boundary conditions. Utilizing this method, we can
calculate Coulomb stress changes (ΔCFS) on major fault planes our
parallel elastic finite element method to determine coseismic
displacement and stress fields, to assess the alteration in seismic
hazard following significant earthquakes (Toda et al., 2008).

FIGURE 8
A comparison of the coseismic surface deformation by Model B and InSAR data. (A) LOS ascending displacement by Model B; (B) LOS ascending
displacement by InSAR data; (C) LOS descending removal by Model B; (D) LOS descending displacement by InSAR data.
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FIGURE 9
Comparison of the surface coseismic deformation results for the three theoretical models. (A, D, G): u v w by Model 1; (B, E, H): u v w byModel 2; (C,
F, I): u v w by Model 3; (J): displacement component v comparison along a surface profile by Model 1, 2, and 3.
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Three theoretical models (Model 1, Model 2, and Model 3) were
developed to quantitatively investigate the impact of differentmedium
variations on the distribution of coseismic deformation. In all models,
a vertical complete strike-slip fault with a 1 m pure strike-slip
dislocation is present at the center. The Poisson’s ratio is
uniformly set to 0.25 for all three models. The Young’s modulus
values on the left and right sides of the fault are described as Ea and Eb,
respectively. The sum of Ea and Eb remains constant throughout the
models, with specific values assigned as follows: Ea=Eb=8.1E10 Pa
(Model 1); Ea=2 Eb=10.8E10 Pa (Model 2); Eb=2Ea=10.8E10 Pa
(Model 3). Figure 9 presents the coseismic surface deformations of
the three models. The results demonstrate that in Model 1, where
Young’s modulus of the media on both sides of the fault is equal
(Model 1), strict symmetry is observed in the surface coseismic
displacements on both sides of the fault. However, in models
(Model 2 and Model 3) with a doubling difference in Young’s
modulus of the media on each side of the fault, the symmetry of
the surface coseismic displacements between the two fault segments is
lost. The segment with a lower Young’s modulus exhibits larger
assigned displacement, while the segment with a higher Young’s
modulus has smaller assigned displacement. Nevertheless, the
overall distribution characteristics of total deformation remain
unaffected. Li and Huang (2011) conducted numerical simulations
and found a positive correlation between the vertical component of
the seismic coseismic displacement field and the shear modulus, while
the horizontal component showed a negative correlation. This
indicates the importance of considering lateral variations in the
medium, which can be determined quantitatively through seismic
tomography imaging and deep seismic reflection profiles when
analyzing the coseismic deformation of major earthquakes.

The asymmetry of the surface coseismic distribution of an ideal
fault may be caused both by the inhomogeneity of the material on
both sides of the fault (Figure 9) and by the geometric complexity of
the fault. The Longmen Shan faults exhibit a spade-like structure. Xu
and Xu (2015) investigated models with different dip angles and
material parameters, revealing greater coseismic deformation in the
hanging wall than in the foot wall Quantitative analysis is required to
understand the influence of fault morphology on coseismic
deformation. Our findings inform future inversion studies in the
coseismic rupture of large earthquakes, highlighting the importance
of considering fault geometry andmedia differences on the inversion
results.

6 Conclusion

We have developed a 3D parallel elastic finite element program
using split nodes and high-performance parallel computing. To
validate its accuracy, we compared the program’s results for four
ideal earthquake cases with analytical solutions from seismic
dislocation theory. Our program investigates the media
inhomogeneity in the lateral and depth directions on both sides
of the main fault, complementing existing homogeneous models.
This development lays the groundwork for future inversion studies
of coseismic fracture processes based on inhomogeneous models.
Using the program, we analyzed the coseismic deformation of the
2008 Wenchuan earthquake, obtaining results consistent with
previous research and GPS data. This demonstrates the

program’s suitability for complex geometry and inhomogeneous
media in coseismic deformation analysis.
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