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The total organic carbon (TOC) is an important parameter for shale gas reservoir
exploration. Currently, predicting TOC using seismic elastic properties is
challenging and of great uncertainty. The inverse relationship, which acts as a
bridge between TOC and elastic properties, is required to be established correctly.
Machine learning especially for Random Forests (RF) provides a new potential. The
RF-based supervised method is limited in the prediction of TOC because it
requires large amounts of feature variables and is very onerous and
experience-dependent to derive effective feature variables from real seismic
data. To address this issue, we propose to use the extended elastic impedance
to automatically generate 222 extended elastic properties as the feature variables
for RF predictor training. In addition, the synthetic minority oversampling
technique is used to overcome the problem of RF training with imbalanced
samples. With the help of variable importance measures, the feature variables
that are important for TOC prediction can be preferentially selected and the
redundancy of the input data can be reduced. The RF predictor is finally trained
well for TOC prediction. The method is applied to a real dataset acquired over a
shale gas study area located in southwest China. Examples illustrate the role of
extended variables on improving TOCprediction and increasing the generalization
of RF in prediction of other petrophysical properties.
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1 Introduction

As one of important “sweet spot” properties of shale gas reservoir, total organic carbon
(TOC) is used to evaluate reservoir quality and hydrocarbon potential (Sachsenhofer et al.,
2010). TOC can be measured on core data directly in a laboratory and can also be estimated
using well logs with different methods (Sondergeld et al., 2010; Yu et al., 2023). At present, a
large number of TOC logging interpretation methods or models have been proposed (Yin
et al., 2023). However, there are few seismic interpretation methods for TOC. For
conventional gas reservoirs, elastic properties (e.g., density, P-wave impedance, Poisson’s
ratio) derived from seismic data can be effectively used to describe the spatial distribution of
petrophysical properties (e.g., porosity, gas saturation and mineral content, etc.) based on
rock-physics relationships between petrophysical properties and elastic properties (Gui et al.,
2015; Grana et al., 2022). For shale gas reservoirs, there is also usually a certain relationship
between TOC and elastic properties (Chopra et al., 2013; Zhao et al., 2016; Wilson et al.,
2017). The approaches to expose such relationships is mainly model-driven or data-driven.
Due to the poor physical properties and strong heterogeneity of TOC, modeling the

OPEN ACCESS

EDITED BY

Sanyi Yuan,
China University of Petroleum, Beijing,
China

REVIEWED BY

Huaizhen Chen,
Tongji University, China
Qiang Guo,
China University of Mining and
Technology, China
Jiajia Zhangjia,
China University of Petroleum, Huadong,
China

*CORRESPONDENCE

Jinyong Gui,
guijy@petrochina.com.cn

RECEIVED 10 June 2023
ACCEPTED 08 August 2023
PUBLISHED 22 August 2023

CITATION

Gui J, Gao J, Li S, Li H, Liu B and Guo X
(2023), A data-driven method for total
organic carbon prediction based on
random forests.
Front. Earth Sci. 11:1238121.
doi: 10.3389/feart.2023.1238121

COPYRIGHT

© 2023 Gui, Gao, Li, Li, Liu and Guo. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 22 August 2023
DOI 10.3389/feart.2023.1238121

https://www.frontiersin.org/articles/10.3389/feart.2023.1238121/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1238121/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1238121/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1238121&domain=pdf&date_stamp=2023-08-22
mailto:guijy@petrochina.com.cn
mailto:guijy@petrochina.com.cn
https://doi.org/10.3389/feart.2023.1238121
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1238121


rock-physics relationship between TOC and elastic properties is
highly uncertain (Bandyopadhyay et al., 2012; Kumar et al., 2016).
Most data-driven methods usually obtain a deterministic formula
between TOC and elastic properties through statistical fitting. For
research areas with simple geological backgrounds, such fitting
formulas can also achieve good results. However, with the
increasing complexity of exploration objects, it is difficult to
obtain a suitable fitting formula in most cases. Machine learning
algorithms (MLAs) have powerful ability to uncover the complex
statistical relationship by learning a favorable predictor (Bandura
et al., 2018; Jiang et al., 2020; Li et al., 2023; Sang et al., 2023).
Ouadfeul and Aliouane. (2016) used 3D seismic data to calculate
TOC based on the multilayer perceptron neural network. Verma
et al. (2016) used probabilistic neural network with Gaussian
weighting functions to predict TOC volume. Amosu and Sun.
(2019) developed a robust support vector machine (SVM)
learning approach to identify high TOC formations. Among
different supervised learning strategies, the Random Forests (RF)
has been increasingly applied in the field of geophysics (Cracknell
and Reading, 2014; Kim et al., 2018; Lubo-Robles et al., 2022). The
RF is an ensemble learning algorithm, which combines the idea of
bagging ensemble and random feature selection, and the prediction
result is determined by voting with multiple weak classifiers
(Breiman, 2001). Cracknell and Reading (2014) compared RF
with four other MLAs: SVM, Naive Bayes, K-nearest neighbours
and Artificial Neural Networks; as applied in geological mapping
using remote sensing data. In their study, RF marginally
outperformed other MLAs and it is demonstrated that RF was
able to produce accurate results with simpler input parameters
and at less computational cost than other algorithms evaluated.
The current applications of RF in the field of geophysics is mainly
used for lithology or fluid classification, and there is little research on
the regression application, especially the regression application of
shale gas “sweet spot” properties. In fact, for regression application,
the RF is still subjected to insufficient feature variables and
imbalanced training samples. In general, regression application
requires more feature variables to participate in training than
classification application to avoid overfitting. What’s more, for
shale gas reservoirs, “sweet spots” are often developed in a large
set of background lithology, and the number of samples belong to
“sweet spot” in the overall training set is relatively small, and the
imbalance of the sample set is prominent.

In this study, the use of RF is suggested to predict the TOC of shale
gas reservoir. We propose an automatic feature variable extension
strategy for the problem of dependence on the number of feature
variables in TOC regression. We also note the imbalanced behavior of
TOC samples and use the synthetic minority oversampling technology
to eliminate the impact of this behavior on RF training. The proposed
method is demonstrated through applications of the RF workflow to
real field data, with the goal of assessing the quantitative prediction
capability for TOC of a shale gas reservoir.

2 Methodology

RF is formed by combining multiple decision trees, which is
equivalent to combining many nonlinear relationships to formmore
complex nonlinear relationships, and has the advantages of high

prediction accuracy and high tolerance for outliers and noisy data,
and has been widely used in many fields such as finance, biology,
genetics, image recognition, and medicine. As a statistical method,
RF uses Bootstrap resampling to extract multiple sample sets from
the original sample set, and performs decision tree modeling for
each sample set separately, so that each decision tree obtained from
the construction is different, and can simulate multiple nonlinear
relationships to form a complex forest mode. The decision tree
construction algorithm uses the CART method proposed by
Breiman in 1984 (Breiman et al., 1984). The basic steps of the
random forest algorithm are divided into four steps: 1) Random
sampling to train the decision tree. 2) Randomly select features as
node splitting features. 3) Repeat step 2 until it cannot split again.
4) Build a large number of decision trees to form a forest. The
obvious difference between RF and neural networks and SVM lies in
its non-parametric nature, which means that there are no
parameters such as weights that affect the sample data. If only
the sample space is divided, even if the order of magnitude of
different feature variable is quite different, there can be no
standardization or normalization preprocessing, and the most
original information can be reserved for nonlinear prediction.
Given the advantages of RF, we attempt to use RF for TOC
prediction of shale gas reservoir and propose a workflow for the
problems encountered in the application, as shown in Figure 1.
Firstly, the labels are generated from interpreted TOC logging curves
and the fundamental feature variables are obtained from the
borehole-side traces of elastic properties volumes inverted by pre-
stack seismic data. Secondly, we dealt with the problem of sampling
imbalance in the training set by synthesizing minority class samples.
Thirdly, considering that the real feature variables are always
insufficient, we propose a feature variable extension strategy
using extended elastic impedance with different angle. Fourthly,
the importance of the variables is measured by pre-training, and the
feature variables with the highest importance are preferred. Finally,
the decision trees are trained with reducing the redundant feature
variables to obtain an optimal regressor.

2.1 Feature variables extension

The principles of classification and regression for RF are
basically the same, with the difference being that classification
outputs categorical labels and regression outputs numerical
variables. For the classification problem, the prediction of RF is
decided by a minority-majority voting method. For the regression
problem, the average of all the regression decision tree output values
is used as the prediction of the forest. Previous work in geophysics
has shown that for RF classification, such as lithology and fluid
identification, using several target-sensitive elastic properties
obtained by pre-stack seismic inversion as input feature variables
can yield good classification results (Kim et al., 2018; Lubo-Robles
et al., 2022). However, for the regression of continuous numerical
variable such as TOC, the influence of the number of elastic
properties on the prediction results is not clear enough.

In general, the greater the number of feature variables involved
in training, the richer the information carried will be and the
training results may be more accurate and generalized. Alvarez
et al. (2015) mathematically transformed 11 common elastic
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properties to obtain a large number of extended elastic properties as
the base dataset for linear regression of petrophysical properties,
which can achieve better application results. However, this approach
is still influenced by subjective factors, e.g., the number of common
elastic properties is much more than 11 and the target-sensitive
elastic properties might be missed. In addition, the extraction of a
large number of target-sensitive elastic properties is a time-
consuming and expert-knowledge-requiring. Each elastic property
needs to be obtained based on pre-stack seismic inversion or
different transformation formulas, which is less automated and
has the risk of error accumulation and amplification during the
transformation process, especially for unconventional reservoirs
whose elastic properties are anisotropic. To overcome the
problems in the preparation of feature variables for RF training,
we propose to automatically generate a series of elastic properties as
feature variables using extended elastic impedance (EEI).

Whitcombe et al. (2002) proposed the expression of EEI based
on the Connolly’s elastic impedance equation:

EEI χ( ) � Vp0ρ0
Vp

VP0

( )
p

Vs

Vs0

( )
q

ρ

ρ0
( )

r

[ ] (1)

where p � (cos χ + sin χ), q � −8k sin χ, r � (cos χ − 4k sin χ); χ

represents the angle value that varies between −90°and +90°; Vp,

Vs and ρ represent the P-wave velocity, S-wave velocity and density,
respectively; Vp0, Vs0 and ρ0 represent the mean values of P-wave
velocity, S-wave velocity and density of the target layer, respectively.

In Eq. 1, the EEI is calculated from the three fundamental elastic
properties: Vp, Vs and ρ. The EEI is tuned using different χ values to
be approximately proportional to a number of elastic properties for
lithology or fluid identification (Whitcombe et al., 2002). Moreover,
the EEI provides a good approximation of common logging
properties (e.g., resistivity, gamma) (Neves, 2004). It is easy to
obtain these fundamental elastic properties volumes through pre-
stack seismic inversion technology (Russell et al., 2011; Yuan et al.,
2019). We proposed to use EEI at different χ to replace the common
elastic properties as the feature variables. Firstly, since there are
some errors in the elastic properties obtained from the prestack
seismic inversion, we use the noisy elastic properties for training to
directly establish the relationship between the noisy properties and
TOC, instead of considering the effect of errors separately. The
borehole-side traces are extracted from the prestack seismic
inversion volumes of Vp, Vs and ρ as the fundamental curves.
The mean value Vp0, Vs0 and ρ0 of the target layer can be statistically
obtained from the fundamental curves. Since they only serve to
standardize the magnitude of EEI with different angles, the
correctness of their values does not affect the sensitivity of the
EEI. Secondly, a series of EEI curves at different χ are calculated
according to Eq. 1. In this study, we set the change step of χ to 5° (the
step can be set smaller in order not to miss the potential target-
sensitive elastic properties). Thirdly, 222 feature variables are
extended according to the mathematical transformation ideal of
Alvarez et al. (2015), as shown in Table 1. Theoretically, other
mathematical operations can also be used for transformation and
may yield better results, which can be set according to specific
conditions. Finally, the extended feature variable traces and the
corresponding TOC logging curves are used as the training set.

2.2 Performing balanced sampling

The original training set is resampled using the Bootstrap
sampling to randomly generate k sub-training sets S1, S2, . . . , Sk
(Breiman, 2001). The elements included in each sub-training set
sampled by Bootstrap sampling are not all the same, ensuring the

FIGURE 1
Workflow of the proposed approach.

TABLE 1 Feature variables. x represents the angle-dependent extended elastic
impedance. Each number represents a single variable, which is obtained after
applying the mathematical operation shown in the leftmost column to the
variable show in the uppermost row.

EEI EEI . . . . . . EEI

(-90°) (-85°) (90°)

x 1 2 . . . . . . 37

lnx 38 39 . . . . . . 74

ex 75 76 . . . . . . 111

1/x 112 113 . . . . . . 148

x2 149 150 . . . . . . 185

x−2 186 187 . . . . . . 222
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FIGURE 2
Well logging curves. (A) P-wave velocity, (B) S-wave velocity, (C) density, (D) TOC.

FIGURE 3
Elastic properties curves. (A) EEI (5°), (B) EEI (15°), (C) EEI (45°), (D) λρ.
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diversity of the decision tree, which is one of the advantages of the
RF. However, all samples are sampled with the same probability each
time in Bootstrap sampling process, whichmeans that when training
on sample sets with widely different numbers of samples from

different classes, the results is often biased toward the majority
class samples, and the minority class samples cannot obtain the
desired results. In the past few years, the problem of classifying
imbalanced data in machine learning has received increasing

FIGURE 4
VIM of feature variables.

FIGURE 5
Curves comparison. (A) Variable with highest VIM, (B) Variable with highest VIM, (C) TOC.
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attention (Zhang et al., 2018). Here, “imbalanced data” means that
the number of samples corresponding to each class is different and
the number of differences is large. Although the imbalanced data
problem is mainly focused on classification, its impact on regression
cannot be ignored. For shale gas in southwest China, the “sweet
spot” layer is usually thinly developed in large sets of shale. When
the number of training samples belong to the “sweet spot” layers
with higher TOC is small and the number of training samples belong
to the non-“sweet spot” layers with lower TOC is large, the training
of RF regressor may be biased to the non-“sweet spot” layers, which
may affect the accuracy of TOC prediction in the “sweet spot” layers.
The number of samples belong to “sweet spot” layers and non-
“sweet spot” layers are needed to be balanced, forming a large
balanced dataset.

There are two general methods for handling imbalanced data:
oversampling and undersampling. Oversampling is to increase the
size of a minority class sample by replicating a minority class sample.
Undersampling, on the other hand, removes some majority class
samples at random. Considering that machine learning relies mainly
on logging data as training samples, which are expensive to obtain
and often precious in small quantities. Therefore, we suggest the
oversampling method is used to deal with the minority class
samples. A more representative oversampling technique is the
Synthetic Minority Oversampling Technique (SMOTE). The
SMOTE algorithm analyzes a small number of samples,
synthesizes new samples manually, and adds the new samples to
the dataset. The specific procedure of this algorithm is as follows
(Chawla et al., 2002):

(1) For each sample in the minority class (“sweet spot” layers with
high TOC), we calculate its distance from all the samples in the

minority set by using the Eucli-dean distance and obtain its m
nearest neighbors;

(2) According to the imbalance class ratio, we set sampling ratio to
determine the sampling magnification N. For sample x in the
minority class, we randomly select several samples from its m
nearest neighbors. For each randomly selected neighbor y, we
construct a new sample zwith the original sample x according to
the equation:

z � x + rand 0, 1( ) × y − x
∣∣∣∣ ∣∣∣∣ (2)

where rand(0, 1) represents the random number between 0 and 1;
(3) Repeat steps (1)-(2) until the number of samples in the

minority set increases to the pre-set value N.
The SMOTE algorithm may cause overlap between samples,

generate some samples that do not provide effective information,
and reduce the classification/regression performance. To further
improve the generalization of the RF regressor for TOC
prediction, we used the Borderline Synthetic Minority
Oversampling Technique (BSMOTE) (Han et al., 2005) to take
oversampling, which was improved based on the SMOTE. The
BSMOTE algorithm only uses a minority of samples on the
border to synthesize new samples, thereby improving the
category distribution of the samples. The oversampling
process of BSMOTE is basically the same as SMOTE, with the
difference being that the BSMOTE further categorizes the
minority samples into three categories: “Safe”, “Danger” and
“Noise”. “Safe” category means that more than half of the
samples are minority samples; “Danger” category means that
more than half of the samples are majority samples, which are
regarded as samples on the boundary; “Noise” category means
that the samples are surrounded by the majority samples, which

FIGURE 6
Pearson correlation coefficient changes with the number of feature variables.
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are regarded as noise. Finally, only the minority samples denoted
as “Danger” are oversampled (Liu and Liu, 2022).

2.3 Optimal predictor training

RF is a bagging ensemble of many uncorrelated decision trees.
The CART algorithm is applied to sub-training set S1, S2, . . . , Sk
separately for decision tree modeling (Breiman, 2001). The partition
criterion in CART for regression is the minimum mean squared
error which is used to choose the feature for node partition. For each
partition, the input space is split into two subspaces. After fully
grown, the decision trees are constructed. Even with the same
training samples, the features corresponding to each node on the
decision tree are different due to the random selection of features,
which makes the decision tree more diverse and improves the

performance of the whole forest. Each decision tree can give a
predicted TOC value, and the average of the predicted values of all k
decision trees is used as the output value of TOC.

According to the proposed feature variable expansion method,
222 feature variables can be generated from the Vp, Vs and ρ

volumes inverted by pre-stack seismic as the input data for the
RF predictor. However, a large number of feature variables may
bring too much redundant information and calculation
consumption. Some feature variables may be extremely sensitive
to TOC, while others may contain little valid information. Selecting
the feature variables that contribute most to the target regression can
speed up the process and improve the accuracy of prediction.
Another advantage of RF is that it can provide a variable
importance measure (VIM), which ranks feature variables
according to their predictive power. In RF, there are Gini
importance and permutation accuracy importance (Strobl et al.,
2007). For regression problems like TOC, it is appropriate to use
permutation accuracy importance to calculate the VIM. For
Bootstrap sampling, each decision tree has its own out-of-bag
samples, which are not used in the construction process. For
Bootstrap sampling, each decision tree has its own out-of-bag
data samples that are not used in the tree construction process
and can be used to calculate the VIM.

There are three main steps in the VIM calculation of
permutation accuracy importance. First, the predictive accuracy
of the out-of-bag sample is measured. Second, the feature
variables were randomly permuted, and the other feature
variables were left unchanged. Finally, the prediction accuracy
after random permutation is measured. For the ith tree, the VIM
of the jth feature variable Xj is:

Vij � 1
Koob

∑koob

i�1 yi − ~yi Xj( )( )2 − 1
Koob

∑koob

i�1 yi − ~yi( )2 (3)

where Koob is the number of out-of-bag samples, yi is the actual
value, ~yi is the predicted value, and ~yi(Xj) is the predicted value of
variable Xj after random permutation.

The average VIM of all trees is taken as the final VIM of Xj.
Based on the VIM, the top-ranked feature variables are preferred as
the final input feature variables for RF predictor training.

3 Examples

A shale gas reservoir study area in Southwest China is used as an
example to discuss the effectiveness of the new method. The shale in
this study area is buried deep (>3,500 m) and widely distributed with
large thickness. The early deployed exploratory wells obtained high
production gas flow, showing the huge resource potential of deep
shale gas in the area. However, as more exploratory wells are
deployed, significant lateral changes in production capacity have
been observed, resulting in significant exploration risks. Therefore,
the spatial distribution of high-quality “sweet spot” needs to be finely
delineated. Drilling data show that the high quality “sweet spot”
layer in this study area has high TOC with various types of pore
space including inorganic mineral and organic pores. The
relationship between TOC and elastic properties is affected by
the complex lithofacies and pore structures, as well as
temperature and pressure, which makes it difficult to accurately

FIGURE 7
Comparison of prediction curves. The black, green, blue, and red
curves represent the real TOC well logging interpretation curve,
predicted curve by the common 11 elastic properties and predicted
curve by the all 222 feature variables, predicted curve by the VIM
top 40 feature variables, respectively.

Frontiers in Earth Science frontiersin.org07

Gui et al. 10.3389/feart.2023.1238121

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1238121


FIGURE 8
Histogram of TOC before BSMOTE processing.

FIGURE 9
Histogram of TOC after BSMOTE processing.
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establish rock-physics models, resulting in low inversion accuracy of
TOC based on model driven methods. Therefore, it is necessary to
try to obtain high accuracy TOC distribution information based on
data-driven approach.

Figure 2 shows the borehole-side curves extracted from the
prestack seismic inversion volumes of Vp, Vs and ρ, and the
corresponding TOC well logging interpretation curve of a key
well in this study area. We can observe that TOC curve is not
directly related to curves of Vp, Vs and ρ. Figure 3 shows the EEI
curves of different angles and Lamé impedance (λρ) curve calculated
by Vp, Vs and ρ shown in Figure 2. The result of λρ is commonly
used as an properties that responds to changes in rock rigidity or an
indicator of fluid identification (Goodway et al., 1997). We observe
that there are some differences between the EEI curves with different
angles. When the angle is 15°, EEI (15°) is very similar to the λρ
curve, with a Pearson correlation coefficient of 0.98, which indicates
that the EEI can be indeed used as a substitute for some common
elastic properties.

As for which feature variable is more important it still has to be
selected based on the specific study area and the VIM ranking.
According to the generation way shown in Table 1, 222 extended
variables are obtained for VIM ranking as shown in Figure 4. For this
case, we observe that not every variable is important for TOC
prediction, and the 206th variable (EEI(10°)−2) has the highest
importance. The curves of the highest importance variable and
the lowest importance variable (EEI(80°)2) is shown in the
Figure 5. We can see that the trend of the highest importance
variable can roughly reflect the change of TOC curve, while the trend
of the lowest importance variable looks unrelated to the TOC curve.
With this extension strategy, not all common elastic properties can
be covered, but potential TOC-sensitive parameters can be obtained
unconsciously.

From Figure 4, we also can see that many variables have very low
VIM, which indicates the existence of information redundancy. The
variables are added to the RF training sequentially according to the
ranking from highest to lowest VIM, and changes in corresponding

FIGURE 10
Comparison of prediction curves. The black and red curves
represent the real TOC well logging interpretation curve and the
predicted curve by the VIM top 40 feature variables, respectively.

FIGURE 11
Comparison of prediction curves of a validation well. The black
and red curves represent the real TOC well logging interpretation
curve and the predicted curve by the proposed approach.
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Pearson correlation coefficient between the predicted TOC curve
and the true TOC curve with the number of variables are shown in
Figure 6. We observe that the Pearson correlation coefficient shows
an upward trend with the increase of the number of feature variables,
and then tends to be flat when the number reaches about 40.
Therefore, we conclude that in this example, only the VIM top
40 feature variables are required to meet the requirements.

Figure 7 shows the TOC curves predicted using all 222 variables,
only the VIM top 40 variables and 11 common elastic properties
(P-wave impedance, S-wave impedance, P-to-S velocity ratio,
density*Lamé’s parameters and subtraction of the two, density*shear
modulus, Poisson’s ratio, density*Young’s modulus, density*bulk

modulus, Poisson dampening factor) as the input feature variables.
We see that the predicted curves of all 222 variables and the VIM top
40 variables are almost coincident on the whole, which are both better
than the predicted result of the common 11 elastic properties. However,
in Figure 7, we also observe that even the prediction result of
222 variables deviates significantly in the high TOC interval (as
shown by the arrow). Our analysis suggests that the proportion of
high TOC intervals in the entire curve is relative very small, resulting in
the training of the RF regressor leaning towards low TOC samples. As
shown in the histogram in Figure 8, the high TOC samples accounts for
a small proportion in the whole sample set. Therefore, it is necessary to
balance the samples participating in the training. We used BSMOTE to

FIGURE 12
Elastic properties section. (A) P-wave velocity, (B) S-wave velocity, (C)Density.
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increase the number of samples in the high TOC interval. As shown in
Figure 9, it can be seen that after BSMOTE processing, the number of
samples with low TOC in the original sample did not change, while the
number of samples with high TOC significantly increased and the
values were more diverse. The number of samples with high and low
TOC reached a rough balance. The prediction result of the VIM top
40 variables after BSMOTE processing is shown in Figure 10. By
comparing Figure 7 and Figure 10, it can be observed that the
prediction results for high TOC intervals are significantly improved,
with the correlation coefficient increasing to 0.98 from the previous
0.95, which indicates that the issue of sample balance cannot be ignored
for the RF prediction of imbalanced data. Figure 11 shows the predicted
TOCof anotherwell in the study area that did not participate in training
as a blind well. It can be seen that although this well did not participate
in the training, the prediction result is still in good agreement with the
logging curve, with a correlation coefficient of 0.96, which also verifies
the effectiveness of the proposed method.

The seismic data in this area have been rigorously processed and
quality controlled to meet the requirements for pre-stack seismic
inversion. Figure 12 show a pre-stack seismic inversion section of
three fundamental elastic properties in the target area. From the values
presented by the P-wave velocity, S-wave velocity, and density sections,
there is no intuitive and unified pattern to help us identify favorable
“sweet spots”. Further conversion of the elastic properties to TOC is
required. Based on three fundamental elastic properties, the TOC
section was predicted using the common 11 elastic properties and
VIM top 40 variables after BSMOTE processing as input feature
variables, respectively, as shown in Figure 13. It can be observed
that there is a significant difference in the relative high TOC
development area predicted by the common method and the

proposed approach (shown by the red dashed lines). The relative
high TOC (about 4.2%) development interval predicted by the
proposed approach is below the relative high TOC development
interval predicted by the common method, which has obvious
anomaly and good continuity compared with the surrounding strata.
Subsequent horizontal drilling confirmed the development of a
continuous high-quality shale gas reservoir in this layer with TOC
averaging around 4%, which verifies the effectiveness of the proposed
method. Although the results of common method also exhibit locally
high TOC values (about 3.5%) in this interval (shown by the red arrow),
the continuity is poor and can easily be misinterpreted as a reservoir
with low commercial exploration value.

4 Conclusion

In gas reservoir research areas with complex geological environments
or lack of rock-physics experimental analysis data, it is difficult to
accurately establish rock-physics models between petrophysical
properties and seismic or their derived elastic properties, resulting in
insufficient theoretical basis for model-driven approaches. Data-driven
approaches, with their powerful ability to uncover the complex statistical
relationship by learning a favorable predictor, provide a newway to break
this situation. For continuous numerical regression problems such as
TOC, data-driven approaches require a large number of feature variables
as training sets in order to achieve the best performance. However,
extracting valid feature variables from seismic data is a very tedious and
experience-dependent task. In addition, for the describing of thin
reservoirs developed in a large set of background lithology, the issue
of imbalanced samples cannot be ignored. To address the challenges of

FIGURE 13
Comparison of TOC prediction sections. (A) Predicted by the common 11 elastic properties, (B) Predicted by the proposed approach.
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data-driven approach in the application of TOC prediction, we first
propose to use extended elastic impedance to automatically generate
222 extended elastic properties as the training set for machine learning,
and introduce the RF algorithm to optimize the training of the regressor.
Then, taking the advantage that RF can rank the importance of feature
variables, the feature variables with higher importance for TOC
prediction are preferentially selected to participate in the final training
to reduce the redundancy of information. The BSMOTE is used to
improve the problem of RF training with imbalanced samples. Both the
analysis of well-logging data and the field data application demonstrate
the superiority and validity of the proposed method for TOC prediction.
Furthermore, the applications of the proposed method are not limited to
predict TOC. It also can be easily extended to perform predictions of
other petrophysical properties such as porosity, gas content and even
stress, brittleness, etc. In addition, the proposedmethod is also suitable for
other machine learning algorithms. Because preparing sufficient feature
variables is the primary problem faced by all supervisedmachine learning
algorithms for geophysical applications and the problem of data
imbalance is very common in the field of geophysics.
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