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The Jiaodong Peninsula is China’s largest gold province and the third largest in the
world. Although gold mineralization is associated with Mesozoic granites
temporally and spatially, the specific genetic association remains unclear,
leading to ambiguity regarding the genetic type of gold deposits. To address
this issue, we conducted whole-rock major and trace elements, LA–ICP–MS
zircon U–Pb geochronology and trace elements geochemical analyses on the
Linglong (Linglong suite), Yashan, and Nansu (Weideshan suite) plutons, and
compiled contemporaneous magmatic rock data. Our results show that the
granites were emplaced at 161 ± 2, 118 ± 1, and 121 ± 2 Ma, respectively.
Geochemically, these rocks exhibit high Al2O3 (12.73–14.10 wt%) content and
Sr/Y (35.54–136.50) ratio, and low Y (3.26–11.20 ppm) and Yb (0.33–0.97 ppm)
contents, indicating the adakitic rock properties. They were formed through
partial melting of the thickened lower crust associated with subduction of the
paleo-Pacific Plate. The Early Cretaceous granites contain a large amount of mafic
microgranular enclaves, indicating the presence of mantle material mixing in the
source area. Zircon trace elements show that the pre-mineralization magma
(Linglong) had relatively low oxygen fugacity and temperature (ΔFMQ = −2.5 to
+1.9, T-Ti in zircon (mean) = 740°C) compared to the mineralization magma
(ΔFMQ = +0.5 to +3.9, T-Ti in zircon (mean) = 755°C). The physicochemical
conditions in the pre-mineralization magma source area may be favorable for
sulfide accumulation (may including gold). During the Early Cretaceous, North
China Craton decratonization reached its climax, and a large number of adakitic
crust-mantle mixed oxidized magma upwells, allowing for the migration and
mineralization of a large amount of sulfides and gold. This model helps explain the
transient, explosive, and genetic categories in Jiaodong gold deposits.
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1 Introduction

The North China Craton (NCC) is an ancient cratonic blocks in
Eastern Asia, comprising Archean to Paleoproterozoic basement
rocks (Figure 1A) (Hart et al., 2002; Nie et al., 2004; Santosh, 2010;
Zhao and Zhai, 2013). Unlike traditional cratons, the NCC
experienced extensive magmatism and tectonism in the Triassic
and reaching its peak during the Early Cretaceous due to the roll-
back of the paleo-Pacific Plate, a process known as decratonization
(Gao et al., 2002; Wu et al., 2008; Zhu et al., 2015; Li et al., 2020a;

Yang et al., 2021). This process resulted in large-scale mineralization
events, with gold mineralization being the most typical. The
Jiaodong Peninsula has the largest gold mineralization scale,
accounting for 40% of the total gold deposits in China, with over
200 small, medium, and large gold deposits formed at 125–115 Ma
(Yang et al., 2014; Fan et al., 2016; Song et al., 2018; Deng et al., 2020;
Song et al., 2020; Song et al., 2021), characterized by explosive
mineralization (formation >5,000 t gold in a short duration).
Furthermore, 80% of gold deposits are hosted in granite (Song
et al., 2018) (Supplementary Figure S1), with a significant portion of

FIGURE 1
(A) The distribution of the Archean to Paleoproterozoic basement rocks in the NCC (Zhao et al., 2005); (B) Sketch geologic map of the Jiaodong
Peninsula (after Song et al., 2020).
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these granites are coeval with the gold mineralization. However, the
relationship between explosive gold mineralization and large-scale
magmatism induced by the decratonization process remains
controversial, with scholars debating whether these magmatic
rocks provided direct material, heat, or water for the formation
of gold mineralization (Ma et al., 2014; Deng et al., 2020; Zhang
et al., 2020; Dong et al., 2023a; Dong et al., 2023b; Dong et al., 2023c).
Current studies have mostly focused on the mineralization itself and
less on the physicochemical conditions of the magma, which has
limited our understanding of ore genesis and exploration work.
Additionally, changes in mantle composition and oxygen fugacity
during the transition from compression to an extensional

environment from the Jurassic to Cretaceous may have restricted
key indicators of gold formation.

To better understand the constraints of Mesozoic magmatic
rocks on the formation of gold mineralization in the Jiaodong
Peninsula, we present petrographic observations, whole-rock
major and trace element geochemistry data, and Laser ablation
inductively coupled plasmamass spectrometry (LA–ICP–MS) U–Pb
dating of zircon ages and trace elements for representative granites
from Jiaodong Peninsula. These data provide new insights about the
origin and petrogenesis of these Mesozoic granitic rocks within the
Jiaodong Peninsula and yield important changes in key parameters
that may constrain gold mineralization.

FIGURE 2
Photographs and microphotographs (cross-polarized light) of the studied samples. (A,B) biotite granite (Linglong suite); (C,D) biotite monzogranite
(Yashan pluton); (E,F) biotite granite (Nansu pluton). Abbreviation: Amp, amphibole; Bi, Biotite; K-fs, Potassium feldspar; Pl, Plagioclase; Qtz, Quartz.
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2 Geological setting

The North China Craton (NCC) is the largest and oldest craton
in China, covering approximately 1.5 million square kilometers and
dating back to at least 3.8 billion years (Figure 1A) (Liu et al., 1992;
Zhao et al., 2005). It consists of Archean-Paleoproterozoic basement
and Mesoproterozoic-Cenozoic volcanic-sedimentary sequences
(Santosh, 2010; Zhao and Zhai, 2013; Yang et al., 2018; Yang
et al., 2020) and was formed by the combination of the western
(Yinshan and Ordos blocks at ~1.95 Ga along the khondalite Belt)
and eastern blocks (Longgang and Nangrim blocks at ~1.95 Ga
along the Jiao-Liao-Ji Belt) along the Trans-North China Orogen
(~1.85 Ga) (Figure 1A; Zhao et al., 2001; Zhao et al., 2005). The NCC
remains stable (lack of earthquakes, tectonism, and magmatism)
after cratonization, and the decratonization occurred until the
Mesozoic. Significant tectonic-thermal events occurred mainly in
the east of NCC, including the Jiaodong and Liaodong peninsulas (Li
et al., 2019a; Li et al., 2020a; Li et al., 2020b; Li et al., 2023a; Li et al.,
2023b). Unlike conventional cratons, the Mesozoic magmatism has
significantly changed the crust thickness, nature, and isotope
composition of NCC (i.e., decratonization) (Menzies et al., 1993;
Griffin et al., 1998; Yang et al., 2021), which is also accompanied by
gold mineralization in Jiaodong Peninsula (Figure 1B).

The Jiaodong Peninsula is the largest gold province in China
(>5,000 t), and is the third largest in the world after the
Witwatersrand Basin (South Africa) and the Muruntau district

(Uzbekistan) (Song et al., 2021). It mainly consists of
Precambrian crystalline basement, Mesozoic-Cenozoic volcanic-
sedimentary rocks, and intrusive rocks (Figure 1B). The
Precambrian meta-sedimentary rock series mainly includes
Neoarchean Jiaodong Group, Paleoproterozoic Jingshan Group,
Fenzishan Group, and Neoproterozoic Penglai Group (Figure 1B)
(Li et al., 2022). Faults are mainly distributed along the NE-NNE-
striking of the Jiaodong Peninsula, with NNE-striking faults playing
a significant role as the main ore-controlling structures (Figure 1B).
The strong Mesozoic magmatism in the Jiaodong is mainly
concentrated in the Jurassic and Early Cretaceous. Jurassic
intrusions mainly include Linglong, Luanjiahe, and Kunyushan,
mainly composed of granite, granodiorite, and monzogranite,
formed at 170–150 Ma (Yang et al., 2012; Ma et al., 2013; Yang
et al., 2017; Wang et al., 2022; Dong et al., 2023a). The early
Cretaceous intrusions are composed of Guojialing (130–127 Ma;
Yang et al., 2012; Jiang et al., 2016; Dong et al., 2023a), Weideshan
(125–110 Ma; Goss et al., 2010; Li et al., 2012; Song et al., 2020; Dong
et al., 2023a; Dong et al., 2023b; Dong et al., 2023c), and Laoshan
(125–108 Ma; Goss et al., 2010; Wang et al., 2021; Wang et al., 2023)
suites, mainly composed of granodiorite, monzogranite, and syenite
(Figure 1B). The Mesozoic volcanic rocks are mainly distributed in
the Jiaolai basin, consisting of Qingshan, Wangshi, and Laiyang
Groups, including rhyolite, andesite, dacite, and tuff (Dong et al.,
2023a). Gold deposits are mainly found in magmatic rocks and are
distributed along NNE-striking faults (Figure 1B).

FIGURE 3
(A–C) Chondrite-normalized rare earth element patterns (normalizing values are from McDonough and Sun, 1995) and showing representative CL
images (LREE-enrichment patterns (dashed lines in the figure), which may be contaminated by mineral/melt inclusions; as suggested by Zhong et al.
(2019); Cai et al. (2021)); (D) (Sm/La)N vs. La; (E) Ce/Ce* vs. (Sm/La)N diagrams (the range of “magmatic” and “hydrothermal” is based on Hoskin, 2005) of
zircons from the Jiaodong Peninsula Mesozoic granitoids.
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3 Sample description

In this study, we collected samples from the Cuizhao unit of
Linglong suite, Yashan and Nansu plutons of Weideshan suite.

3.1 Linglong suite

The Cuizhao unit (biotite granite) of the Linglong suite collected in
this study is located in the west of Zhaoyuan City, Shandong Province

(labeled as 21LL; sample location: N 37°23′28.5″, E 120°10′21.3″;
Figure 1B). The biotite granite shows the obvious gneissic structure
(mineral orientation arrangement) and develops pegmatite vein
(Figure 2A). The biotite granite is mainly composed of quartz
(25%–30%), plagioclase (35%–40%), potassium feldspar (15%–20%),
and biotite (~10%), and a small amount of apatite, zircon, and sphene
accessory minerals (~1%) (Figure 2B). Apatite is mainly needle
columnar, distributed in plagioclase, and formed later than
plagioclase. Amphibole is not developed in the dark minerals of the
whole Linglong suite, which is different from the Early Cretaceous suite.

FIGURE 4
Zircon U-Pb concordia (A, C, E) and weighted mean 238U/206Pb ages (B, D, F) of the Jiaodong Peninsula Mesozoic granitoids. Green ellipses
represent inherited zircon.
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3.2 Weideshan suite

3.2.1 Yashan pluton
The Yashan pluton (biotite monzogranite) in this study

belongs to Weideshan suite, which is located in Qixia City,
Shandong Province (labeled as 21YS01; sample location: N
37°03′42.5″, E 121°09′48.7″; Figure 1B). The biotite
monzogranite is mainly composed of quartz (30%–35%),
plagioclase (30%–35%), potassium feldspar (25%–30%), biotite
(~10%), and amphibole (5%–10%), and the accessory minerals
are apatite and sphene (~1%) (Figures 2C, D). The oscillatory
zone and polycrystalline twins of plagioclase are relatively
developed (Figure 2D).

3.2.2 Nansu pluton
The Nansu pluton (biotite granite) in this study also belongs

to the Weideshan suite, collected from the south of Laizhou City,
Shandong Province (labeled as 21NS01; sample location: N
37°00′21.5″, E 119°58′55.3″; Figure 1B). Nansu biotite granite
has medium-coarse grain structure and develops aplitic dyke
(Figure 2E). Mineral assemblages are mainly quartz (30%–35%),

plagioclase (35%–40%), potassium feldspar (20%–25%), biotite
(~10%), and amphibole (5%–10%), and apatite and zircon
accessory minerals (Figure 2F).

4 Analytical methods

4.1 Zircon U–Pb dating and trace elements

Zircon grains were separated from these samples by traditional
magnetic and heavy liquid technology, and finally handpicked in
Guangzhou Tuoyan Analytical Technology Co., Ltd. (Guangzhou,
China) using a binocular microscope. Transmission, reflected
light, and cathodoluminescence (CL) images were collected to
reveal the internal textures and surface characteristics of zircon.
Zircon U–Pb age and in situ trace element content analyses were
completed by the Institute of Geology, Chinese Academy of
Geological Sciences using Laser ablation inductively coupled
plasma mass spectrometry (LA–ICP–MS) (193 nm LA system
and Agilent 7900 ICP-MS instrument). During the test, the spot
size is 30 μm, the energy is 2 J/cm2, and the repetition rate is 5 Hz.

FIGURE 5
Whole-rock geochemistry plots for the Jiaodong Peninsula Mesozoic granitoids. (A) Total alkalis (Na2O + K2O) vs. silica (SiO2) (Irvine and Baragar,
1971); (B) K2O vs. SiO2 (Peccerillo and Taylor, 1976); (C) A/NK vs. A/CNK (Maniar and Piccoli, 1989). Published data are fromHou et al., 2007; Li et al., 2012;
Yang et al., 2012; Ma et al., 2013; Li et al., 2019b; He, 2021; Wang et al., 2021; Dong et al., 2023a, Dong et al., 2023b.
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Zircon 91500 (1062.4 ± 7.7 Ma; n = 34) is used as an external
standard, and NIST 610 glass (1388 ± 12 Ma; n = 17) and SA01
(533.7 ± 5.3 Ma; n = 17) is used to calibrate the age and trace
elements (analysis two 91500 standard samples and one
SA01 standard sample at every 10 sample points). Typically, a
gas blank of 20s is collected and a signal interval of 35–40s is
processed for data processing, followed by deep fractionation
correction using an exponential equation (Paton et al., 2010),
and the Isoplot program (Ludwig, 2003) was used to obtain the

concordia and weighted diagrams. Common Pb was corrected
following the method described by Andersen (2002).

4.2 Whole-rock major and trace element
analyses

In this study, we have determined twenty-five major elements
and fifteen trace elements of the three plutons above, all of which

FIGURE 6
Major element Harker variation diagrams of the Mesozoic granitoids from the Jiaodong Peninsula. The published data is the same as in Figure 5.
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were completed in Guangzhou Tuoyan Analytical Technology
Co., Ltd. The whole-rock major elements are completed by
Primus Ⅱ X-ray fluorescence spectrometer (XRF). Burn in a
1,000 °C muffle furnace for 2 h, and calculate the loss on
ignition (LOI) after cooling. Take a 0.6 g sample and place it
in an 1150°C sample melting furnace (14 min), and conduct XRF
test after cooling. The whole-rock trace elements are completed
by the Semeferri CAP RQ system. During the test, OU-6, BCR-1,
and GBPG-1 were used as standard samples to monitor the
accuracy of data results, and the RSD of data results was
better than 5%.

5 Results

5.1 Zircon U–Pb ages and trace elements

Three magmatic rock samples were analyzed for zircon U–Pb
ages and trace elements, and the results are presented in Figures 3, 4
and Supplementary Table S1.

5.1.1 Linglong biotite granite (sample 21LL)
The zircon grains of this sample have clear oscillatory zones,

containing some mineral inclusions, 120–400 μm in length and

FIGURE 7
Chondrite-normalized REE patterns (A,C,E) and primitive mantle-normalized trace element variation diagrams (B,D,F) for the Jiaodong Peninsula
Mesozoic granitoids. Normalizing values are from McDonough and Sun (1995). The published data is the same as in Figure 5.
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40–120 μm in width (Figure 3A). The composition of REEs in zircon
shows significant positive Ce anomalies (Ce/Ce* = 1.73–1583.58)
(Figure 3A), combined with a high Th/U ratio (0.01–0.91),
indicating that these are all magmatic zircons (Figures 3D, E)
(Hoskin and Black, 2000; Rubatto and Gebauer, 2000; Hoskin,
2005). There are 30 zircons analyzed, of which 5 points deviate
significantly from the concordia line and may be inherited zircons
(296 ± 21 Ma, 252 ± 9 Ma, 676 ± 42 Ma, 162 ± 4 Ma, and 177 ±
4 Ma) (Supplementary Table S1), the remaining 25 data are
concentrated at 169 ± 4 Ma to 152 ± 5 Ma, with a weighted
mean 206Pb/238U age of 161 ± 2 Ma (Figures 4A, B).

5.1.2 Yanshan biotite monzogranite (sample
21YS01)

The zircon of this sample is generally dark gray color with
significant oscillatory domains and contains a few mineral
inclusions, 80–220 μm in length and 40–100 μm in width
(Figure 3B). The REE distribution pattern and the high Th/U
ratio (0.02–0.92) of zircon indicate that these are mainly of
magmatic origin, some of which are in the hydrothermal range
and may be related to mineral inclusions (Figures 3D, E). Thirty
zircon grains were analyzed, seven of which deviated significantly
from the concordia line andmay be inherited zircons (1543 ± 39 Ma,
2061 ± 41 Ma, 207 ± 6.2 Ma, 709 ± 39 Ma, 481 ± 52 Ma, 2204 ±
41 Ma, and 2450 ± 51 Ma), while the remaining 23 zircon 206Pb/238U

ages were concentrated in the range of 124 ± 3 Ma to 114 ± 3 Ma,
with a weighted mean 206Pb/238U age of 118 ± 1 Ma (Figures 4C, D).

5.1.3 Nansu biotite granite (sample 21NS01)
The zircon grains in this sample are gray and contain mineral

inclusions, with a length of 60–300 μm and a width of 50–100 μm
(Figure 3C). The REE distribution pattern and high Th/U ratio
(0.29–1.25) of zircon also indicate magmatic origin (Figures 3D, E).
The 30 zircon grains analyzed contain no captured/inherited
zircons, with 206Pb/238U ages concentrated in the range 129 ±
5 Ma to 114 ± 4 Ma and a weighted mean age of 121 ± 2 Ma
(Figures 4E, F).

5.2 Whole-rock major and trace element
geochemistry

The whole-rock geochemical data are shown in Figures 5–7
and Supplementary Table S2. Overall, the magmatic rocks in this
study all have high SiO2 (69.81–75.32 wt%), Na2O (3.48–4.18 wt
%), and K2O (2.97–5.32 wt%) contents. In the total alkali (Na2O +
K2O) vs. SiO2 diagram, these magmatic rocks fall into the granite
range of the subalkaline series (Figure 5A). They belong to the
high-K calc-alkaline series in the plot of SiO2 vs. K2O diagram
(Figure 5B) (except for one high-K sample from the Nansu

FIGURE 8
(A) Sr/Y vs. Y (after Martin, 1986; Defant and Drummond, 1990); (B) (La/Yb)N vs. YbN (after Martin, 1987; Drummond et al., 1996; Martin et al., 2005);
(C). MgO vs. SiO2; (D). Mg# vs. SiO2 of the various magmatic phases from Jiaodong Peninsula. Data sources are as in Figure 5.
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pluton). Their A/CNK [molar Al2O3/(CaO + K2O + Na2O)]
values are all <1 (0.91–0.99), indicating the characteristics of
metaluminous in the A/CNK vs. A/NK diagram (Figure 5C). In
Harker diagram, the correlation between SiO2 vs. Al2O3, CaO,
MgO, P2O5, TFe2O3, and TiO2 (Figure 6) is significant (especially
adding published data), indicating the crystallization
differentiation of minerals.

In the composition of rare earth elements (REE), these
magmatic rocks have the characteristics of enriched LREE and
depleted HREE (Figures 7A, C, E). However, there are significant
differences between the total REE and Eu anomalies. The total
REE of the Jurassic Linglong granite is low (28.01–58.25 ppm)
and shows positive Eu anomalies (Eu/Eu* = 1.45–2.27), while the
Cretaceous Weideshan suite has a high total REE
(132.87–213.19 ppm) and negative Eu anomalies (Eu/Eu* =
0.83–1.01) (Supplementary Table S2). Published literature also
shows such differences (e.g., Dong et al., 2023a). In the trace
element spider diagrams, all samples are enriched in large-ion
lithophile elements (LILEs; e.g., Rb and Pb) and depleted in high-
field-strength elements (HFSEs; e.g., Nb, Ta, and Ti) and P. In
addition, some elements are different. The Linglong and
Guojialing suites are enriched in Ba and Sr, while the
Weideshan suite shows the characteristics of depletion,
suggesting differences in the fractionation of potassium feldspar.

6 Discussion

6.1 Petrogenesis

6.1.1 Source characteristics of adakitic rocks
The Mesozoic granitoids in the Jiaodong Peninsula exhibit

high Al2O3 (12.73–14.10 wt%) content, Sr/Y (35.54–136.50), and
(La/Yb)N (11.42–48.90) ratios, as well as low Y (3.26–11.20 ppm)
and Yb (0.33–0.97 ppm) contents. These characteristics suggest
that they are adakitic rocks (Defant and Drummond, 1990;
Martin, 1999; Martin et al., 2005; Richards and Kerrich, 2007;
Moyen, 2009). The Sr/Y vs. Y and (La/Yb)N vs. YbN
discrimination diagrams also support this conclusion (Figures
8A, B). However, the Mesozoic granites in Jiaodong have a large
range variation of these elements/ratios, and some of them fall
within the range of island arc magma (Figures 8A, B), similar to
transitional properties (e.g., Cai et al., 2021), which may be due to
different magmatic processes. Therefore, the term “adakitic
rocks” (or “adakite-like rocks”) is used here to introduce
adakites, as proposed by Richards and Kerrich (2007).

Adakitic rocks can be formed through various processes,
including: 1) partial melting of the delaminated lower crust (Xu
et al., 2002); 2) partial melting of subducted oceanic slabs (Defant
and Drummond, 1990; Stern and Kilian, 1996; Martin, 1999;

FIGURE 9
The εHf(t) vs. U–Pb age (Ma) (A,B) and plots of εNd(t) vs. (87Sr/86Sr)i ratio (C) diagrams for the granites from the Jiaodong Peninsula. Data sources are
as in Figure 5.
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Smithies, 2000; Defant et al., 2002); 3) assimilation and fractional
crystallization (AFC) of basaltic magmas, or mixing with such
magma (Castillo et al., 1999; Macpherson et al., 2006); 4) Partial
melting of thickened lower crustal material (Atherton and Petford,
1993; Stevenson et al., 2006). High Mg# value, Co, and Ni contents
are commonly found in the source areas of the delaminated lower
crust and subducted oceanic slabs. However, the Mg# values and Co
and Ni contents of the Jurassic Linglong and Cretaceous Weideshan
granites studied in this study are both at a lower level
(Supplementary Table S2), especially for the Linglong granites,
which have a Mg# value of only 14–22, probably from partial
melting of crust derived materials. A large number of dioritic
xenoliths–enclaves have been found in previous studies of
Weideshan suite (e.g., Song et al., 2020; Song et al., 2021),
suggesting that magma mixing or the injection of mafic magma
has a certain source contribution. This may also be the reason why
the Nansu and Yashan plutons have medium Mg# (43–44). It is
shown in SiO2 (wt%) versusMgO (wt%) andMg# diagram that these
points in this study also fall within the partial melting range of
thickened lower crustal material (Figures 8C, D). The data in the
literature also shows such characteristics. In addition, some

characteristic trace element ratios also indicate that these rocks
are mainly crustal-derived, because these rocks have: 1) average Zr/
Hf (33.7) and Nb/Ta (13.0) ratios similar to the average crustal
values (33 and 11.4, respectively; Taylor and McLennan, 1985;
Rudnick et al., 2004), but lower than the primitive mantle values
(37 and 17.8, respectively; McDonough and Sun, 1995); 2) average
Ce/Pb (3.3) and Nb/U (5.0) ratios that reflect a continental crustal
source (4 and 10; Hofmann et al., 1986); 3) average Rb/Sr (0.3), Ti/Zr
(14.2) and Ti/Y (161.5) ratios similar to typical crustal-derived
magma (Pearce, 1983; Tischendorf and Paelchen, 1985; Wilson,
1989). Therefore, the Mesozoic adakitic rocks in the Jiaodong
Peninsula originated from the partial melting of thickened lower
crustal material, and the Cretaceous granite may also be
accompanied by the injection process of mafic magma. This
conclusion is supported by a large number of Sr-Nd-Hf isotope
analyses conducted by previous studies (Figure 9). The Cretaceous
granites are located in/near the mantle evolution trend range
(Figure 9C). The Jurassic granites are more derived from ancient
crustal components, while the Cretaceous Guojialing and
Weideshan granites show a higher involvement of mantle
components (Figure 9C).

FIGURE 10
Plots of (A) La vs. La/Yb, (B) La vs. La/Sm, (C) Sr/Nd vs. Th/Yb (Woodhead et al., 1998), and (D)Nb/Y vs. Ba (Kepezhinskas et al., 1997) for the Mesozoic
granites from Jiaodong Peninsula.
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6.1.2 Evolution process of adakitic magma in
Jiaodong Peninsula

The Mesozoic tectonism in the eastern NCC has been better
constrained, that is, they are mainly controlled by the paleo-Pacific
regime (Cai et al., 2019; Wu et al., 2019; Song et al., 2020; Cai et al.,
2021; Song et al., 2021; Yang et al., 2021). As mentioned earlier, the
Mesozoic granites in the Jiaodong Peninsula have the geochemical
characteristics of adakitic rocks, and are derived from the partial
melting of thickened lower crustal materials. Furthermore, the
positive correlation between La and La/Yb and La/Sm also
supports this source of partial melting of crustal materials (Figures
10A, B). However, there may be some differences between the Jurassic
andCretaceous periods. During theMiddle Jurassic, the subduction of
the paleo-Pacific Plate to the NCC induced the remelting of ancient
continental crust materials (Dong et al., 2023a; Dong et al., 2023b),
forming the Linglong granite in the Jiaodong Peninsula, which is why
Linglong has a relatively low Mg# value and Co, Ni content. And the
xenoliths of the ancient strata developed in the Linglong gneissic
granite also prove that the continental crust is the main source area.
During the Early Cretaceous, the roll-back of the paleo-Pacific Plate
results in the eastern NCC being subjected to a predominantly

extensional environment. Magmatism during this period appeared
particularly complex, and coincided with large-scale gold
mineralization events and magmatism in time. Geochemical and
isotopic characteristics indicate that the Guojialing and Weideshan
granites are also products of partial melting of ancient crustal
materials (Figures 8C, D, 9, 10A, B), but the developed mafic
microgranular enclave and moderate Mg# indicate that the
formation of these granites was accompanied by mixing of mafic
magma. Although there is currently no clear evidence indicating the
genetic relationship between the Guojialing and Weideshan granites
and gold mineralization, compared to the Jurassic magmatic
evolution, the injection of mafic magma may have contributed to
gold mineralization. Moreover, in the diagrams of Sr/Nd vs. Th/Yb
and Nb/Y vs. Ba, the Weideshan granite has the characteristics of
melt-related enrichment, which is completely different from the fluid-
related enrichment shown by other plutons (Figures 10C, D). This
indicates that the mafic magma during the formation of the
Weideshan granite may be attributed to the partial melting of the
mantle wedge that had been metasomatized by subduction slab-
derived melts rather than slab-derived hydrous fluids (e.g., Ji et al.,
2021).

FIGURE 11
(A) Whole-rock SiO2 (wt%) vs. T-Zr (°C); (B) T-Ti (°C) (Ti saturation temperature); (C) ΔFMQ histogram; (D) Age (Ma) vs. ΔFMQ. Ti saturation
temperature and ΔFMQ values are calculated from zircon trace elements.
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6.2 Magmatic physicochemical conditions

To better understand the causes of gold explosive mineralization in
the Jiaodong Peninsula, a comprehensive analysis of the magmatic
physicochemical conditions (e.g., oxygen fugacity and temperature) of
the Jurassic Linglong granite and the Early Cretaceous Weideshan
granite. The aim was to identify the key factors that restrict gold
mineralization.

The zirconium saturation temperature of the Middle Jurassic
granite, as revealed by the whole-rock geochemistry data
(Supplementary Table S3), is between 709°C and 852°C (with an

average of 758°C), which is lower than the zirconium saturation
temperature of the Early Cretaceous granite (634°C–866°C, with an
average of 810°C) (Figure 11A). The titanium saturation
temperature shown by the zircon trace elements in this study
also shows such a trend (Figure 11B), indicating that the
temperature of the Middle Jurassic igneous rock is lower than
that of the Early Cretaceous, which may be related to the peak
thinning in the east of NCC in the Early Cretaceous. Research on
porphyry mineralization systems shows a close relationship between
the oxidation state of magma and mineralization (e.g., Shu et al.,
2019; Cai et al., 2021). We also calculated the Linglong, Nansu, and

FIGURE 12
(A)Diagrams of U/Pb vs. Hf (A), U vs. Yb (B), U/Yb vs. Nb/Yb (C), U/Yb vs. Gd/Yb (D), Ti vs. Gd/Yb (E), and Gd/Yb vs. Ce/Yb (F) (after Grimes et al., 2015),
showing the zircon trace element data compiled for this study.
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Yashan granites based on the latest method provided by Loucks et al.
(2020). This method avoids the shortcomings of the prevailing
zircon oxybarometries that are subject to large analytical
uncertainties of La or fractionation of minerals like titanite,
plagioclase or apatite prior to zircon (Trail et al., 2012; Rezeau
et al., 2019). The pressure data used in the calculation is based on the
average of EPMA data of amphibole and biotite from Dong et al.
(2023c). The results show that the ΔFMQ values of the Linglong
suite are variable, ranging from −2.5 to +1.9, significantly lower than
those of the Nansu (+0.5 to +3.9) and Yashan (+0.8 to +3.3) plutons
(Figures 11C, D). This suggests that the magma in the Early
Cretaceous began to become more oxidized compared to the
Middle Jurassic. Previous EPMA studies on amphibole and
biotite have also shown such characteristics (Dong et al., 2023c).
This suggests that the high oxygen fugacity and temperature of
magma in the Early Cretaceous, especially in the Weideshan suites,
may be the key factors constraining gold mineralization.

6.3 Implications of Mesozoic magma for
large-scale gold mineralization in Jiaodong
Peninsula

The Jiaodong Peninsula contributes about 40% of China’s gold
resources, despite only accounting for 0.3% of its territory (Deng
et al., 2020; Li et al., 2023a). This is a remarkable feat, considering

that it formed in a very short duration of 5–10 million years.
Therefore, the long-standing controversial issue of the Jiaodong
gold deposit is how explosive mineralization in such a short
duration. Previous studies have classified the attribution of
Jiaodong gold deposits into orogenic (Goldfarb and Santosh,
2014), “Jiaodong” (Deng et al., 2020; Song et al., 2020),
decratonic (Zhu et al., 2011; Zhu et al., 2015), or intrusion-
related gold deposits (Nie et al., 2004). However, the role of
magma in gold mineralization is not clear, and there is a
significant spatio-temporal relationship between the Jiaodong
gold deposits and the magmatic rocks (Figure 11B), regardless of
the classification model. Therefore, it is possible large-scale gold
mineralization have a direct or indirect relationship with magma.

The present study shows that the Middle Jurassic and Early
Cretaceous granites, which are closely related to gold mineralization
in temporal and spatial terms. While the Jurassic granite is only
spatially related to mineralization, both types of granites share
geochemical properties of adakitic rocks. It is believed that these
granites were formed through partial melting of thickened lower
crustal material that was associated with the subduction of the paleo-
Pacific Plate. Zircon trace elements also suggest a crustal source
(Figures 12A–C). There were a large number of mafic enclaves in the
Early Cretaceous, indicating the mixing of mantle derived magma.
However, it is unclear whether the high oxygen fugacity of Early
Cretaceous magma is related to the mixing of mafic magma.
Generally speaking, degassing of magma (Bell and Simon, 2011;

FIGURE 13
Th/U (A), (Eu/Eu*)/Yb×104 (B), Dy/Yb (C), and FMQ (D) vs. Hf plots of zircons from the Jiaodong Peninsula Mesozoic granites.
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Moussallam et al., 2014), contamination of wallrock materials
(Rowins, 2000; Li et al., 2019b), or crystallization differentiation
of minerals (e.g., garnet, rutile, apatite or magnetite) (Jenner et al.,
2010; Tang et al., 2018; Lee and Tang, 2020) may all cause changes in
the redox state of magma. Degassing, accompanied by the escape of
oxidized or reduced substances (especially sulfur and iron), usually
occurs at shallow crustal levels when volatile saturation is reached,
where pressures are too low to maintain high water solubility in the
magma at high pressures (Baker and Alletti, 2012). Dong et al.
(2023c) showed that the Guojialing suite is water unsaturated, and
the Linglong granite does not contain amphibole, indicating a low
water content in the pre-mineralization magma. Therefore,
degassing did not play an important role in changing the
oxidation states of the pre-mineralization magmas. The available
data indicate that the mafic dykes contemporaneous to
mineralization are also of lower water content (Liang et al.,
2019). This shows that degassing is not the cause of the change
in oxidation state. The present study shows that the mineralized
contemporaneous Weideshan suite has a higher oxygen fugacity
than the pre-mineralization magma (Figure 11), and the
contemporaneous mafic dykes also show higher ΔFMQ values
(Geng et al., 2019). This suggests that the mixing/injection of
mafic magma favors the elevation of oxygen fugacity. The
characteristic trace element ratio correlation diagram shows that
there may be cooling of zircon, fractionation of apatite and rutile,
and fractionation of garnet during diagenesis (Figures 12D–F).
Among them, there is only a trend of garnet in the Gd/Yb vs.

Ce/Yb diagram (Figure 12F), and the rare earth element
composition of zircon does not show obvious LREE enrichment
characteristics. Therefore, it is unlikely that the fractionation of
garnet caused the change in fO2. Crystallization of Ti-bearing
minerals like ilmenite or rutile may also influence the fO2 of
magma because both of them contain Fe2+ (Dong et al., 2023c).
Crystallization fractionation of minerals (e.g., rutile) will also cause
the rise of fO2. The diagram of zircon Hf to trace element ratios also
implies significant magmatic differentiation (Figure 13).

During the Jurassic, the lower crust partially melted, forming
magma with low water content and low oxygen fugacity
(represented by the Linglong suite) (Figure 14A), which may have
promoted the saturation and accumulation of sulfides (which may also
include gold) (Dong et al., 2023c). The NCC thinning/decratonization
reached a climax in the Early Cretaceous, accompanied by the upwelling
of a large amount of material from the asthenosphere mantle
(Figure 14B). This process may also be accompanied by the
delamination of the subcontinent mantle lithosphere, forming the
MME-rich Guojialing and Weideshan suites. Higher oxygen fugacity
magmas ofmaficmagmamixedwith crustal-sourcemagmas resulted in
the highest magma oxygen fugacity in the Weideshan suite (~120Ma).
The melt-related enrichment trend shown in Sr/Nd vs. Th/Yb and Nb/
Y vs. Ba diagrams may also be related to this process (Figures 10C, D).
Fewer contemporaneous mafic dykes are developed in the Guojialing
suite (~130Ma), suggesting that this processmay not be significant. The
mixed magma underwent significant fluid exsolution during upward
cooling (e.g., significant crystal cave formations and pegmatites are

FIGURE 14
Schematic diagram of Mesozoic tectonic evolution and gold mineralization in Jiaodong Peninsula (after Dong et al., 2023c).
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visible in the Aishan pluton), and the massive magma-fluid migrated
sulfides and gold along the fault, and with significant changes in
physicochemical conditions (temperature and pressure reduction),
the migrated gold complexes (e.g., Au(HS)0, Au(HS)2-) (Williams-
Jones et al., 2009) destabilized and formed massive gold ore bodies
within the fault (Figure 14B). This model provides insights into the
explosive and instantaneous mineralization of the Jiaodong gold
deposit, suggesting that it may differ from the traditional orogenic
gold deposit category (Groves et al., 1998).

7 Conclusion

TheMesozoic (Middle Jurassic and Early Cretaceous) granites of
the Jiaodong Peninsula exhibit geochemical signatures of adakitic
rocks and are derived from partial melting of the thickened lower
crust associated with the subduction of the paleo-Pacific Plate. The
addition of mantle materials is also observed in the Early Cretaceous
magmatic rocks. The pre-ore magmas (Linglong granites) have
relatively low oxygen fugacity, while the Weideshan granites
during the mineralization period have the highest oxygen
fugacity due to mixing with oxidized mafic magmas. Our model
suggests that the low oxygen fugacity pre-ore magma promoted the
accumulation of sulfides, and the upwelling of crust-mantle mixed
oxidized magma in the Early Cretaceous (Weideshan suites) allowed
a large amount of sulfides and gold to be migrated and mineralized
at the fault site. This model provides an explanation for the transient
and explosive gold mineralization in the Jiaodong Peninsula.
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