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This study aims to utilize complex network theory and network immune strategies
to identify relevant risks in urban river ecological governance projects and develop
corresponding risk response strategies. By constructing a risk evolution network
with 53 nodes and 255 edges, we analyzed the network’s degree centrality,
betweenness centrality, closeness centrality, and composite value parameters,
confirming the network’s scale-free characteristics. Based on this, we used
network global efficiency as a metric to assess the network’s robustness under
random and targeted attacks. The results revealed that under targeted attack
scenarios, the degree value attack immune strategy performed optimally, while
random immune strategies were less effective than targeted immune strategies.
Moreover, this model offers various advantages in early risk response decision-
making and establishing a forward-looking risk warning framework, providing an
effective tool for risk management in urban river ecological governance projects.
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1 Introduction

With the continuous acceleration of urbanization, the urban ecological environment
faces increasingly severe challenges (Deng et al., 2022; Luo et al., 2022). Urban rivers are an
essential part of the urban ecosystem and have significant implications for the quality of the
urban ecological environment and its sustainable development (Liu et al., 2022; Zhao and
Huang, 2022). The risk characteristics of urban river ecological governance projects
encompass ecosystem restoration risk, water quality improvement risk, engineering
safety risk, and social participation risk. To address these risk features, urban river
ecological management projects need to take a comprehensive approach, considering
ecological, engineering, and social factors, and implementing appropriate measures and
governance strategies. Urban river ecological governance projects are essential for ecological
and environmental governance. Through the extensive use of multidisciplinary knowledge
and technological means such as ecology, engineering, and environmental science, urban
rivers are comprehensively managed to achieve the purification of the water environment,
restoration of ecological systems, and improvement of the ecological environment. However,
urban river ecological governance projects involve multiple stakeholders, including
governments, enterprises, and social organizations. The technologies and knowledge
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involved are also relatively complex and diverse, so the project’s risks
and uncertainties are significant.

Risk studies for urban river ecological governance projects are an
important way to ensure successful project implementation and
sustainability. Various methods and tools such as qualitative
analysis, quantitative modeling and expert judgment have been
used to identify and assess potential risk factors and risk events
(Yu et al., 2017; Zhu et al., 2022). In past studies, extensive research
has been conducted on risk studies in urban river ecological
governance projects (Ullah et al., 2021). Some researchers have
assessed the impact of different stakeholders on the implementation
of urban river ecological governance projects by applying social
network analysis methodology. They found that cooperation and
information flow among stakeholders play an important role in the
successful implementation of a project, which provides a useful
reference for the development of risk management strategies
(Lienert et al., 2013). Xu et al. (2023a) conducted an in-depth
study on risk management strategies for urban river ecological
governance projects. They explored the effectiveness of
implementing strategies such as risk avoidance, risk transfer, risk
mitigation, and risk acceptance, and made recommendations to
optimize risk management to improve the success and sustainability
of the project (Xu et al., 2023a). Notably, in terms of technology, the
researchers explored the application of emerging technologies in risk
studies for urban river ecological governance projects. They focused
on the application of technologies such as intelligent technologies,
remote sensing, and big data analysis to improve the efficiency and
accuracy of project monitoring and management, thereby better-
supporting risk identification, assessment, and decision-making.
Risk research on urban river ecological management projects
involves many aspects, from social network analysis to risk
management strategies to technology applications, and these
studies will help provide comprehensive risk perception and
management strategies for the implementation of urban river
ecological governance projects. However, the field still faces
challenges and opportunities, and further research is needed to
address the complexity of urban environments and socio-economic
factors to achieve sustainable development of ecological governance
projects for urban rivers.

Based on this, this paper applies the social network theory
(Valeri and Baggio, 2021) to the characteristics and evolutionary
features of urban river ecological governance projects. Based on
existing research, it constructs a directional weighted network model
for the evolution of urban river ecological governance project risks.
The network’s degree centrality, mediator centrality, proximity
centrality, and the ranking of key risk factors for a combined
value scenario of the three have been analyzed. The scale-free
characteristics of the network are pointed out. MATLAB
programming simulations are used to analyze the changes in the
proportion of randomly and deliberately attacked nodes under the
structural stability and performance stability of the network and to
compare and analyze the robustness effects of the degree value
attacks, meso-value attacks, proximity centrality attacks, and
combined value attacks. The method of identifying the key risk
factors of the network is selected to clarify the critical risk factors of
the network and propose a chain-breaking control strategy to
theoretically enrich the relevant research on the risk of urban
river ecological governance projects, make up for the

shortcomings of existing research, and practically providing new
ideas for the correct understanding, governance, and control of the
risk network of urban river ecological governance projects.

2 Review of SNA research

Domestic and international academics have conducted
preliminary studies on the interrelationship between risks, and
some of the more common approaches include explanatory
structural models (Soti et al., 2010; Karmaker et al., 2021; Abbas
et al., 2022) and Bayesian network analysis (Leoni et al., 2019; Huang
et al., 2021; Mohamed and Tran, 2021). These approaches explore
the interrelationships between risks from different perspectives and
provide some basis for decision-makers to manage risks
scientifically. Still, none of them can provide a quantitative
analysis of the position of risk factors in the risk network. For
this reason, this paper introduces Social Network Analysis (SNA).
The method is a research orientation based on graph theory to
examine the connected relationships between social entities, their
structural features, and the characteristics of relationships and
networks through systematically analyzing relational data
(Valente, 2012). Applying this method makes it possible to
quantitatively analyze the virtual nodes in the risk network in
terms of network density and centrality, thus deepening
managers’ understanding of project risks and improving risk
management.

Research by many experts and scholars has shown that risk
factors in engineering projects interact with each other rather than
independently of each other (Teller and Kock, 2013; Xie et al., 2019).
Therefore, effective risk response strategies emerge from risk
research. Methods of risk association analysis can be classified as
qualitative and quantitative. Qualitative methods: Quantifying
qualitative evaluation results using these methods presents
unpredictable information loss, especially when using linguistic
variables (Wirba et al., 1996), design structure matrixes (Marle
et al., 2013), and Delphi methods (Aloini et al., 2012).
Quantitative methods: Bayesian network analysis is representative
(Marcot and Penman, 2019), and Wang and Chen (2017) used
Bayesian network analysis to assess risk in a tunneling project. They
have developed a Bayesian network model to identify and evaluate
the relationships between various risk factors and to predict the
probability of successful project implementation. Ghasemi et al.
(2018) used Bayesian network analysis to develop a network of
engineering project risk relationships to identify and quantify the
relationships between engineering project risk factors and predict
the probability of successful project implementation. The findings
suggest that Bayesian network models can help managers better
identify and control project risks. The abstract mathematical tools
and complex mathematical calculations involved in quantitative
methods make them inapplicable to engineering practice, despite
being theoretically powerful (Yang et al., 2021). Complex network
theory appears more appropriate for risk-related analysis of complex
projects given its simplicity and visibility. For example, Desavelle
(2015) used complex network theory to analyze nuclear power
engineering risks, constructing a complex network including
various risk factors and identifying key risk factors and the
relationships between them by analyzing the network structure
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and characteristics. Fang et al. (2012) considered risk factors as
nodes and constructed a complex network model by measuring the
correlation and influence between nodes, and they used complex
network theory to analyze the network structure and characteristics
to identify key risk factors. Zhang et al. (2021) constructed a
complex network model based on complex network theory. It
treats risk factors and their degree of influence as nodes and
edges, identifies critical risk factors and their relationships
through network analysis methods, and proposes corresponding
risk management strategies. However, they still use traditional
numerical ranking and comparison methods of generic parameter
values to determine key risks and interactions. After the risk has
been resolved, the network is not updated because this is a static,
one-time, global network process.

Yang et al. (2021) proposed an engineering risk management
method combining SNA and immune network algorithms, which
modeled a complex engineering risk problem as a multi-level
network structure and used the SNA method to analyze the
characteristics of the nodes and edges in the risk network. The
risk nodes are then optimally selected and eliminated through a
network immunity algorithm, thus enabling effective risk
management. The method has been applied in a hydropower
project, and good results have been achieved. Zhou et al. (2018)
Propose an engineering risk assessment method combining SNA
and immune network algorithms. The technique models the
engineering risk problem as a complex network. It uses the
SNA method to analyze the importance of the nodes and
edges in the risk network-the network immunity algorithm
eliminated and patched the risk nodes, resulting in an
effective risk assessment scheme. The method was applied in a
highway engineering project and achieved good results. Ma et al.
(2022) In this paper, a complex network-based engineering risk
management method is proposed, which models the engineering
risk problem as a complex network and uses the SNA method to
analyze the relationship between nodes and edges in the network.
Then, the risk nodes are optimally selected and excluded by a
network immunity algorithm, and finally, an effective risk
management scheme is obtained. The method has been
applied in a construction project with good results.

Among the network immunization methods (Subramanian
et al., 2015) are random immunization (RI), targeted
immunization (TI), and acquaintance immunization (AI)
(Lanaridis and Stafylopatis, 2014). RI completely randomly
selects some nodes for immunization (Wu et al., 2018),
inconsistent with risk management principles. TI specifies a small
number of immune nodes with blocking properties based on global
information about the network (García-Pedrajas and Fyfe, 2007). AI
(Cao, 2021) represents a compromise between immunization cost
and effectiveness by randomly selecting certain nodes as immune
nodes and subsequently immunizing one neighboring node for each
of the immune nodes. In other words, it aims to strike a balance
between the cost and effectiveness of the immunization process.
Based on the above analysis, given the simplicity and operability of
risk management requirements in engineering practice, this paper
proposes a TI method oriented to the network characteristic
parameters combined with RI to analyze risk models. In this
study, we explore the difficulties involved in identifying key risks
and developing risk response strategies.

3 Research design and methodology

3.1 Study design

In this study, a risk immune response strategy research method
based on complex networks is developed to identify critical risks in
urban river ecological governance projects and to analyze the
propagation pathways affecting the abnormal degree of risk
association in urban river ecological governance projects. The
logical framework of the technique, as shown in Figure 1,
involves five distinct steps. Firstly, we reviewed relevant research
and tabulated the list of risks for complex projects. Secondly, the risk
correlation data was taken from a brainstorming session. Then, we
used the visualization software to build the model. Finally, the
analysis is based on network immunity. As a result, we can
develop risk response strategies based on key risks and significant
abnormal risk transmissions.

3.2 Risk identification

The risk identification for this study is based primarily on
literature research (Thorne et al., 2015; Damnjanovic and
Reinschmidt, 2020; Erol et al., 2020; Gondia et al., 2020),
combined with actual project risk research and the Ministry of
Water Resources Supervision Department’s Notice on the Issuance
of a List of Common Problems in the Inspection of Water
Construction Projects (for Trial Implementation). The system of
risk indicators is derived from the authors’ published research
papers (Xu et al., 2023b), as shown in Table 1.

In the construction process of urban river ecological governance
projects, economic relations or a network of responsibilities and
rights are formed between the participants, with financial contracts
as the link. Different participants play different roles and bear
additional responsibilities in this network. This study divided the
project into four stages and listed the composition of the participants
in each step in Table 2. The study systematically identified and
screened the risk factors of urban river ecological governance
projects using relevant questionnaires to prepare the groundwork
for subsequent research work.

3.3 Risk data linkage

The risk evolution of urban river ecological governance projects
can be viewed as a process of complex networks, in which there are
complex interconnections between different risk factors. Complex
network theory provides a powerful tool for analyzing the network
topology and relationships between nodes. By constructing a risk
evolution network, the risk factors in an urban river ecological
governance project can be taken as nodes, and the influence
relationships between different risk factors can be taken as edges
to form a complex network, to reveal the laws and characteristics of
risk evolution.

To develop a reasonable and effective risk response strategy for
urban river ecological governance projects, the entire risk system
needs to be quantitatively analyzed and visualized. This study used
53 risk nodes, plus risk-associated edges, for modeling. Figure 2
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presents the visual model of the generated network (Xu et al.,
2023b).

The foundation of this study relies on a risk factor relationship
data matrix (Table 3). In this matrix, columns represent the causers
(emitters) of the relationship, while rows represent the effectors
(affected parties) of the relationship. The presence of a relationship
is denoted by “1,”whereas the absence of a relationship is denoted by
“0.” Let there be n risk nodes in the risk element set A, Ah �
·(R1, R2, . . . , ·Rh) be the set of row risk elements, Am �
·(R1, ·R2, . . . , ·Rm) be the set of column risk elements, and bij be
the binary relational data in a matrix with row i and
column j, i � 1, 2, 3. ..., n, j � 1, 2, 3, ..., n.

bij � 1 means: the risk element in row i affects the risk element
in column j.

bij � 0 means the risk element in row i does not affect the risk
element in column j.

We refer to the existing methods in the relevant literature, and
the risk-associated data bij for urban river ecological governance
projects were determined by 10 experts who have been involved in
urban river ecological governance projects in the past 10 years
through a brainstorming session with purposeful sampling (Yang
et al., 2021). We invited 10 experts who have been involved in urban
river ecological governance projects over the past decade to
participate in a purposive sampling brainstorming session. These
10 experts included 2 personnel from government water
departments, 1 project owner representative, 1 researcher from a
scientific institution, 1 personnel from a survey and design unit,
1 from a construction contracting unit, 1 from a supervision
company, 1 from a project consulting agency, 1 material supplier,
and 1 subcontractor. In the first round of assessment, all
10 participants anonymously provided their evaluation results,
and then a plenary meeting was convened to discuss the
outcomes. Subsequently, a second round of scoring and

discussion was conducted to obtain more consistent results. The
data collected in the third round closely resembled the information
obtained in the previous rounds, signifying the conclusion of the
brainstorming session. Following three complete rounds of
discussions, the participants’ final opinions were compiled into
the corresponding risk association adjacency matrix. We used the
“0, 1”judging method to determine the existence of relationships
between risks. When judging the risk relationships, we selected the
answers with the highest frequency to maximize the determination
of risk relationships and obtain the judgment results for risk
association elements.

To validate the risk association data matrix constructed by the
10 experts, we established an independent validation focus group
consisting of 20 individuals who were directly involved in urban
river ecological governance projects on the front lines (Yang et al.,
2021). Ten of the participants were practitioners from the same
organization as the experts in the brainstorming session, with no
knowledge of the experts’ identities. The remaining ten participants
were scholars specializing in engineering management. After
extensive discussions, a consensus was reached that all the risk
association data in the matrix were deemed reasonable and did not
require retesting. As a result, the binary values of risk associations
were considered both reliable and effective.

4 Network model characteristics and
analysis of immunization results

4.1 Network characteristics

The networkmodel was analyzed using software (Mandell, 1984;
Lee et al., 2018), and the parameters of the overall network were
obtained, as shown in Table 4 (Xu et al., 2023b).

FIGURE 1
The logical framework of the risk immune response strategy research methodology.
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TABLE 1 Risk table factors of river ecological management project.

Stage Level 1 risk Level 2 risk

1 Project concept stage 1 Political Risk A1 Policy risk

A2 Legal and regulatory risks

2 Economic Risks A3 Inflation risks

A4 Risk of interest rate changes

A5 Financing risk

3 Natural environmental risks A6 Hydrological and geological risks

A7 Risk of meteorological conditions

A8 Ecological environment risk

4 Social Risks A9 Sociocultural risk

A10 Resident negotiated land acquisition risk

A11 Social Security situation

A12 Public opinion

2 Project decision stage 5 Project decision risk A13 Project approval risk

A14 Basic acceptance risk before implementation

A15 Risk of decision-making error

A16 Risk of land change

A17 Risk of incomplete collection of primary data

3 Project preparation phase 6 Bidding risks A18 Risk of document loss

A19 Risk of improper competition

A20 Information leakage risk

A21 Bid evaluation risk

A22 Normative risk of the bidding process

7 Plan and design risks A23 Risk of qualification of design unit

A24 design schedule lag

A25 The design has defects, errors, omissions, and frequent design plan changes

A26 Survey accuracy risk

8 Prepare for risks before construction A27 Construction site layout and technical preparation risk

A28 Project contract risks

A29 Risk of insufficient supply of substances (materials) and materials

A30 Risk of illegal start

4 Project implementation phase 9 Construction personnel risk A31 Technical water risk

A32 Weak security awareness

A33 Employee qualification risk

A34 Risk of construction personnel slowing down

10 Construction technical risks A35 (construction) drawings improper design risk

A36 Engineering and technical risks

A37 Construction machinery and equipment condition risk

A38 Cross operation condition risk

(Continued on following page)
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As can be seen from Table 4, the density of the network is 0.0925,
indicating that the risk evolution network of the urban river ecological
governance project is less tight, the evolution path of risk factors is
single, and the interaction relationship between them is general; The
average degree value of the network is 9.6226, which indicates that
each risk factor in the network is directly related to nine other risk
factors on average, a result consistent with the small-world nature of
complex networks; The average path length of a risk network is
2.5287, indicating that a risk factor only needs to pass through a unit
length of 2.5287 to influence other risk factors; the maximum distance
(i.e., network diameter) in this network is 7, indicating that a risk
factor in the network needs to pass through a maximum of 7 steps to
influence the risks in the network; The clustering coefficient of the
network is 0.2977, indicating that the interactions between risk events
in the network are not apparent and that risks are passed between risk

events, which in turn leads to changes in take-off and landing safety
risks; the global efficiency value of the network is 0.5281, a parameter
that reflects the speed of transfer of threats in the network, and the
connectivity of the network. Other parameters of the network are
characterized as follows.

4.1.1 Node degree and degree distribution
Node degree is one of the indicators of network centrality,

reflecting the influence of a node in the network. In a directed
network, degrees can be categorized into in-degree, out-degree, and
total degrees. In the urban river ecological governance project, the
degrees of all network nodes were obtained using the
anaconda3 software, as shown in Figure 3. Nodes with higher
out-degree imply a greater number of risk factors generated
under their influence. In the study, node (A25) has the highest

TABLE 1 (Continued) Risk table factors of river ecological management project.

Stage Level 1 risk Level 2 risk

A39 Risk of construction accidents

11 Construction management risks A40 Safety management risks

A41 Coordination risks of participating parties (including technical disclosure)

A42 Rationality of construction organization design

A43 Plan Adjustment and engineering change risk

A44 Contract management and enforcement risks

A45 Risk of organizational structure setup confusion

A46 Manage permission risk

12 Construction duration factor risk A47 Certification period

A48 Construction period

A49 Risk of construction delay

13 Completion acceptance risk A50 Risk of file transfer not in place

A51 Quality assessment risk

A52 Audit risk

A53 Risk of cost overruns

TABLE 2 Composition of parties involved in each phase of the project.

Stakeholders Project Concept phase Project decision phase Project preparation phase Project implementation phase

Project owner √ √ √ √

Scientific Research Unit √ √ √ √

Survey and design units √ - √ √

Construction Contractors - - √ √

Government Agencies √ √ - √

Supervision companies - - √ √

Project consultancy √ √ √ √

Material suppliers - - √ √

Subcontractors - - √ √
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out-degree, and node (A2) has the highest in-degree. The total
degree value of the node (A2) is 34, ranking first in the network. This
indicates that (A25) has the greatest influence on other nodes in the
network, and (A2) is most affected by other nodes, which aligns with
the actual situation.

According to Figure 3, the nodes with larger degree values are, in
order, A2, A49, A36, A44, A25, A52, A12, A27, A38, A40, A43, A45,

A51, A22, A39, A41, A46, A47, A17, A19, A20, A21, A30, A35, A42,
A26, A32, A1, A6, A8, A13, A18, A31, A34, A53, A10, A14, A15, A37,
A3, A11, A5, A7, A16, A28, A33, A48, A50, A4, A9, A23, A24, A29.

4.1.2 The intermediation centrality of nodes
Software was used to calculate the meso-centrality of the nodes

in the network. Then, the meso-number of each node was calculated,
and the nodes were ranked according to the magnitude of the meso-
number, as shown in Figure 4.

A node’s intermediation centrality indicates its transport
capacity, and the higher the intermediation centrality, the more
influential it is. It is therefore believed that nodes with high
intermediation centrality values in the project risk network are
capable of effectively transmitting risk. As can be seen from
Figure 4, A2 has the highest betweenness centrality, indicating
that legal and regulatory risks are passed through multiple
shortest paths in the entire network and play an essential role in
risk transmission throughout the network. In practical work, many
risk factors can affect risk generation by influencing A2. Nodes with

FIGURE 2
A complex network of risks for urban river ecological governance projects.

TABLE 3 Risk relationship matrix for urban river ecological management
projects.

Risk factors A1 A2 A3 . . . An

A1 0 b12 b13 . . . b1n

A2 b21 0 b23 . . . b2n

A3 b31 b32 0 . . . b3n

..

. ..
. ..

. ..
.

0 b4n

An bn1 bn2 bn3 bn4 0

TABLE 4 Overall network parameter characteristics.

Parameter name Overall network Parameter name Overall network

Number of nodes 53 Network diameter 7

Number of network edges 255 Average aggregation factor of the network 0.2977

Network Density 0.0925 Intermediate centrality 0.0331

Average network path 2.5287 Proximity centrality 0.3015

Network average degree 9.6226 Network global efficiency 0.5281
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high betweenness centrality have an important position in the risk
network.

4.1.3 Closeness centrality of nodes
Closeness centrality is defined as the reciprocal of the average

distance from a node to all other nodes in the network, reflecting the
importance of the node’s position in the model. The closeness
centrality of each node, calculated using software, is shown in
Table 5. The distribution and ranking of closeness centrality of

each node in the risk network were obtained through analysis using
software, as shown in Figure 5.

In a network, a higher closeness centrality value indicates fewer
paths between nodes, indicating the node is nearer the center. To
determine whether a node is a central node in the overall project risk
network, the closeness centrality is used. According to Figure 5, the
top 10 nodes ranked by the closeness centrality index are A2, A, A52,
A51, A12, A47, A30, A44, A43, and A53. Located closest to the
network center, these nodes are extremely important. Therefore,

FIGURE 3
Map of riskiness values for urban river ecological governance projects.

FIGURE 4
The intermediation centrality of nodes.
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when developing risk management plans, it is necessary to consider
targeted control measures for the above risk factors.

4.1.4 Combined value of nodes
Different parameter measurements may have other effects on

the overall network. A single measurement parameter cannot often
determine the importance of a risk factor in a network. To determine
the final key risk factor, different parameters must be considered and

compared comprehensively. In this study, network measurement
indicators such as node degree centrality, betweenness centrality,
and closeness centrality were analyzed. The average value of these
indicators can be calculated to obtain the total value of each node,
and their sizes are ranked, as indicated in Table 6.

According to the rankings of the total values of each node in
Figure 6, it can be seen that node A2 has the most significant
complete value, indicating that legal and regulatory risks are the

TABLE 5 Node proximity centrality values.

Nodes Proximity to centrality Nodes Proximity to centrality Nodes Proximity to centrality

A1 0.245283 A19 0.390977 A37 0.244131

A2 0.604651 A20 0.390977 A38 0.285714

A3 0.307692 A21 0.38806 A39 0.40625

A4 0.242991 A22 0.390977 A40 0.409449

A5 0.244131 A23 0.284153 A41 0.356164

A6 0.038462 A24 0.235294 A42 0.358621

A7 0.043269 A25 0.242991 A43 0.42623

A8 0.356164 A26 0.025641 A44 0.436975

A9 0.19697 A27 0.363636 A45 0.339869

A10 0.393939 A28 0.305882 A46 0.361111

A11 0.409449 A29 0.199234 A47 0.464286

A12 0.481481 A30 0.448276 A48 0.342105

A13 0.043956 A31 0.244131 A49 0.597701

A14 0.053419 A32 0.348993 A50 0.25

A15 0.043956 A33 0 A51 0.495238

A16 0.040064 A34 0.295455 A52 0.536082

A17 0.025641 A35 0.320988 A53 0.419355

A18 0.284153 A36 0.319018 - -

FIGURE 5
Ranking of the Node proximity centrality.
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most critical node in the network. Meanwhile, in the rankings of
degree centrality, closeness centrality, and betweenness centrality,
legal and regulatory risks rank first in all three centrality measures,
indicating that legal and regulatory risks have the highest
importance in the risk network. When evaluating the importance
of risk factors, the evaluation results of a single metric may be biased,
and the judgment based on the total value is more accurate.

4.2 Immunological analysis

4.2.1 Nodal importance principle
The principle of node importance refers to the relationship

between the importance of a node in a network and its position,
connectivity, and other relevant factors in the network. Generally,
the more a node is connected to other nodes in the network, the

TABLE 6 Parameters for the combined value of risk nodes.

Risk name General Risk name General Risk name General

A2 0.509784 A19 0.195115 A31 0.133315

A49 0.465031 A20 0.195115 A37 0.126992

A44 0.284678 A45 0.193432 A5 0.121812

A52 0.277177 A41 0.190932 A50 0.115531

A51 0.25214 A42 0.187668 A4 0.106852

A12 0.2467 A10 0.185727 A24 0.098336

A36 0.245369 A35 0.181544 A9 0.091455

A43 0.241585 A32 0.17906 A29 0.087354

A30 0.239581 A11 0.1783 A17 0.07438

A47 0.237337 A38 0.17603 A13 0.068277

A22 0.231816 A8 0.172901 A26 0.067412

A40 0.224988 A3 0.164287 A6 0.06492

A53 0.22167 A34 0.154292 A14 0.06398

A27 0.216044 A48 0.147753 A15 0.0607

A39 0.215856 A18 0.146031 A7 0.047193

A46 0.198986 A23 0.143458 A16 0.045951

A25 0.198313 A28 0.139878 A33 0.032051

A21 0.197254 A1 0.138402 - -

FIGURE 6
Ranking of the combined values of the risk nodes.
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more critical it is. Additionally, node importance is also related to
other factors such as its degree centrality, betweenness centrality,
and closeness centrality. Analyzing and evaluating the significance
of nodes can help identify critical nodes and main influencing
factors in the network, thereby developing risk management
strategies and measures in a targeted manner. Network
robustness refers to the ability of a network to maintain
connectivity in the event of an attack or failure of one or more
nodes in the network. Network robustness reflects the impact of
partial structural loss on the overall structure and functionality of a
network when one or more nodes in the network are attacked or fail.
Recently, it has become a hot research topic in complex networks.
Scholars have conducted related research on the robustness of
networks, and the leading indicators used to analyze the
robustness of networks are average path length, size of the most
significant connected component, and global efficiency. This study
builds upon previous research and selects global efficiency as the
indicator to investigate the performance robustness of the network.

4.2.2 Selection of parameters
The choice of which indicator to use for intentional attacks is

also crucial. In this section, based on the above analysis and careful
consideration, we propose four immune strategies, focusing on the
immunity of nodes and the evaluation of network efficiency to
reflect node importance, as shown in Table 7.

According to multi-attribute decision-making, the commonly
used indicators of node importance in the risk evolution network
were obtained through software. The importance of 53 risk points
was ranked. Based on the four importance indicators listed earlier,
the results of node importance were shown in Figures 3–6 in
descending order of importance values.

4.2.3 Analysis of results
The selection of nodes for random immunity is entirely

arbitrary. In this paper, the 53 nodes were sorted randomly using
the random function in Excel. On the other hand, deliberate
impunity is carried out by simulating immunity by targeting
different node indicators one by one. To make the comparison
more objective, this study added a control group of random
immunity (RI) in this section and the four targeted immunity
(TI) strategies to achieve a more straightforward comparison. For
the risk network of urban river ecological governance projects, ND
reflects the overall scale of the project risk system after the risks have
been fully transmitted. Thus, the primary objective of the

subsequent immunization process is to decrease the ND value.
This study used the TI method to identify the key risks that
determine the project’s final scale. A degree-targeted immunity
program (DTI), a betweenness centrality-targeted immunity
program (BCTI), a closeness centrality-targeted immunity
program (CCTI), and a comprehensive value-targeted immunity
program (CVTI) are all part of it. In TI, the optimal immunized
node represents the critical risk of the project, which can provide a
basis for developing risk response strategies for the project.

According to Figure 7, the initial size of the network’s most
significant connected component (structural robustness) is close to
1. Under both attack modes, the structural robustness of the network
decreases as the number of removed nodes increases, and the
decrease in robustness is faster under deliberate attacks than
random attacks. After randomly attacking 49% of the nodes on
the network, the structural robustness of the network decreased to
0.5094. Similarly, attacking the same number of network nodes
using the degree attack method reduced the network’s structural
robustness to 0.3396, the betweenness centrality attack method
decreased it to 0.2452, the closeness centrality attack method
reduced it to 0.4906, and the comprehensive value attack method
reduced it to 0.4716. This indicates that the urban river ecological
governance project risk evolution network is more robust and fault
tolerant in the random attack mode and less robust in the deliberate
attack mode. The degree value attack method is most effective in the
intentional attack, i.e., the least robust. Under a random attack, the
structural robustness of the network drops to zero only when the
removal of nodes approaches 100%, suggesting that only effective
control of the vast majority of risk factors in the network can bring
down the entire network. However, in reality, risk factors exist
objectively, and the probability of completely controlling all risk
factors is small, so the urban river ecological governance project risk
evolution network is highly robust to random attacks. Under
deliberate attacks, the structural robustness of the network
decreases faster when some of the nodes are attacked, indicating
that these nodes are the core nodes of the network, and once these
core nodes are attacked, the whole network is paralyzed. Thus, the
urban river ecological governance project risk evolution network has
poor robustness against deliberate attacks.

As can be seen from Figure 8, the line for the random attack is
above the deliberate attack. Although some areas of contrast exist,
the overall global efficiency decreases to a lesser extent than the
intended attack. The reason for the poor effectiveness of the
intentional attack is that when using the proximity centrality

TABLE 7 Four immunization strategies and characteristics.

Abbreviations Parameters Definition Features

DC Point Degree
Centrality

The degree is the number of edges associated with a node and is
determined by the outgoing and incoming degrees in a directed

network

A high degree of exit means that the risk may lead to many
further risks; at a high level, it means that many other risks may

cause the risk itself

BC Median centrality Intermediate centrality is the frequency with which a node
passes two other nodes on the shortest path

High BC nodes are more likely to be associated with other
nodes and more likely to cause macro incidents

CC Proximity
centrality

Refers to the closeness of a node to other nodes Based on the average distance of the node from other nodes

CV Combined values Average of modality, mesoscopic centrality, and proximity
centrality

Ability to synthesize the importance of nodes
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FIGURE 7
Structural robustness analysis diagram.

FIGURE 8
Performance robustness analysis chart.

Frontiers in Earth Science frontiersin.org12

Xu et al. 10.3389/feart.2023.1237884

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1237884


attack and the combined value attack, some of the edge nodes in the
network may have been removed, making the network more
efficient instead, resulting in a short-lived contrast. The initial
global efficiency (performance robustness) of the network was
0.5281, and a random attack on 38% of the nodes in the network
resulted in a global efficiency of 0.5297; the same deliberate attack on
38% of the nodes reduced the global efficiency of the degree value
attack to 0.2079, the global efficiency of the median value attack to
0.2896, and the global efficiency of the proximity centrality value
attack to 0.9359. Among deliberate attacks, the metric attack makes
the fastest and most effective reduction in global efficiency, i.e., the
network is most vulnerable under this attack. The order of the nodes
deliberately attacked shows that attacking the critical nodes first will
cause a rapid change in the topology of the network, creating many
isolated nodes relatively quickly and causing the network to go down
quickly. In contrast, the probability of attacking exactly these critical
nodes in a random attack is small, and only if enough nodes are
attacked at random will the network go down.

1) The random immunization strategy was significantly less
effective than the TI immunization strategy. According to the
network performance robustness and structural robustness
analysis, the overall effect of the random immunization
strategy was considerably worse than that of the deliberate
immunization strategy after removing the same nodes. In the
intentional immunization strategy, the network efficiency of
degree, mesh number, and near-center degree are worse than
in random immunization. Therefore, it can be proved that
focused management of critical nodes is an essential and
effective means of risk management for urban river ecological
governance projects.

2) Of the immunization strategies, near-center value attacks are the
least effective, median value immunity is slightly more effective,
and degree value immunity attacks are the most effective.

3) For risk management with urban river ecological governance
projects, as nodal degree value immunity is the most effective,
prevention solutions for risks are more preferred, and important
nodes corresponding to nodal degree value immunity should be
considered for prevention and control, i.e., nodes A2, A49, A36,
A44, A25, A5, A12, etc.

In summary, the structural robustness and performance
robustness of the network both decrease as the number of attacks
(number of nodes removed) increases. In addition, the impact of
deliberate attacks on robustness is more significant. For the risk
evolution network of the urban river ecological governance project,
robustness is poorer in the intentional attack mode. In contrast,
robustness and fault tolerance are more robust in the random
attack mode.

5 Discussion

By identifying the risks associated with urban river ecological
governance projects, a risk network model was developed,
visualized, and analyzed in this study. The risk response strategy
for urban river ecological governance projects is explored through
the perspective of network immunity. The results of the model

parameter analysis demonstrate the applicability of this study to the
risk of urban river ecological governance projects and the feasibility
of a risk response strategy for urban river ecological governance
projects developed based on the network immunity approach.

Firstly, the model parameter analysis results can be further
explained and validated through complex network theory. In a
risk network, DTI has a clear advantage as it can effectively
control the spread effectiveness of the entire network. Therefore,
identifying key risks and controlling abnormal risk-associated
network immune strategies are not only more effective and
reliable in assessing the importance of risks in the project but
also more effective and reliable in subsequent risk-sharing tasks.
Secondly, the model has several advantages, such as facilitating early
risk response decisions and building a future-proof risk warning
framework. To enhance the applicability of the model in urban river
ecological governance projects, this study conducted a complete
literature and case study and brainstorming sessions with
10 experienced experts to clarify risk relationships. Therefore, the
risk list and 53-risk network developed in this study may be more
effective and prospective. In addition, the accuracy of the network
analysis process can be improved by simulating the analysis of
different decision scenarios. This paper also develops and visualizes
the entire risk network and filters out the accurate network through
a simple statistical process. Finally, the evolution of landing and
take-off safety risks for urban river ecological governance projects
can be effectively controlled by disconnecting key risk factors in the
network or effectively reducing the position of these key risk factors.
The risk evolution of nodes can be prevented by disconnecting these
risk factors or by reducing the risk level of these factor nodes and the
intensity of the interaction between these factors using
corresponding means. The way to reduce the level of risk at
these factor nodes and the power of action between these factors
using appropriate means is more suitable to prevent the evolution of
risk in urban river ecological governance projects.

The impact of changing project conditions on the assessment of
risk networks is a critical step in ensuring the stability and reliability
of the results. The interactions between risk factors can vary
significantly when dealing with different projects, hence the
analytical methods that can be used when targeting different
project-specific risk studies. 1) Validation based on historical
data: If relevant data from previous projects are available, it can
be used to validate the accuracy and stability of risk network
assessment. By incorporating historical project data into the
current project’s risk network and comparing actual results with
predicted results, the applicability and accuracy of risk network
assessment across different projects can be evaluated. 2) Analyzing
different scenarios: In risk network assessment, considering different
scenarios of risks can be beneficial. For example, constructing
separate risk networks for different project conditions or risk
assumptions and conducting comparative analysis. This approach
helps understand the interactions and influences of risk factors
under different conditions. 3) Expert discussions and validation:
During the assessment process, seeking expert opinions and
validation is crucial. Engaging in discussions and validation with
experts in relevant fields can lead to more comprehensive and
accurate evaluation results, thereby reducing the impact of
project condition changes on the assessment. By applying a
combination of these methods, the stability and reliability of risk
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network assessment can be improved, reducing the influence of
project condition changes on the evaluation results. This, in turn,
provides decision-makers with more reliable risk management
strategies and decision-making foundations.

To investigate the advantages of social network-based analysis
by comparing it with traditional methods and to highlight the
unique value of the method in risk studies of urban river
ecological governance projects. In terms of accuracy: Compare
the accuracy of methods based on social network analyses with
traditional methods in identifying key risk factors, risk relationships,
risk propagation paths, and so on. Which method more accurately
reflects the actual risk situation can be verified by some case studies
or field surveys. In terms of efficiency: compare the efficiency of
methods based on social network analysis with traditional methods
in analyzing large-scale complex networks. Whether social network
analysis produces results more quickly and handles large amounts of
data better can be used as a basis for comparison. In terms of
predictability: methods based on social network analysis are better at
predicting future risk evolution and potential risks of a project. By
comparing the performance of the two approaches in terms of risk
prediction, it is possible to see whether the approach based on social
network analysis is more forward-looking. At the same time whether
the method based on social network analysis can provide clearer and
more intuitive visualization results. Thus, the application of the
method of social network analysis in the risk research of urban river
ecological governance projects has greater advantages. It can further
enhance its application value in the field of risk research.

6 Conclusion

Based on the causal pathways among risk factors, a complex
network topology of 53 nodes and 255 edges was constructed for
the risk evolution of urban river ecological governance projects. The risk
factors were ranked based on degree centrality, betweenness centrality,
closeness centrality, and composite value in the weighted directed
network. The analysis demonstrated the scale-free property of the
network. The application of complex network theory in analyzing
the risk system for urban river ecological governance projects can
effectively identify the critical factors of the entire risk system, determine
the risk relationships, and then take targetedmeasures to reduce the risk
of water engineering systems. The global efficiency of the network was
used as an indicator to analyze the robustness of the risk evolution
network under random and intentional attacks, revealing the changing
patterns of performance stability and structural stability of the scale-free
network. Based on the robustness analysis, the critical risk factors of the
network were identified using degree centrality ranking. Based on this,
corresponding network disconnect strategies were developed, which
provides a theoretical basis for effectively preventing risk evolution.

The methodology used in this study is influenced to some extent by
the subjectivity and experience of the individual experts. To address this
limitation more comprehensively, future research could consider
adopting more objective and reliable data sources, such as analyses
based on actual observational data or large-scale datasets, to reduce
reliance on expert subjective judgment. Additionally, combining
quantitative and qualitative methods for a comprehensive analysis
could enhance the objectivity and reliability of the research. Further
studies can explore more comprehensive and objective approaches to
fill this research gap and promote the advancement of related fields.
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