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The concentrated connection of arable land is one of the important indicators
reflecting the quality of cultivated land, and large-scale arable land blocks are
more conducive to agricultural mechanization operation, thereby improving the
land use efficiency. However, the calculation of farmland connectivity is essentially
a large-scale calculation of spatial vector data, especially for the national or global
farmland patch data. This article proposes a framework for calculating farmland
connectivity based on spatial vector map tiles and parallelizes the algorithm based
on the Hadoop cloud platform. The framework is based on the tile pyramid model
and uses the Douglas–Peucker algorithm to simplify the data tomeet the needs of
rapid display of large-scale data under multi-scale. The consistency and integrity
of the front display of vector tiles are ensured using the setting tile buffer.
Meanwhile, the parallelization of the vector tile construction algorithm is
realized based on the MapReduce programming mode. Finally, the
effectiveness and usability of this framework were verified through the
calculation of patch connectivity on the tillage map. Experiments show that
the algorithm can not only meet the rapid construction requirements of large-
scale vector tile data but also support the cultivated land spatial connectivity
analysis and greatly improve the efficiency of supporting data calculation.
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1 Introduction

Since the State Council issued the Program of Action for the Development of Big Data in
2015, big data have been clearly identified as an important part of China’s basic strategic
resources. The arrival of the era of big data not only makes people realize the importance of
data but also triggers fundamental changes in many fields (Li and Li, 2014). Specifically, in
the field of spatial information technology, how to solve the efficiency problem brought by
big data has become an important research direction of many scholars (Jia et al., 2015; Yang
et al., 2017). Among them, the rapid browsing and viewing of geographic information system
(GIS) data has become an obstacle to large-scale data mining and analysis, such as patch
connectivity and spatial overlay analyses (Ramos et al., 2009; Yao and Li, 2018), especially in
the era of big data (Zouhar and Senner, 2019; Yao et al., 2023).

In agricultural land, the connectivity of cultivated land patches is one of the main
indicators to measure the quality of cultivated land. The higher the connectivity, the greater
the potential for the development and utilization of cultivated land and the more suitable it is
for agricultural mechanization operations. However, the complexity of calculating the patch

OPEN ACCESS

EDITED BY

Houda Harkat,
Instituto de Desenvolvimento de Novas
Tecnologias (UNINOVA), Portugal

REVIEWED BY

Liangcun Jiang,
Wuhan University of Technology, China
Evgeny Panidi,
Saint Petersburg State University, Russia

*CORRESPONDENCE

Shengting Ma,
2220211029@dlmu.edu.cn

RECEIVED 05 June 2023
ACCEPTED 16 August 2023
PUBLISHED 29 August 2023

CITATION

Ma S and Zhang S (2023), Map vector tile
construction for arable land spatial
connectivity analysis based on the
Hadoop cloud platform.
Front. Earth Sci. 11:1234732.
doi: 10.3389/feart.2023.1234732

COPYRIGHT

© 2023 Ma and Zhang. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 29 August 2023
DOI 10.3389/feart.2023.1234732

https://www.frontiersin.org/articles/10.3389/feart.2023.1234732/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1234732/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1234732/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1234732/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1234732&domain=pdf&date_stamp=2023-08-29
mailto:2220211029@dlmu.edu.cn
mailto:2220211029@dlmu.edu.cn
https://doi.org/10.3389/feart.2023.1234732
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1234732


connectivity index of the cultivated map is often related to the
number of patches, and the larger the data volume is, the more
complex the calculation. The larger the amount of farmland plot
data, the better the data rendering effect, and then, the traditional
raster tile technology using static (fixed resolution) cache has been
unable to meet the requirements of large-scale vector data multi-
scene application (Guo et al., 2016; Wan et al., 2016). For example,
map rendering should be carried out according to different field
contents for different datasets such as the national map spot quality.
Using raster tiles can only generate map tile sets several times, which
not only multiplies the workload of data processing (Wang et al.,
2022) but also brings a lot of map tile management and transmission
costs. In addition, due to the deficiency of grid tiles, the data
accuracy can only be displayed according to a fixed scale.
Moreover, the data interaction is not flexible enough. The
emergence of vector tile technology solves the aforementioned
problems well.

Vector tile technology can be regarded as the product of the
combination of raster tile and vector data (Yan et al., 2018). It
adopts true vector data format to replace the raster picture format.
In this way, it inherits mature map caching, hierarchical scaling, and
other technologies in the raster tile model (Zhou et al., 2016). At the
same time, the vector characteristics of the original data are preserved to
the greatest extent. Through the map vector tile technology, the original
vector data can be retrieved when the map is browsed under large scale
or scaled at the bottom of the pyramid model. On this basis, the client
can realize map dynamics, custom rendering, and symbolization, and
also directly carry out vector data query and even spatial analysis and
other complex operations (Huang et al., 2016). It greatly reduces the
server access and computing pressure, and improves the performance
and user experience of theWebGIS application system (Liu et al., 2022).

At present, there is no clear format standard and technical system
standard for vector tile technology.Major commercial GIS development
platforms, such as ArcGIS and SuperMap, also provide the construction
function of the vector tile in the latest version. However, due to high
software costs and commercial secrets, application cases and public
technical information are relatively few. Some open source software,
such as MapBox and GeoServer, also provide vector tile generation
technology, but in the face of large-scale GIS vector data, there are still
the following problems: 1) the production process of the map vector tile
takes a long time or even cannot be completed; 2) the amount of spatial
data that can be executed at one time is limited, so manual “divide and
rule” is often used to increase the number of servers to complete the
slicing task of large-scale vector data; and 3) the generated large-scale
vector tiles cannot be acquired quickly, and the tile retrieval efficiency is
low. In recent years, cloud computing technology has achieved good
performance in processing spatial big data and also provides effective
solutions for the storage, management, and analysis of vector big data
(Yang et al., 2013; Li et al., 2016). Cloud computing technology is
relatively mature in algorithms and applications to improve the
construction performance of raster tiles. For example, SpatialHadoop
(Eldawy and Mokbel, 2015; Alarabi et al., 2018) conducted a batch
construction study of raster tiles for large-scale remote sensing images
based on the MapReduce programming model. LandQv2 (Yao et al.,
2018a) realized the design and implementation of the raster tile pyramid
algorithm for vector data based on the Hadoop cloud platform, which
met the requirements for rapid visualization of national map spot
quality and other data. In the aspect of vector tile construction, the basic

idea framework is similar to the parallelization of raster tiles. However,
due to the different sizes and shapes of vector elements, the algorithm is
more complex (Yao et al., 2018b). It is not only necessary to consider the
pyramid model longitudinal data simplification or thinning algorithm
but also to consider the cutting and unification of horizontal pattern
patch elements.

In this paper, the application of map vector tiles meets the
demand of rapid display of large-scale data in the multilevel scale.
The Douglas–Peucker simplified algorithm was used to compress
data, and the tile buffer was set to ensure the consistency and
integrity of the front display of the vector tile. Based on the
MapReduce programming model, the parallel construction
algorithm of the vector tile is implemented and tested. Finally,
the effectiveness and usability of this framework were verified
through the calculation of patch connectivity on national tillage
maps, and good results are obtained.

2 Map vector tile pyramid model

2.1 Tile pyramid model

The tile pyramid model is a kind of multi-resolution hierarchical
model; in a linear quadtree structure tile (Figure 1), the maximum
number of tile n layer of 22n; with the increase in the hierarchy, the
resolution increases. The vector tile and grid tile have the same
pyramid model, and the method of cutting is the same (Yan et al.,
2018). Different map manufacturers adopt different map tile cutting
algorithms; this paper uses the OpenStreetMap tile segmentation
method. The formula is expressed as follows:
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Inverse operation is represented as follows:

FIGURE 1
Tile pyramid model (Yan et al., 2018).
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φ � 360 · tan−1 e 1−21−z · y+ n
256( )[ ]·π( )

π
− 90, (2)

λ � 21−z · x + m

256
( ) − 1[ ] · 180, (3)

where lon and lat are the latitude and longitude, respectively,
and x and y are the column numbers of the tile at the z level. With
the upper left corner of the map as the origin, according to the map
from left to right, from top to bottom in order to divide into grids,
according to the formula to calculate the ranks of each layer of each
tile, that is, the tile’s unique index number.

In the Web map request map tiles, according to the tile number
index, only the request display range of tiles, which reduces the
unnecessary network transmission consumption, also reduces the
pressure of graphics rendering.

2.2 Vector data simplification

In map, in order to realize the rapid display of map elements
under a small scale, vector data are generally compressed and
simplified to reduce the amount of data. The Douglas–Peucker
algorithm is a classical vector data compression algorithm, which
has the advantages of translation, rotation invariability, and
consistent sampling results (Yao et al., 2018b), but the
disadvantage is that the topological relationship cannot be
maintained. The Java Topology Suite (JTS) library implements
the Douglas–Peucker algorithm, which can simplify vector data
well and quickly.

The Douglas–Peucker algorithm simplifies the process described
as follows (Figure 2): 1) find the two endpoints of the curve and
connect them in a straight line; 2) calculate the distance between
other points and this line, and find the point with the maximum
distance; 3) determine the size of the maximum distance and the
given tolerance. If less than the tolerance, then discard; if it is greater
than the tolerance, keep the point and divide the curve into two
parts, and repeat the aforementioned steps recursively for these two

parts; and 4) after the completion of recursion, connect the retained
points to obtain the simplified curve. For the surface element, it is
first converted to the line element and then simplified.

2.3 Extending the tile buffer

Vector tiles need to be concatenated on the front end ofWebGIS
to form a complete vector tile map, and after concatenation and
visualization, grid lines of tiles may appear, leading to incomplete
map display. This causes visual interference. This is because during
the cutting of tiles and feature geometry, the two undergo an
intersection operation, and the intersection result preserves the
boundaries of the tiles. Therefore, tile splicing will display the
boundary lines of the tiles.

Tile is actually a polygon grid. In the process of tile construction,
the tile grid and space elements are intersected, and the boundary of
the tile is retained as a result. In the display of splicing, the boundary
is also drawn into the map, resulting in incomplete splicing of tile
elements and affecting the appearance of the map, as shown in
Figure 3A, specifically because there will be tile boundaries on the
map. Some scholars have proposed methods to expand the tile
cutting range based on Canvas technology, forming a buffer zone for
tiles. When cutting, the tile cutting range is properly expanded to
include excess elements. During the display, the browser only
displays the elements inside the canvas and does not display the
tiles outside the canvas, which ensures the complete splicing of tiles
and elements and avoids the problem of tile boundary display, as
shown in Figure 3B.

3 Vector tile file format and encoding

3.1 Encoding format of the tile file

Common tile coding schemes include Geo JavaScript Object
Notation (GeoJSON), MapBox Vector Tile (MVT), and other

FIGURE 2
Simplified process of the Douglas–Peucker algorithm (Yao et al., 2018b).
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formats. The GeoJSON format is readable, and the front-end
JavaScript supports the JSON data format natively, but the
disadvantage is that the size of the GeoJSON data increases as
the size of the data increases. TheMVT format is MapBox based on a
support multilingual, multi-platform, easy extension Protocol buffer
Binary Format sequence of data format (PBF), which makes vector
tiles coding format. When the amount of data is large, the decoding
rate of PBF remains stable, while the decoding rate of JSON
decreases with the increase in the amount of data. The decoding
rate of the former is about 17 times that of the latter, and the
compression rate is about two times (Yao et al., 2018a). Therefore,
compared with the GeoJSON format, the PBF-based MVT format
can compress data effectively, occupy less storage space, and
consume less bandwidth for network transmission. At present,
the underlying storage of the vector tile in GIS software
applications such as ArcGIS, SuperMap, and GeoServer is the
PBF format tile. In this paper, the MVT format is selected as the
tile storage format.

3.2 Spatial data encoding

As shown in Table 1, MVT coding standard geometry codes are
the elements of space data serialization for the 32-bit unsigned
integer, through three instructions MoveTo, LineTo, and ClosePath,
and coordinate points (dX and dY) describe spatial location
elements.

Command integer (Ci) was obtained by encoding the instruction
id and the count of instruction execution:

Ci � id&0x7( )| count≪ 3( ). (4)

Inverse operation is represented as follows:

id � Ci&0x7, (5)
count � Ci≫ 3. (6)

Parameter value: the parameter integer (Pi) was obtained in the
zigzag encoding mode. Parameter values of small negative or
positive numbers were encoded into small integers to save
storage space.

Pi � value≪ 1( )∧ value≫ 31( ). (7)
Parameter value: the value cannot be outside the range of

[−(231 − 1), 231 − 1].
Pi decode is represented as follows:

value � Pi≫ 1( )∧ − Pi&1( )( )( ). (8)
Before encoding, the spatial elements need to be converted

from geographic or projected coordinates to pixel coordinates
of the screen. Point coordinates record the position of the next
point in increments, which greatly compresses the amount of
data. The encoding process is shown in Figure 4.

FIGURE 3
Tile extended buffer of the tile.

TABLE 1 Graphic coding instruction.

Instruction Id Parameter Number of parameters

MoveTo 1 dX, dY 2

LineTo 2 dX, dY 2

ClosePath 7 Parameter-less 0
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3.3 Attribute data encoding

Each tile is a layer. In a layer, the attributes of all elements
are stored in the form of key–value pairs. The key and value of
all elements are indexed into the property name keys and values
list, in which the index starts from 0. The attribute information
on the element is expressed in pairs of integers in the tags field.
Every two tags is a pair. The first integer represents the index
number of key in the keys list, and the second integer
represents the index number of value in the values list of
the attribute value. All elements in the layer share the values
in the two lists, and the same attribute name or attribute value
of different elements will be indexed to the same key or value,
thus avoiding duplicate data recording and reducing data
redundancy. In addition, the geometry encoding result is
stored in the geometry field.

4 Vector tile parallelization algorithm

Using MapReduce parallel computing, the parallel cutting of
vector tiles is mainly divided into two stages: 1) parallel analysis of
the Shapefile vector data set and 2) parallel construction of tiles.

4.1 Hadoop MapReduce framework

Hadoop MapReduce is a classic example of the MapReduce
parallel computing model. MapReduce is based on the Hadoop
distributed file system (HDFS). After Hadoop2.0, the cluster
resource management system, Yet Another Resource Negotiator
(YARN), is added to coordinate the computing model with the
scheduling of underlying storage and cluster resources to adapt to
more computing models.

FIGURE 4
Geometric coding.
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The general execution process of Hadoop MapReduce is
described as follows:

(1) The input data are cut into data fragments.
(2) Data fragments are read into the Map in the form of key and

value.
(3) After the data are passed into the Map function, the processing

logic and flow are user-defined. After the Map processing is
complete, it is still output as key and value. The input and output
formats of key and value can also be user-defined.

(4) Data output in the Map phase enters the shuffle phase. Shuffle
sorts and merges data. However, shuffle does not change the
entered data. The format of the data is still Key2 and Value2.
The values of the same keys are merged into the set Value2.

(5) After the shuffle is completed, data are transferred to the reduce
phase for processing. The reduce function is user-defined.
Key3 and Value3 are generated after the processing is complete.

(6) Data processed in the reduce phase is written to HDFS.

4.2 Parallel analysis of the shapefile vector
dataset

The parallel analysis process of the shapefile vector dataset is shown
in Figure 5. Multiple shapefile files read and pass the element feature
into the customized Map function in parallel, reading one element at a
time including geometry and attribute data. Since the read file is a

shapefile and the output file is stored in the structure of the directory
tree, the input and output formats of Map and Reduce, and the
serialization and deserialization methods need to be redefined. The
spatial range of elementsmay covermore than one tile, and one tilemay
also contain more than one element, so one element covers more than
one tile, and one tile number corresponds to one or more elements. In
the Map stage, level traversal is carried out for each element from the
lowest level to the top level. Under each level, the grid range covered by
the element under this level is calculated, and these grids are traversed.
Each grid has a unique grid number, TileIndex, which is represented by
level-X-Y, where level is the level. X and Y are, respectively, the column
and row numbers of tiles, and they also serve as the index numbers and
elements of tiles to form a key–value pair (feature). The Map stage is
mainly for the pretreatment of elements. During the hierarchical
traversal, the elements are transformed by projection and
compressed by simplification. Each Map node processes the
intermediate result. After shuffling, sort, aggregation, and other
stages, all key and value pairs with the same tile number are merged
to get a new key and value pair [TileIndex, Feature(s)], which represents
all the elements contained in a tile, and is input to the next stage for
processing.

4.3 Parallel construction of vector tiles

The intermediate results of the Map phase are finally obtained
through aggregation [TileIndex, Feature(s)] as input parameters of

FIGURE 5
Map vector tile parallel construction process.
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the customized reduce function. In the reduce stage, the four corner
coordinates of the tiles are calculated backward according to
TileIndex and empty tiles are generated. Then, the projection
transformation and other processing of the tiles are carried out
to ensure that the tiles and the element geometry are in the same
spatial reference system. The buffer of the tile is extended to ensure
that the tile can be seamlessly joined when rendering. The size of the
extended buffer depends on the actual situation. Tiles are organized
in a tile–layer-feature hierarchical structure. One tile can contain
multiple layers, and multiple feature elements can be added to one
layer. The elements are added to the tiles for cutting and coding.
Multiple reduce subtasks are encoded in parallel to obtain tile data
and output the file to the storage system as a binary byte stream.
Tiles are stored in a level-X-Y directory tree structure. The file is
named Y.pdf.

5 Analysis of arable land spatial
connectivity based on the map vector
tile

The patchiness of the cultivated land map refers to the
compactness and continuity of cultivated land distribution, which
is of great significance for agricultural production, ecological
environment protection, land resource utilization, and other
aspects (Muchova et al., 2017; Wang et al., 2017). The cultivated
land with good connectivity is conducive to agricultural
mechanization, reducing agricultural production costs and
improving labor productivity and crop yield. At the same time,
the cultivated land with good connectivity can reduce the
fragmentation of land use, which is conducive to the stability of
the ecosystem and the protection of biodiversity (Gomes et al.,
2019). This paper analyzes the spatial connectivity of GIS patch data
based on map vector slices to improve the computational efficiency.

5.1 Establishment of the planar patch
network

There are two parts in the process of constructing the pattern patch
network. First, a buffer is generated for each pattern patch. Second, the
intersection of each pattern spot and other pattern spots is calculated.
As shown in Figure 6, the first part is relatively simple; it can directly
generate the basic buffer, without the need to merge the buffer, this
section mainly from the intersection between the map spot expansions.
In GIS spatial analysis, superposition analysis is the basic method of
comparison, which includes superposition, intersection, and symmetric
difference among points, lines, and surfaces. This paper mainly involves
the operation to determine whether two graph spots intersect in the
superposition analysis. Based on the grid computing unit and grid index
established in the previous section, a spatial analysis algorithm that can
be processed by MapReduce is further designed to carry out the
intersection operation of graph spots after reading local spatial indexes.

The aforementioned graph spot intersection data are the
connection between each graph spot and other graph spots.
Taking the center point of a graph spot as a node, these
intersection relations are connected into lines, that is, a graph
spot interconnection network is formed.

5.2 Calculation of the arable land spatial
connectivity index

Before calculating the linkage index of graph spots, it is
necessary to first determine the basic information on other graph
spots within the maximum number of connections with each graph
spot and use the Dijkstra algorithm to calculate the minimum
number of links between them, and then determine the link
weight between them according to the quality of the two graph
spots. On the basis of the minimum number of links and the link
matrix, the local joint degree of each pattern spot can be calculated
using the formula. Finally, the local connectivity of each spot is
summarized, and the global connectivity of each grid is calculated.
The specific process is shown in Figure 7.

In this paper, the maximum number of connections is 3. Based
on the aforementioned calculation process of the degree of the graph
spot alignment, the parallelization of the degree of the graph spot
alignment is realized using the MapReduce parallelization
algorithm. In this paper, the MapReduce parallel algorithm is
implemented through a Job. The parallel processing steps are
given as follows:

Input: Patch contiguous network, stored in junction class.
Output: Local contiguity of each pattern spot.
Steps:

1) Before the operation of the Map phase, read all the graph patch
connected network data in the computing grid into the memory,
and store all junction data in it into HashMap to ensure that the
data can be read at any time.

2) In the Map stage, complete the joint degree calculation of a single
map spot. Perform the following operations: in the Map
operation, key is the id of each node and value is the basic
attribute information and connection information on the spot
stored by each node. Perform the following operations for the
entire data block:
2.1) Obtain information about other nodes connected to this
node through HashMap.
2.2) Calculate the connectedness value of 1, obtain the
information on nodes with two connectedness through
recursion, and add the connectedness value, until all patches
within the maximum number of connectedness are calculated.
2.3) Shuffle the calculated result with the grid ID as the key value.

3) In the reduce phase, the output result of the Map function is
analyzed according to the key–value pair, where the key is the ID
of the grid and the value is the basic information on each map
spot. The reduce function is used to sum up the pattern spot
results of each grid, and the formula is used to calculate the global
slice value of each grid. Finally, the value of the global
connectedness and the value of the connectedness of each
spot are stored according to the grid.

6 Experimental test and analysis

6.1 Experimental environment and data

Three services were used to form a cluster in the experiment
environment. The operating system environment configured for
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each machine was Ubuntu 18.04, the CPU was 2 Intel E5-2620v4
CPUs (8 cores and 16 threads), and the memory was 32 GB. Each
machine is configured with Java Development Kit (JDK)1.8 and
Hadoop 3.1.3. There are four groups of experimental data, namely,
global administrative data, China water distribution data, global lake
data, and global building data. Both of them are planar data, and the
data size is shown in Table 2. The source data is one shapefile file.
The data are pre-divided into nine shapefiles to ensure that each
node can participate in the calculation process in the case of multiple
nodes in parallel.

The first set of experiments tested the feasibility of the algorithm
in a multi-node environment and constructed vector tiles of the four
test data at levels 0–11. Each level constructed and recorded its time.
In the second experiment, four groups of experimental data were
used to test the construction time of different number of nodes, build
levels from 0 to 10, and record the total time. All the aforementioned

experiments were repeated eight times, and the average time was
taken as the result. The third experiment is to compare with the
traditional ArcGIS model, reflecting the progressiveness of the
method in this paper. Experiment 4 conducted tests on different
nodes for spatial connectivity calculation in the cluster, and finally,
combined with national data, and produced and analyzed a thematic
map of farmland spatial connectivity.

6.2 Experimental results

The test results of vector tile construction at each level are shown
in Figure 8. From the figure, it can be seen that as the tile level
increases, the number of tiles increases and the construction time
also increases. At lower levels, such as 0–1, the time consumption is
almost the same for different datasets, which is because creatingMap

FIGURE 6
Flowchart of the polygon intersection.
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and Reduce tasks consumes a larger proportion of time, while a
small amount of tiles in parallel have almost the same computational
time. When the number of tiles increases, the proportion of time
spent on tile generation is greater, so the total time consumption

increases as the number of tiles increases. If the original data are a
single shapefile file, the data need to be divided into multiple blocks
in order to achieve the parallelism of the Map task in the multi-node
calculation.

From Figure 8, we can also see that there are significant
differences between different datasets. Overall, the larger the data
volume, the longer the time it takes.

The second group of experiments used the aforementioned
four types of data to construct vector tiles at levels 0–10 with
different numbers of nodes. The experiment was also repeated
eight times, and the total consumption time was recorded before
taking the average. The test results are shown in Figure 9. From
the perspective of time comparison, horizontally expanding
multi-node parallelization can greatly improve the efficiency
of vector tile parallel construction, with single node and dual

FIGURE 7
Calculation process of the spatial connectivity index.

TABLE 2 Test datasets.

Data Data size (MB)

Dataset 1 Global administrative data 62.9

Dataset 2 China water distribution data 183

Dataset 3 Global lake data 378

Dataset 4 Global building data 664
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node comparisons being the most obvious. In a single node,
multiple Map and Reduce tasks are applied for, but they are still
executed serially, and the Reduce task is only executed after the
Map task ends. In multiple nodes, multiple Map tasks can be
executed simultaneously, and the execution time of each Map
task varies. Therefore, the node that completes the Map task first
can start the Reduce task in advance, thereby improving
efficiency.

In summary, when constructing a small amount of tiles with a
small amount of data, using multiple nodes to construct vector

tiles reduces efficiency. Because in a multi-node environment,
most of the time is spent on creating tasks and processes, and
scheduling resources; it is advisable to consider using a single
machine to build vector tiles; under the condition of constructing
large-scale vector tiles, the ability of parallel computing can be
fully utilized.

As can be seen from Figure 10, the calculation efficiency of the
polygon alignment degree proposed in this paper is higher than that
of ArcGIS engine in a single-machine environment, with a
difference of more than five times. As can be seen from

FIGURE 8
Construction time consumption of vector tiles at different levels.

FIGURE 9
Construction time consumption of vector tiles with different number of nodes.
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Figure 11, the clustering mode can further improve the computing
efficiency.

The national arable land calculation results are shown in
Figure 12. This article divides the cultivated land results into high
contiguous areas, medium contiguous areas, and low contiguous
areas using the equal spacing method, represented by three
colors, namely, green, blue, and red, respectively (the two

square blanks in Northeast Liaoning id due to data calculation
errors and legends cannot be added due to the national data being
drawn by the spatial Hadoop cluster). From the figure, it can be
seen that the cultivated land in Northeast and North China has a
higher degree of connectivity, while the cultivated land in
Southeast and Southwest China has a lower degree of
connectivity, which is consistent with the actual situation in

FIGURE 10
Comparison of the calculation efficiency of spatial connectivity.

FIGURE 11
Computing efficiency comparison of spatial connectivity in the cluster environment.
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China. The Northeast and North China regions are located in
plains, with flat terrain, large plot areas, and regular shapes, with
relatively concentrated and contiguous cultivated land. However,
the Southeast and Southwest China regions are mostly hilly and
mountainous areas, with scattered and fragmented plot
distribution, irregular shape, and poor concentrated and
contiguous cultivated land.

7 Conclusion

For the construction of vector tiles for large-scale vector data,
efficiency and quality are two highly concerned aspects. The
performance of a single machine construction can no longer
meet the needs of data production, while parallelization schemes
can greatly improve the efficiency of construction; the quality of
vector tiles requires consideration of data simplification and
synthesis issues during the construction process. Therefore, this
article proposes a vector tile parallel construction algorithm based
on the MapReduce parallel programming model. Both groups of
experiments prove the feasibility of the proposed algorithm, which

can significantly improve the efficiency of vector tile construction in
the multi-node cluster environment.

This paper summarizes the key technologies of vector tile
construction and introduces the algorithm flow of vector tile
parallel construction based on the MapReduce parallel
programming model in detail. The experiment verifies the
feasibility of the static cache vector tile scheme of this algorithm
and significantly improves the construction efficiency of the vector
tile. At the same time, the algorithm of spatial connectivity analysis
of the planar graph is applied. However, there are still some
shortcomings, for example, simplification and thinning strategies
need to be considered from multiple perspectives. Only using the
Douglas–Peucker algorithm cannot meet the simplification
requirements of vector data, and the algorithm still has room for
optimization.

Data availability statement

Publicly available datasets were analyzed in this study. These
data can be found online at: https://www.openstreetmap.org/.

FIGURE 12
Schematic diagram of spatial connectivity analysis of national arable land.
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