
Effect of temperature on carbon
accumulation in northern lake
systems over the past 21,000years

Gregor Pfalz1,2,3,4*, Bernhard Diekmann1,2,
Johann-Christoph Freytag3,4 and Boris K. Biskaborn1,2*
1Helmholtz Centre for Polar and Marine Research, Section of Polar Terrestrial Environmental Systems,
Alfred Wegener Institute, Potsdam, Germany, 2Institute of Geosciences, University of Potsdam, Potsdam,
Germany, 3Einstein Center Digital Future, Berlin, Germany, 4Department of Computer Science,
Humboldt-Universität zu Berlin, Berlin, Germany

Introduction: Rising industrial emissions of carbon dioxide and methane highlight
the important role of carbon sinks and sources in fast-changing northern
landscapes. Northern lake systems play a key role in regulating organic carbon
input by accumulating carbon in their sediment. Here we look at the lake history of
28 lakes (between 50°N and 80°N) over the past 21,000 years to explore the
relationship between carbon accumulation in lakes and temperature changes.

Method: For this study, we calculated organic carbon accumulation rates (OCAR)
usingmeasured and newly generated organic carbon and dry bulk density data. To
estimate new data, we used and evaluated seven different regression techniques
in addition to a log-linear model as our base model. We also used combined age-
depth modeling to derive sedimentation rates and the TraCE-21ka climate
reanalysis dataset to understand temperature development since the Last
Glacial Maximum. We determined correlation between temperature and OCAR
by using four different correlation coefficients.

Results: In our data collection, we found a slightly positive association between
OCAR and temperature. OCAR values peaked during warm periods Bølling Allerød
(38.07 g·m−2·yr−1) and the Early Holocene (40.68 g·m−2·yr−1), while lowest values
occurred during the cold phases of Last Glacial Maximum (9.47 g·m−2·yr−1) and
Last Deglaciation (10.53 g·m−2·yr−1). However, high temperatures did not directly
lead to high OCAR values.

Discussion:We assume that rapidwarming events lead to high carbon accumulation
in lakes, but as warming progresses, this effect appears to change as increased
microbial activity triggers greater outgassing. Despite the complexity of
environmental forcing mechanisms affecting individual lake systems, our study
showed statistical significance between measured OCAR and modelled
paleotemperature for 11 out of 28 lakes. We concluded that air temperature alone
appears to drive the carbon accumulation in lakes. We expected that other factors
(catchment vegetation, permafrost, and lake characteristics) would influence
accumulation rates, but could not discover a conclusive factor that had a
statistical significant impact. More data available on long-term records from
northern lake systems could lead to more confidence and accuracy on the matter.
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1 Introduction

Northern lake systems (50°N–80°N) have been subject to an
increase in mean annual surface air temperature up to 2.7°C over the
last few decades (Box et al., 2019; Meredith et al., 2019; Ballinger
et al., 2020). Temperature is one of the key control variable for the
mineralization and burial of carbon in lakes, regardless of the origin
of carbon (i.e., autochthonous or allochthonous) (Gudasz et al.,
2010; Gudasz et al., 2015). Not only is an increase in temperature
associated with higher carbon mineralization and burial, but also
favors higher turnover of carbon through more in-lake primary
production by macrophytes/aquatic plants (Li et al., 2017; Velthuis
et al., 2018) and algae (Biskaborn et al., 2022). As a consequence, lake
systems can shift from being a net carbon sink to net carbon source
and vice versa (Sobek et al., 2014; Heathcote et al., 2015; Denfeld
et al., 2018).

Dean and Gorham (1998) estimated that lakes on a global scale
accumulate in their sediment about 42 TgC (teragrams of carbon,
i.e., one million metric tons of carbon) per year. Based on a new
modeling approach, Anderson et al. (2020) approximated that
accumulation rates have almost tripled over the past 100 years by
about 72 TgC from 0.05 PgC to 0.12 PgC per year. In this model,
the authors estimated that lakes in boreal biome contribute the
highest (24%) to the global carbon burial rate, while tundra lakes
are the lowest at only 2% due to their low carbon burial rate
(Anderson et al., 2020). Despite potentially lower carbon burial
rates in northern lakes due to current lower temperatures
(Gudasz et al., 2010), Sobek et al. (2014) found that Arctic
lakes show similar burial efficiencies as other lakes at lower
latitudes. In addition, climate change-induced shifts in
vegetation (Cramer et al., 2001; Pearson et al., 2013), lake
aquatic biomass production (Biskaborn et al., 2023), and
increased carbon release from permafrost thawing (Meredith
et al., 2019; Schuur et al., 2022) may raise carbon burial rates
in Arctic lakes due to the growing availability of carbon within
the lakes (Anderson et al., 2020).

Comprehending the complex burial process requires a
thorough understanding of how the carbon cycle in a lake
responds to temperature fluctuations. Temperature plays a
crucial role in shaping the interactions between dissolved
organic carbon (DOC) and dissolved inorganic carbon (DIC)
in lake ecosystems (Gudasz et al., 2010). DIC comprises carbon in
the form of inorganic carbon species, primarily bicarbonate
(HCO3

−), carbonate (CO3
−2), and dissolved carbon dioxide

(CO2), while DOC refers to the fraction of organic carbon
compounds dissolved in water. Higher temperatures can
enhance microbial activity, leading to increased breakdown of
organic matter and subsequent release of DOC into the lake water
(Middelboe and Lundsgaard, 2003; Adams et al., 2010). This
process elevates the concentration of DOC in the lake, which
influences organic carbon burial rates in lake sediments.
Additionally, raised temperatures promote primary production
by aquatic plants and algae, which enhances photosynthesis and
the uptake of DIC from the water column (Hein, 1997; Hammer
et al., 2019). As a result, this process can either increase the
outgassing of CO2 from the lake or promote more carbonate
precipitation of carbonated minerals within the lake.

In-lake bioproductivity and carbon accumulation also depend
on catchment vegetation and the availability of allochthonous
carbon (Roiha et al., 2016). During the Last Glacial Maximum,
sparse vegetation and a reduced flux of allochthonous carbon to the
lakes prevailed the Arctic due to the severe climatic conditions
(Melles et al., 2012). In most areas the lack of nutrients in the
underlying permafrost soil prevented further advances of boreal
forests (Sundqvist et al., 2014). However, as the climate warmed and
glaciers retreated, vegetation types shifted from tundra to boreal
forest, which substantially increased the availability of organic
carbon (Lozhkin et al., 2007; Lozhkin et al., 2018; Biskaborn
et al., 2016; Diekmann et al., 2017).

Nutrient fertilization and atmospheric deposition played a
crucial role in the Holocene in enhancing the productivity of the
Arctic vegetation (Galloway et al., 2004; Choudhary et al., 2016). A
prolonged growing season due to a warmer climate and shorter ice
coverage further contributes to an upsurge in carbon turnover
within lakes (Walther et al., 2002; Vuglinsky and Valatin, 2018;
Sharma et al., 2019; Sharma et al., 2020). However, eutrophication
and browning can in turn negate these effects, leading to stable water
stratification with anoxic conditions at the bottom of the lake
(Bartosiewicz et al., 2019).

In addition to in-lake primary productivity, other factors can
affect the overall carbon balance within a lake, such as sediment
resuspension/re-mineralization (Guillemette et al., 2017; Klump
et al., 2020), or lake characteristics (e.g., morphology, catchment
characteristics, or geographical location) (Ferland et al., 2014; Clow
et al., 2015; Denfeld et al., 2018; Zwart et al., 2019). Nevertheless,
changes in land use and changing precipitation patterns will in turn
affect the distribution and storage of carbon in the Arctic in the
future (Tchebakova et al., 2009; Bartsch et al., 2016; Windirsch et al.,
2022).

While studies have focused on the carbon balance of lakes in the
Holocene (e.g., Anderson et al., 2009; Sobek et al., 2014; Heathcote
et al., 2015), investigations into past carbon accumulation rates back
to the Late Pleistocene are lacking. Since the burial of organic carbon
can react sensitively to temperature changes (Gudasz et al., 2010;
Gudasz et al., 2015), a longer observation period with larger
temperature differences can reveal new perspectives. To test
whether temperature is the key driver in northern high-latitude
lakes, we need to consider other influencing factors in our analysis,
such as catchment vegetation, underlying permafrost, and lake-
specific properties.

The main objective of this paper is to investigate the relationship
between temperature and carbon in northern lakes over the past
21,000 years. We estimate the amount of carbon accumulated in
28 lakes since the Late Pleistocene using a combination of measured
and newly generated organic carbon and dry bulk density data. To
generate new data, we test seven different regression techniques as
prediction models and evaluate them against common assessment
metrics. We then correlate the obtained accumulation rates with
temperature from re-analysis data (TraCE-21ka climate reanalysis
dataset) to understand the relationship between these rates and
changing temperature. Given the large time span covered by the
datasets and the geographic spread of the sediment cores, we further
create relationships to permafrost, vegetation, and lake-specific
attributes.
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2 Materials and methods

To determine the amount of carbon that accumulated over the
past 21,000 years, we need to calculate the “organic carbon
accumulation rate” (OCAR, in g·m−2·yr−1) using the following
equation (Eq. 1):

OCAR � DBD ×
TOC

100
( )( ) × SR (1)

where DBD is dry bulk density (in g·cm−3), TOC is the total organic
carbon content (in weight-%), and SR is the age-depth-model-
derived sedimentation rate (in cm·yr-1). We divided the resulting
unit (g·cm−2·yr−1) by 0.0001 to get the desired OCAR unit
(g·m−2·yr−1).

To acquire the necessary data for this project, we conducted a
comprehensive data collection process that focused on TOC and
DBD measurements. In total, we collected 28 datasets from high
latitude lake systems (50°N–80°N—Figure 1) containing TOC,
which we standardized following the procedure introduced by
Pfalz et al. (2021). In addition to DBD and TOC, our data
collection focused on two additional data series: 1) sediment
water content (WC) data, and 2) grain size measurements
divided into the three subgroups of sand, silt, and clay (in
weight-%).

Given the variable data availability of sediment cores with
DBD, we divided the sediment cores into two subgroups:
“Complete datasets” and “Augmented datasets” (Table 1).

“Complete datasets” consist of subsets of sediment cores that
contain (C1) DBD, TOC, sand, silt, and WC data, (C2) Wet bulk
density, TOC, and WC data, and (C3) both DBD and TOC. On
the other hand, “Augmented datasets” refer to datasets that were
lacking DBD information but had (A1) grain size and partially
WC data available or (A2) neither grain size nor WC data
available.

While both C1 and C3 datasets were directly usable for OCAR
calculation, in three instances of our data collection (subset
C2—“Wet bulk density dataset”—Table 1), we collected values
for wet bulk density instead of dry bulk density. Because these
datasets also provided data on the water content, we were able to
calculate dry bulk density with the following equation (Eq. 2):

DBD � 1 − WC

100
( )( ) × WBD (2)

with DBD being dry bulk density (in g·cm−3), WC being the water
content (in weight-%), and WBD being the wet bulk density (in
g·cm−3).

As both “augmented datasets” A1 and A2 were lacking DBD
measurements, we considered predicting DBD from existing data. A
large number of empirically derived pedotransfer functions and
techniques for predicting bulk density exist in the literature (e.g.,
Hollis et al., 2012; Martín et al., 2017; Lu et al., 2021; Palladino et al.,
2022; Qin et al., 2022). The majority of these prediction techniques
use variations of linear models to predict bulk density. To enable
comparison with the existing literature, we decided to use a log-

FIGURE 1
Spatial distribution of sediment cores from northern lakes (50°N–90°N) used in this study labeled by their lake type (black symbols, n = 28).
Underlying permafrost zones for the present time (solid colored areas) are from Obu et al. (2019), while permafrost distribution of the last 21,000 years
(shaded areas) originates from Lindgren et al. (2016). We adapted the color scheme for permafrost zones (four different shades of purple) fromObu et al.
(2019) to be consistent with the original publication.
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TABLE 1 Summary table containing individual datasets used for this study.

Group Subset of proxies CoreID Data
points

Paper references

Complete datasets C1—Full dataset (DBD, composite depth, TOC, silt, clay, WC) Total: 264

EN18208 26 Vyse et al. (2020)

EN18218 63 Vyse et al. (2021)

PG1205 159 Wagner et al. (2000)

PG2201 16 Hughes-Allen et al. (2021)

C2—Wet bulk density dataset (WBD, composite depth, TOC, WC) Total: 260

PG1214 56 Wagner and Melles (2008)

PG1228 96 Ebel et al. (1999)

PG1238 108 Raab et al. (2003)

C3—Remaining dataset (DBD, composite depth, TOC) Total: 96

EN18208 44 Vyse et al. (2020)

PG2201 52 Hughes-Allen et al. (2021)

Augmented
datasets

A1—Predict DBD with models dataset (Composite depth, TOC, silt,
clay, WC)

Total: 446

Co1309 95 Gromig et al. (2019)

Co1412 148 Baumer et al. (2021)

PG1755 47 Diekmann et al. (2017)

PG1756 28 Diekmann et al. (2017)

PG1984 54 Biskaborn et al. (2012)

PG2133 57 Courtin et al. (2021)

PG2208 17 Biskaborn et al. (2021)

A2—Estimate DBD from beta distribution dataset (Composite
depth, TOC)

Total: 1790

BN 2016-1 39 Rudaya et al. (2021)

ESM-1 36 Mackay et al. (2012)

LS-9 59 Wolfe et al. (2000)

PER3 68 Anderson et al. (2015)

PG1111 127 Harwart et al. (1999)

PG1341 141 von Hippel et al. (2021)

PG1351 335 Asikainen et al. (2007) and Melles et al.
(2007)

PG1437 211 Andreev et al. (2005)

PG1746 80 Nazarova et al. (2013)

PG1857 34 Hoff et al. (2015)

PG1858 37 Hoff et al. (2012)

PG1890 75 Hoff et al. (2014)

PG2023 113 Biskaborn et al. (2016)

PG2208 172 Biskaborn et al. (2021)

Tel2006 263 Rudaya et al. (2016)

Note that some CoreIDs appear multiple times, as some studies did not measure all proxies at the same core depth. For the dataset used to predict DBD, water content was only partially

available, which we supplemented with modeled water content data.
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linear model as our base model, which we built in Python using
“scikit-learn” and its “LinearRegression” function (Pedregosa et al.,
2012).

In contrast to other pedotransfer functions, we included
both the depth of a given sample within the sediment core (in
cm) and its water content, which gave us the following equation
(Eq. 3):

ln DBD( ) � α + β1 × CDepth( ) + β2 × TOC( ) (3)
+β3 × Silt( ) + β4 × Clay( ) + β5 × WC( )

where DBD is dry bulk density (in g·cm−3), CDepth is the composite
depth below sediment surface (as mid-point cm), TOC is total
organic carbon content (in mg·g−1), Silt and Clay are the silt and
clay content from grain size measurements (in weight ratios), WC is
the water content (in weight-%), α is the intercept, and β1 to β5 are
the individual coefficients. We obtained the unit “mg·g−1” for the
TOCmeasurements by multiplying weight percent by factor 10, and
unit “weight ratios” for clay and silt data by dividing the weight
percent by factor 100.

Considering the significant impact of sediment water content
on sediment compaction, we recognized its importance in
predicting DBD. However, 11 sediment core datasets (39% of
the collected datasets) lacked water content data. To address this
limitation and to test whether other regression methods can
outperform linear models, we decided to predict WC
alongside DBD in several multiple output regression methods
in addition to the linear model. We opted for non-linear machine
learning techniques to allow for a better comparison with the
(non-linear) log-linear model. This includes the following
regression methods from the “scikit-learn” and “xgboost”
package in Python (Pedregosa et al., 2012; Chen and Guestrin,
2016):

• Random Forest Regression
• Extreme Gradient Boosting (XGBoost)
• Gradient Boosting
• K-nearest Neighbor
• Support Vector Regression
• AdaBoost Regression.

For training and evaluation purposes, we split the “Full dataset”
C1 (Table 1) into a training (80%) and test set (20%), but also
used fivefold cross-validation to alleviate potential biases in the
splitting process. We scored the individual models by using the
following metrics: mean absolute error (MAE), relative absolute
error (RAE), mean squared error (MSE), root mean squared error
(RMSE), root relative squared error (RRSE), and R2 score. The
Supplementary Material contains the equations used for these
metrics. We further checked if hyperparameter tuning would
improve our results by adding an additional pipeline with the
“GridSearchCV” and “RandomizedSearchCV” optimization
algorithms from the “scikit-learn” package (Pedregosa et al.,
2012).

For subset A1, we used the log-linear model and the
regression methods to predict DBD and, where necessary,
WC. However, for subset A2 (“Estimate DBD from beta
distribution dataset”—Table 1), we only had TOC

measurements for 15 sediment cores available for bulk density
prediction. We therefore used existing grain size data from eleven
sediment cores in the data collection (710 data points) to generate
beta distributions for clay and silt. These beta distributions rely
on the two parameters αbeta and βbeta, which we individually
calculated using the following two equations (Eqs 4, 5):

αbeta � 1 − μ

σ2
− 1
μ

( ) × μ2 (4)

βbeta � αbeta ×
1
μ
− 1( ) (5)

with µ and σ2 being the mean and the variance of the existing clay or
silt data, respectively. After obtaining αbeta and βbeta values for both
clay and silt content, we drew 10,000 silt and clay values for each
TOC measurement from the newly constructed beta distributions
using “random sampling” of the Python package “numpy” (Harris
et al., 2020). To reduce overall computing time, we performed
random sampling and subsequent prediction of dry bulk density
(Eq. 3) in parallel using the “Dask” back-end (Dask Development
Team, 2016) and the “joblib” Python package (Joblib Development
Team, 2020).

However, we constrained the possible values for clay and silt in
two ways before using them in our models to predict dry bulk
density ranges. Given that grain size data is compositional data,
i.e., the sum of its components should add up to 1% or 100%
(Greenacre, 2021), we first removed sums of clay and silt weight
ratios that were greater than one. Since grain size data consists of a
third component, which is the grain size range for sand, we also
considered a lower bound for the sums to account for sand
occurrence in the sediment cores. From the given data, we
estimated that a maximum of 20% sand in the sediment column
would be possible for our data collection. Therefore, we also
removed sums of clay and silt weight ratios that were smaller
than 0.8.

In any case, working with modeled values can introduce
potential errors that could affect the interpretation of results.
The quality and accuracy of the input data play a crucial role in
determining the model’s performance and output (Rebba et al.,
2006; Huang and Laffan, 2009). Errors during data collection or
sample measurement can propagate into the model outputs. We
mitigated the risk by relying on original raw data as much as
possible and used a database to ensure the values fell within
physically plausible ranges (Pfalz et al., 2021). While both Eqs 1, 3
represent simplifications of complex systems, and overly
simplistic models can overlook important processes that lead
to incorrect results (Andersson et al., 1999; Mathews and Vial,
2017). However, we struck a balance between simplification and
computational feasibility, using only publicly available data and
ensuring the reproducibility of our results.

We used the LANDO age-depth modeling result from Pfalz
et al. (2022) to derive sedimentation rates (SR) for each sediment
core. LANDO links five age-depth modeling systems (Bacon,
Bchron, clam, hamstr, Undatable) in one multi-language Jupyter
Notebook (Haslett and Parnell, 2008; Parnell et al., 2008; Blaauw,
2010; Blaauw and Christen, 2011; Kluyver et al., 2016; Peng et al.,
2018; Lougheed and Obrochta, 2019; Dolman, 2022). For all
sediment cores, we combined the results from the five modeling
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systems with standard settings into an ensemble model with two-
sigma uncertainty [as described in Pfalz et al. (2022)]. We
propagated these sedimentation rate uncertainties into the
OCAR calculations (Eq. 1) to obtain OCAR uncertainty ranges.

To understand the temperature development since the Last
Glacial Maximum (Clark et al., 2009), we used the TraCE-21ka
climate reanalysis dataset (He, 2011), which we will refer to simply
as TraCE dataset hereinafter. We divided the timespan covered by
the TraCE dataset into the following periods (Walker et al., 2019;
Head et al., 2021; Kuang et al., 2021):

• Last Glacial Maximum—22,000 to 18,000 years BP (years
before present, i.e., before 1950 CE)

• Last Deglaciation—18,000 to 14,300 years BP
• Bølling Allerød—14,300 to 12,700 years BP
• Younger Dryas—12,700 to 11,700 years BP
• Early Holocene—11,700–8,200 years BP
• Mid-Holocene—8,200 to 4,200 years BP
• Late Holocene—4,200 years BP to present.

For each core location, we extracted the surface air temperature at
reference height (TREFHT) from the nearest grid cell of the TraCE
dataset [grid cell resolution: 2.5° × 2.5° (He, 2011; Brown et al., 2020)].
We then converted the temperature from Kelvin (K) to Celsius (°C) by
subtracting 273.15 K from each value and then averaging values for the
summer months June-July-August (JJA). Following the procedure
introduced by Kaufman et al. (2020a), we converted OCAR values
to z-score. The z-score measures how many standard deviations each
point is away from the mean, and thus normalizes the data. To
comprehend how vegetation affects carbon accumulation, we used
the vegetation reconstruction by Dallmeyer et al. (2022) (depicted in
Figure 2), which incorporates the TraCE dataset into its remodeling.

To determine the correlation between temperature and
OCAR, we first had to check for normality of the two
variables. For this reason, we visually inspected the data by
plotting quantile-quantile plots (Q-Q plots) using the package
“statsmodels” (Seabold and Perktold, 2010). We then used both
the Shapiro-Wilk as well as the D’Agostino and Pearson’s test
from the Python package “scikit-learn” (Pedregosa et al., 2012)

FIGURE 2
Biome distribution based on Dallmeyer et al. (2022) vegetation reconstruction for the past 21,000 years represented in four snapshots (21,000,
11,700, 8,200, and 0 calibrated years Before Present, i.e., before 1950 Common Era). We include sediment cores with their respective lake type in the
snapshot if there is TOC data available for them (black symbols).
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FIGURE 3
Visual representation of evaluation of seven regression methods for predicting dry bulk density and water content with metrics such as mean
absolute error (MAE), relative absolute error (RAE), mean squared error (MSE), root mean squared error (RMSE), root relative squared error (RRSE), and R2

score.
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for our statistical tests. As both temperature and OCAR did not
display normality, we used Spearman’s and Chatterjee’s rank
correlation coefficient to check for the correlation between the
two variables. In contrast to Chatterjee’s coefficient,
Spearman’s coefficient is a well-established, robust
correlation metric often used for variables from non-normal
distributions (Sadeghi, 2022). However, the Chatterjee’s
coefficient showed promising results for testing the non-
linear functional correlation between two variables
(Chatterjee, 2021; Sadeghi, 2022). In addition to the
Spearman and Chatterjee correlation coefficient, we checked
the Pearson and Kendall-Tau correlation coefficient on both
the untransformed and z-transformed variables. The methods
for the more common correlation coefficients came from the
Python package “scipy” (Virtanen et al., 2020), while to
calculate the Chatterjee coefficient we used the script
provided by Chatterjee (2021).

3 Results

While our data collection yielded 620 data points
(Table 1—Complete datasets) containing DBD and TOC
which were directly usable for OCAR calculation (Eq. 1), the
majority of data points from the augmented datasets (n = 2,236,
Table 1—Augmented datasets) required further calculations. In
preparation for both A1 and A2, we fitted the log-linear model
with training dataset of our subset C1 (Table 1—“Full dataset”)
to obtain the following equation to predict dry bulk density
using a linear regression:

ln DBD( ) � 1.3337 + 0.0001 × CDepth( ) − 0.0016 × TOC( )
− 0.3986 × Silt( ) + 0.353 × Clay( ) − 0.0267 × WC( )

(6)
where DBD is dry bulk density (in g·cm−3), CDepth is the composite
depth below sediment surface (as mid-point cm), TOC is total
organic carbon content (in mg·g−1), Silt and Clay are the silt and
clay content from grain size measurements (in weight ratios), WC is
the water content (in weight-%).

Since we wanted to test whether other regression methods could
outperform the log-linear model, we had to ensure that there were
no calibration and validation issues. Figure 3 and Table 2 provide an
overview of the train and test performance with five-fold cross-
validation of each regression methods we used to predict DBD (first

TABLE 2 Summary of evaluation of regression methods for predicting dry bulk density and water content with metrics such as mean absolute error (MAE), relative
absolute error (RAE), mean squared error (MSE), root mean squared error (RMSE), root relative squared error (RRSE), and R2 score.

Linear
regression

Random forest
regression

Extreme
gradient
boosting

Gradient
boosting

K-nearest
neighbor

Support vector
regression

AdaBoost
regression

Dry bulk density

MAE 0.1486 0.0946 0.0956 0.0941 0.1354 0.1310 0.0954

RAE 0.2327 0.1527 0.1501 0.1516 0.2121 0.2045 0.1564

MSE 0.0416 0.0179 0.0169 0.0173 0.0342 0.0317 0.0183

RMSE 0.2027 0.1324 0.1297 0.1313 0.1842 0.1776 0.1348

RRSE 0.5704 0.3754 0.3690 0.3717 0.5192 0.5005 0.3842

R2

score
0.6728 0.8551 0.8611 0.8602 0.7288 0.7491 0.8483

Water content

MAE 6.6296 3.9758 4.4254 4.2335 6.3042 6.8274 4.1054

RAE 0.1529 0.1028 0.1106 0.1062 0.1594 0.1578 0.1127

MSE 66.7129 30.4543 35.6869 32.6959 72.5261 71.1432 37.3450

RMSE 8.1604 5.4941 5.9163 5.6851 8.4945 8.4289 6.0397

RRSE 0.5323 0.3610 0.3887 0.3724 0.5535 0.5520 0.3971

R2

score
0.7153 0.8662 0.8433 0.8580 0.6920 0.6915 0.8350

TABLE 3 Mean prediction error of water content across the seven prediction
methods.

Prediction method Deviation from true water content (%)

Linear regression 9.70

Random forest regression 12.13

Extreme gradient boosting 12.08

Gradient boosting 11.90

K-nearest neighbor regression 10.32

Support vector regression 11.67

AdaBoost regression 11.54
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column) and WC (second column). Ensemble methods such as
AdaBoost, Random Forest, Gradient Boosting, and Extreme
Gradient Boosting achieved the highest R2 score and lowest error
across all error scores. The Random Forest regression performed
best for both DBD and WC with an R2 score of 0.8551 and 0.8662,
respectively. However, all regression methods yielded a high mean
absolute error for WC between 3.9758 (Random Forest Regression)
and 6.6296 (Linear Regression), which translated to a deviation from
true water content percentages, i.e. 3.98%–6.63%. Hyperparameter
tuning using grid search and randomized search did not yield any
improvement of these results.

During the first predictions for DBDwith the subset A1, we used
the mean error between predicted WC versus measured WC as an
additional measure of quality for all prediction methods. Table 3
summarizes the results across all prediction methods. In contrast to
the previous test and training performance, Linear Regression
performed with the smallest error (9.70%), while Random Forest
Regression had the highest error (12.13%) amongst the methods.

Before we could predict DBD for A2, we required a clay-silt pair for
each of the 1790 data points in A2. Figure 4 shows the beta distributions
for clay and silt based on the existing data across all datasets (Table 4).
Clay content peaks between 10 and 20 percent, while silt content has its
highpoint between 70 and 80 percent. We used random samples from
these beta distributionswith the subset A2 (Table 1) to estimate dry bulk
density for all regression methods. To verify that model results were
within a reasonable range and to allow comparison with the literature,
we compared TOC values withmeasured and predicted DBD values. In
Figure 5 we summarize the results obtained from the model predictions
for Random Forest regression, Support Vector regression, and Linear

Regression as well as measured values of TOC and dry bulk density. For
completion, we show the results of the remaining four methods in the
Supplementary Material (see Supplementary Figure S1).

In Figure 5A, the random forest regression displays a step-like
curve with a plateau between about 20 and 150 mg·g−1 TOC. Predicted
values of dry bulk density ranged from 0.18 to 1.21 g·cm−3. We
associated this pattern with potential overfitting, as the method
ignores other measured values. Support Vector regression
(Figure 5B) predicted values follow the measured values with a
shallow increase from 300 to 500 mg·g−1 TOC. DBD values for this
method varied between 0.18 and 1.25 g·cm−3. The curve within
Figure 5C (Linear regression) shows a similar log curve as presented
in the literature, however, it exceeds the level of possible values [linear
regression method maximum value: 4.06 g·cm−3; maximum physically
possible value: 2.65 g·cm−3 (Avnimelech et al., 2001)]. The minimum
value of this method was 0.07 g·cm−3. The exceeding values (n = 27)
corresponded to deep level samples of core PG1341 (deeper than 15 m)
where compactions plays a greater role than the method can reflect. To
allow comparison with the literature, we excluded the values above
2.65 g·cm−3 from the linear model and continued with linear model
further.

Figure 6 contains the comparison between mean OCAR and the
temperature data from TraCE dataset for the 28 sediment cores. Some
temperature data showed similarities as the core-drilling locations were
in the same TraCE grid cell, e.g., EN18208 (Core No. 4—Lake Ilirney)
and EN18218 (Core No. 5—Lake Rauchuvagytgyn), or PG2133 (Core
No. 25—Lake Bolshoe Toko) and PG2208 (Core No. 27—Lake Bolshoe
Toko). However, temperature ranges strongly varied within the
dataset depending on the core location. For instance, for
sediment core Tel 2006 (Core No. 28—Lake Teletskoye) we
saw temperatures ranged from a minimum of −22.61°C to a
maximum of 17.88°C, while temperatures for EN18218 (Core
No. 5—Lake Rauchuvagytgyn) only spanned from −8.06°C to
2.60°C. Regarding OCAR values, we obtained the lowest overall
values for PG1351 (Core No. 15—Lake El’gygytgyn) with a mean
of 0.286 g·m−2·yr−1 (uncertainty range max: 6.131 g·m−2·yr−1,
uncertainty range min: 0.008 g·m−2·yr−1). We saw the highest

FIGURE 4
Derived beta distribution for clay (left, green dotted line) and silt (right, blue dotted line) from available grain size data.

TABLE 4 Occurrence statistics within dataset of clay and silt and their
calculated parameters αbeta and βbeta for the beta distribution.

Grain size category Mean Variance αbeta βbeta
Clay 0.1919 0.0162 1.6459 6.9295

Silt 0.7431 0.0209 6.0322 2.086
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OCAR value in ESM-1 (Core No. 6—East Sayan Mountains Lake)
with 278 g·m−2·yr−1, however, this value came with a large
uncertainty range (min: 8.78 g·m−2·yr−1, max:
3018.625 g·m−2·yr−1). We calculated a mean OCAR of
24.615 g·m−2·yr−1 for all collected sediment cores in our dataset.

Figure 7 contains two comparisons: on the left, a direct
comparison between mean OCAR values and JJA temperature
data across all sediment cores, while on the right is a comparison
of z-transformed OCAR values over time. We obtained mean
OCAR values for Last Glacial Maximum (9.47 g·m−2·yr−1) and
Last Deglaciation (10.53 g·m−2·yr−1) at the lowest mean
temperatures −12.75°C (range: −24.14°C to −0.51°C)
and −10.62°C (range: −20.58°C to 2.12°C), respectively. We
observed the highest temperature ranges in the Late Holocene
with a mean temperature of 3.37°C (range: −12.69°C to 14.76°C),
but only with a mean OCAR of 21.8 g·m−2·yr−1. The highest
OCAR values occurred in Bølling Allerød (38.07 g·m−2·yr−1) and
Early Holocene (40.68 g·m−2·yr−1), where temperature ranged
from −14.51°C to 1.69°C (mean value: −4.28°C) and −12.02°C to
8.20°C (mean value: −1.65°C), respectively.

However, when comparing the normalized data over time, we
found that Mid-Holocene (mean z-score: 0.126, median z-score:
−0.015) and Late Holocene (mean z-score: 0.089, median z-score:
−0.055) were among the higher z-transformed OCAR values. Both
Mid-Holocene and Late Holocene showed the highest temperature

ranges, as shown on the left side of Figure 7. Periods that displayed a
lower temperature range, i.e., Last Glacial Maximum, Last Deglaciation,
and Younger Dryas, also revealed lower z-transformed OCAR values.
Mean z-scores were −0.643, −0.402, and −0.616, while their median
z-scores were −0.735, −0.429, and −0.577 for Last Glacial Maximum,
Last Deglaciation, and Younger Dryas, respectively.

To check for correlation between temperature and OCAR,
we first had to inspect visually Q-Q plots of those variables to
check for normality (see Supplementary Figure S2). The visual
inspection of the Q-Q plots, however, showed that variables
were non-normal distributed. D’Agostino’s K2 and Shapiro-
Wilk test (Table 5) confirmed this numerically. We then
determined the appropriate correlation coefficients for both
variables untransformed, both variables z-transformed, and
one where only OCAR was z-transformed while temperature
was untransformed. Table 6 shows the correlation coefficients
for Pearson, Spearman, Kendall-Tau, and Chatterjee, their
p-value, and their statistical significance for the above cases.
Except for Pearson correlation coefficient for both
untransformed variables, all coefficient showed a statistical
significance for the relationship between temperature and
OCAR. Chatterjee coefficient displayed in all three cases a
positive significance. Spearman’s rho value denoted a weak
negative relationship (−0.06367) for untransformed values,
while for z-transformed values it saw a weak positive

FIGURE 5
Model prediction results for dry bulk density against total organic carbon (TOC) for Random Forest regression (A), Support Vector regression (B), and
Linear Regression (C). Directlymeasured dry bulk density (blue circles) and dry bulk density derived frommeasuredwet bulk density (black circles) data are
the same across all subplots. Green circles represents predicted dry bulk density values for each predictionmethod, where all input values were available.
Red circles are estimated mean dry bulk density values for each prediction method with grain size data based on beta distribution for clay and silt.
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FIGURE 6
Organic carbon accumulation rate (mean values—black dashed line, 2σ uncertainty—golden shaded area) and June-July-August temperature from
TraCE-21k temperature reconstruction (violet line) for the sediment cores used in this study (n = 28). Vegetation for each sediment core based on
Dallmeyer et al. (2022) biome reconstruction.
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relationship between temperature and OCAR (0.2394 and
0.0863).

4 Discussion

4.1 Lake carbon-temperature relationship
across millennia

The Last Glacial Maximum (22,000 to 18,000 years BP) marks
the lowest carbon accumulation in our observation period
(9.47 g·m−2·yr−1), followed by the Last Deglaciation (18,000 to
14,300 years BP—10.53 g·m−2·yr−1) and Younger Dryas (12,700 to

11,700 years BP—17.22 g·m−2·yr−1). Our finding suggest that lower
OCAR values tend to occur in lower temperature ranges (Figure 7).
Conversely, however, the highest temperatures did not directly
result in the highest OCAR values, with the mean OCAR above
10°C being 5.97 g·m−2·yr−1 (range 1.55–37.33 g·m−2·yr−1). Even
removing the cluster between 10°C and 15°C by excluding
measurements from BN 2016-1 (Lake Bayan Nuur) and Tel 2006
(Lake Teletskoye) only slightly raises the mean OCAR values for the
Late Holocene (present to 4,200 years BP) to 28.41 g·m−2·yr−1.

The statistical analysis further supports this trend with only
slight positive statistical significance between OCAR and
temperature for our data collection (Table 6—see z-transformed
values). However, both Bølling Allerød (14,300 to 12,700 years

FIGURE 7
Left plot: Scatter plot showing the relationship between mean June-July-August (JJA) temperature and mean organic carbon accumulation rate
(OCAR). For coloring, we have chosen the same color code as for the periods on the right. Vertical lines indicate the temperature range, while white dots
show themean temperature. Numbers on the left side of vertical lines are the overall meanOCAR for this period. Right plot: The OCAR z-scores grouped
by the individual periods. The number below each box indicates the number of sediment cores contributing to this specific period. White dots are
showing the overall mean z-scores, while the white lines are the overall median values. Black diamond markers represent outliers outside the 1.5 times
interquartile range above the upper quartile and below the lower quartile.

TABLE 5 Shapiro-Wilk and D’Agostino’s distribution results for OCAR and temperature as untransformed and z-transformed values.

OCAR Temperature OCAR (z-transformed) Temperature (z-transformed)

Shapiro-Wilk test 0.61966 0.96647 0.96743 0.97967

p-value 0 3.786*10−22 7.777*10−22 4.112*10−17

Distributed Non-normal Non-normal Non-normal Non-normal

D’Agostino’s K2 test 1,411.31 33.09 164.68 144.82

p-value 3.459*10−307 6.504*10−8 1.736*10−36 3.564*10−32

Distributed Non-normal Non-normal Non-normal Non-normal
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BP—38.07 g·m−2·yr−1) and Early Holocene (11,700–8,200 years
BP—40.68 g·m−2·yr−1) are the two warm periods with the highest
OCAR (see Figure 7), which also have the steepest gradients of
temperature change (Rasmussen et al., 2006, 2014; Kaufman et al.,
2020b). This may indicate that a rapid temperature change initiates a
high accumulation of carbon in the lakes at the beginning of these
warm phases and then decreases over time as the biological activity
in the lakes increases.

However, our entire observation period was not covered by
more than half of our collected sediment cores (n = 17), which
partially limits the interpretation of individual sediment cores. Still
we can identify numerous sediment cores (Co1309, Co1412,
PG1111, PG1228, PG1238, and PG2208) that show a strong
positive correlation (Pearson r-value above 0.5) between OCAR
and temperature (see Supplementary Table S2). In particular, OCAR
values for Co1412 (Lake Emanda) follow temperature variations
throughout the observation period with the highest r-value of
0.8503.

We also observe synchrony with high r-values from the pair
PG2133 and PG2208 (0.4599 and 0.5027, respectively)
originating from the same lake (Lake Bolshoe Toko) but
different positions within the lake. Similarly, the pair
PG1755 and PG1756 (Lake Billyakh) show positive correlation
with close individual r-values (0.3478 and 0.2341, respectively),
but are not statistically significant with p-values greater than 0.05.
In contrast, sediment cores PG1111 and PG1341 both come from
Lake Lama but do not show a similar correlation with r-values of
0.8065 (PG1111) and 0.1813 (PG1341). The main difference from
metadata perspective is that the first two pairs were part of the
same expedition (Lake Billyakh—Yakutia 2005; Lake Bolshoe
Toko—Yakutia 2013), whereas PG1111 (Norilsk/Taymyr 1993)
and PG1341 (Norilsk 1997) are from two different expeditions of
two different years. Therefore, even though they are from the
same lake, comparing them may not be fair as the collection
method of the sediment cores may have affected the results (Pfalz
et al., 2021). The accuracy of laboratory analysis further
improved over time between the retrievals of the two cores,

which may have contributed to the observed differences in
results.

Despite the complexity of individual limnological studies of lake
systems, our collected dataset showed a positive correlation between
OCAR and temperature with statistical significance for 11 out of
28 sediment cores. Even if there is a given heterogeneity amongst
lake systems, we can conclude that temperature alone can explain
OCAR variability within a lake. The 11 sediment cores are highly
diverse and vary significantly in several aspects, as they share no
common feature. They differ in location, vegetation surrounding the
lakes, permafrost influence, catchment size, drilling distance from
the shore, water depth at drilling site, lake area, lake volume, drilling
device used, climate zone, and lake type. This would confirm our
general understanding of the independence of the relationship
between temperature as the sole driver and OCAR from other
factors. However, the strength of the correlation depends both
directly and indirectly on each contributing factor. Other
environmental factors may weakened or amplified the strength of
the temperature signal during our observation period. It is possible
that temperature affected the remaining 17 cores, but local factors
may have obscured the signal in the sediment.

Many of the processes known to influence the production and
accumulation of organic carbon are subject to change due to modern
climate warming (Larsen et al., 2011; Biskaborn et al., 2019). While
understanding the long-term effects of temperature over thousands
of years on OCAR is the main focus of our research, the short-term
effects over couple hundred years can produce drastic results
(Kastowski et al., 2011; Heathcote et al., 2015; Li et al., 2021).
Many sediment cores in our collection (n = 21) have at least one
surface sample pointing to the industrial era of the last 250 years
(Toynbee, 1884). However, only six of those cores have more than
two measurements, while only three (PG1111, PG2208, Tel 2006)
have more than ten measurements. Because of this poor resolution,
we do not have enough evidence to explain recent changes in
OCARs. However, we have included these recent measurements
in our Late Holocene samples to allow a comparison over a longer
period.

TABLE 6 Correlation statistic between OCAR and temperature using four different correlation techniques and an alpha value of 0.05 for the p-value.

OCAR vs. temperature Both untransformed Both z-transformed Only OCAR z-transformed

Pearson r value −0.01705 0.2356 0.1075

p-value 0.4254 6.025 * 10−29 4.733 * 10−7

Statistically significant No Yes Yes

Spearman rho value −0.06367 0.2394 0.0863

p-value 0.002899 7.084 * 10−30 5.374 * 10−5

Statistically significant Yes Yes Yes

Kendall tau value −0.03879 0.1646 0.0577

p-value 0.006566 8.687 * 10−31 5.266 * 10−5

Statistically significant Yes Yes Yes

Chatterjee xi value 0.0682 0.0477 0.0311

p-value 2.317 * 10−7 0.0002 0.0108

Statistically significant Yes Yes Yes
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Nevertheless, we must also consider the potential contribution
of the modeled paleo-temperature and age determination data as an
influencing factor in our interpretation. While the TraCE dataset
provides an excellent tool for reconstruction, its development relied
on global climate models that may not reflect the spatial variability
required for our analysis. One solution would be the refinement of
the reconstructed temperature through more local proxies and
input parameters or downscaling of the TraCE dataset (Brown
et al., 2020; Karger et al., 2023). Although LANDO is a more
advanced age-depth modeling technique that combines multiple
age-depth modeling software, it faces the same challenge as any other
age-depth modeling software: Modeling software relies on age
controls to establish an age-depth relationship. However, due to an
insufficient number of age controls (cf. Blaauw et al., 2018) or greater
uncertainty in the age determination data, a resulting age-depth
model may not represent the exact absolute age. To circumvent
this issue, we included the 2σ confidence intervals of these age-
depth models and their resulting sedimentation rate in our OCAR
calculations. We applied these intervals to the weighted mean age
derived from four or five modeling software for every OCAR
measurement. The consequence was an increase in the 2σ
uncertainty intervals for each OCAR measurement, but overall a
more accurate representation given the inherent uncertainty.

4.2 Spatial heterogeneity of lake carbon
accumulation

For 11 sediment cores examined in our study we found statistical
significance between OCAR and temperate, while the remaining
sediment cores showed no such relationship, likely due to the
complex nature of limnological studies and heterogeneity
between lake systems. Given the spatial extent of our research,
wemust also consider unique local factors that may have affected the
results. While we have sourced metadata and data sediment cores
used in this study from published research articles (Table 1) that
further provide in-depth analyses and interpretations, we will focus
on three important unifying aspects: vegetation, permafrost, and
geomorphology.

The vegetation reconstruction for around 21,000 years BP
suggest that the oldest cores (n = 9) were mostly surrounded by
tundra (Supplementary Table S3). The tundra biome is diverse
and can present itself as an expansive landscape with mostly
herbaceous plants, or as a mix of small trees and shrubs, such as
Betula, Alnus, and Salix (Dallmeyer et al., 2022). The lack of
significant abundance of evergreen trees—compared to boreal
forests present in later reconstructions (11,700, 8,200, and 0 years
BP—Figure 2)—may have contributed to the overall low carbon
accumulation of lakes in the Last Deglaciation and Last Glacial
Maximum.

To test this notion, we looked for sediment cores that remained
in the same tundra biome throughout the entire vegetation
reconstruction. We found that tundra vegetation surrounded one
sediment cores (PG1351– Lake El’gygytgyn) for the longest time,
with carbon accumulation rates averaging below 2.85 g·m−2·yr−1
(mean value: 0.44 g·m−2·yr−1). Melles et al. (2007) attribute the
relatively low carbon content to the decomposition of organic
matter due to the high oxygen content of the bottom water, but

also a limited supply of terrestrial organic matter. The authors
continue to determine a limited vegetation cover in the tundra-
dominated catchment as main reason for the low carbon
accumulation in the sediment (Melles et al., 2007).

In contrast, during the Bølling Allerød and Younger Dryas, most
of the lake catchment areas in our data collection shift from tundra
vegetation to boreal forests (Supplementary Table S3). Some even
remain in boreal forest into the Late Holocene (n = 9), presumably
fueled by the Holocene Thermal Maximum around 8,200 years BP
(Kaufman et al., 2004; Wanner et al., 2015). Other catchment areas
(EN18208, EN18218) transition back to tundra vegetation
immediately at the end of the Younger Dryas, or at the end of
the Early Holocene (LS-9, PG1228). OCAR values for sediment
cores surrounded by boreal forest show strong variability in
magnitude and incline. However, in most cases we observe an
increase in OCAR values at the onset of higher vegetation cover,
especially during warmer periods (Bølling Allerød, Early Holocene).

As an example of vegetation transition after the Younger Dryas,
we looked at the lake catchment for sediment core PG1437 (Lake
Lyadhej-To). There, the vegetation reconstruction indicates a
transition from tundra to boreal forest at the beginning of the
Early Holocene, which then lasted until the Late Holocene. Despite
the Early Holocene being recognized as a warm period that allowed
the boreal forest to expand northward (Tarasov et al., 2000;
Anderson et al., 2010), our current data suggest that the carbon
input from vegetation only affected the lake at the onset of the Early
Holocene. Between 11,700 and 11,000 years BP mean OCAR
increased to about 240 g·m−2·yr−1, but then decreased to
39 g·m−2·yr−1 around 8,200 years BP, with values even dropping
to 12 g·m−2·yr−1 at 7,700 years BP. The gradual northward expansion
of boreal forests may have resulted in not fully established forests to
provide an increased amount of organic carbon, which could explain
the observed phenomenon for PG1437. However, this further
supports our theory that a steep temperature gradient leads to
more OCAR rather than sustained higher temperature.

While temperature is a major factor in vegetation change, we
tested whether there is a direct relationship between OCAR and
vegetation. The mean OCAR for lakes surrounded by boreal
forest and tundra was 31.17 and 20.8 g·m−2·yr−1, respectively.
We saw the lowest mean OCAR in the “ice and polar dessert”
biome with 5.3 g·m−2·yr−1 and the highest mean OCAR in the
“grassland and dry shrubland” biome with 50.17 g·m−2·yr−1.
However, we found no general correlation between mean
OCAR and catchment vegetation in our data collection, with
an r-value of only 0.047 (Supplementary Figure S3). A possible
explanation for this might be a delayed vegetation response to a
warming climate in the establishing phase of the boreal forest
(Chapin and Starfield, 1997; Ernakovich et al., 2014; Zona et al.,
2014). Following the reasoning of the dynamic vegetation
module of JSBACH3 used in the vegetation reconstruction,
we assume that trees live longer (up to 50 years) than grass
(up to 1 year) (Dallmeyer et al., 2022). This would mean that as
the trees grow, there would be less organic material available for
transport to the lakes as they use their resources to grow.
However, following the harmonization process by Dallmeyer
et al. (2019), the grassland and dry shrubland biome has a
similar minimum total vegetation coverage as the tundra biome,
but differs by having more growing degree days, even as in
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boreal forest. This may indicate that vegetation with more
growing days but short lifespans generally has a higher
OCAR. We therefore have to assume that temperature drives
both catchment vegetation and carbon accumulation in lakes,
but at different times.

Despite the spatial heterogeneity of permafrost in the northern
hemisphere (Mishra et al., 2021), our dataset contains a majority of
cores (n = 26) located in areas with some degree of permafrost
presence. Permafrost is perennially frozen ground that stays at or
below 0°C for at least two consecutive years (French, 2007).
Estimates of stored carbon within permafrost in the northern
hemisphere range from around 1,460 to 1,600 PgC (petagrams of
carbon, i.e., one billion metric tons of carbon) (Hugelius et al., 2014;
Meredith et al., 2019; Schuur et al., 2022). Estimates by Lindgren
et al. (2016) on the extent of permafrost during the Last Glacial
Maximum suggest that permafrost had previously affected these
areas as well. The two remaining sediment cores currently and
previously unaffected by permafrost are Co1309 (Lake Ladoga) and
PER3 (Lake Pernatoye). In addition, five sediment cores from our
data collection originate from thermokarst lakes (Supplementary
Table S1) that form as a direct result of permafrost thawing (Olefeldt
et al., 2016).

Based on the mean OCAR, three sediment cores out of these five
thermokarst lake cores (LS-9—Lake Dolgoe Ozero, PG1984—Lake
Sysy-Kyuele, and PG2023—Lake Kyuntyunda) accumulate on
average less than 60 g·m−2·yr−1 (19.85, 9.92, and 24.78 g·m−2·yr−1,
respectively). The other two cores (PG1746—Lake Temje and
PG2201—Lake Malaya Chabyda) show significantly higher values
(62.31 and 129.58 g·m−2·yr−1, respectively). Except for PG 1984
(min/max values: 2.98–18.75 g·m−2·yr−1), the remaining cores are

prone to strong fluctuations in OCAR in the minimum to maximum
range:

1. PG2201: 20.64–275.04 g·m−2·yr−1
2. PG1746: 13.26–89.3 g·m−2·yr−1
3. LS-9: 8.3–52.74 g·m−2·yr−1
4. PG 2023: 0.43–57.35 g·m−2·yr−1

Compared to a global collection of OCAR values for lakes by
Mendonça et al. (2017) (Figure 8), these fluctuation are still
within the range of previously observed values. However, they do
not indicate that the permafrost degradation process would
directly contribute to a high OCAR in these lake types. The
only exception being PG2201 (Lake Malaya Chabyda), where
Hughes-Allen et al. (2021) associate the higher burial rates with
increased bioproductivity in the lake. However, they also
acknowledge that nutrient availability from the catchment,
compact lake morphology, higher rates of sedimentation, and
less exposure to warmer and oxygen-rich shallow waters further
contributed to the higher OCAR values (Hughes-Allen et al.,
2021). In the remaining cases, increased microbial activity may
contribute to greater emission of greenhouse gases, resulting in
less accumulation of carbon in the sediment (Serikova et al., 2019;
in ’t Zandt et al., 2020).

Lakes indirectly affected by permafrost, i.e., non-thermokarst
lakes with permafrost in the catchment area, as well as lakes
outside of permafrost zones show a similarly diverse picture. The
uniqueness of a lake, given by its catchment area, lake volume and
shape, its origin, and inflow parameters, can influence the carbon
accumulation within the lake. Supplementary Table S1

FIGURE 8
Comparison ofmeanOCAR values between lakes fromour study (blue dots, left) and global lake compilation byMendonça et al. (2017) (orange dots,
right) with associated boxplots.
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summarizes the standard parameter of the lakes in our collection
we were able to collect. However, when we looked at the
correlation between OCAR and these lake-specific attributes,
we found no correlation between them (Supplementary Figure
S3). However, this shows the importance of limnological studies,
as examining a wide variety of lakes would give us a better
understanding of the accumulation process in Arctic lakes, since
we cannot derive holistic statements from a limited number of
lakes.

In this study, we primarily focused on the climatic impacts on
lake sediment, which resulted in our assumptions partially
overlooking the direct influence of microbial activity and
oxygen levels in the water column. The limited availability of
both current and historical data contributed to this situation. But
given previous experiment (e.g., Li et al., 2017; Velthuis et al.,
2018), we still assume that a temperature change has a direct
influence on the microbial community. The effects of occurrence
and interaction between different primary producers can
contribute to a lead-lag relationship and needs further
investigation when considering longer time scales. In
meromictic lakes, the presence of low oxygen levels can create
anaerobic/anoxic conditions affecting the in-lake carbon cycle,
which in turn can skew the amount of deposited carbon.
Obtaining additional sedimentological data on redox
conditions is crucial for this analysis, but as many of the
original studies did not include such data, we have to assume
that oxygen levels in our lakes have changed on both short- and
long-term basis. This means that future studies on individual
lakes have the opportunity to link OCAR to redox conditions,
providing further insight into the relationship between OCAR
and microbial activity.

4.3 Method selection for predicting dry bulk
density

Understanding the relationship between TOC and DBD has
been essential in predicting DBD values. While we observed a
logarithmic trend between values in our data collection
(Supplementary Figure S4), the existing literature agreed that a
log-linear model would best describe their relationship
(Menounos, 1997; Dean and Gorham, 1998; Campbell et al.,
2000; Avnimelech et al., 2001; Lan et al., 2015). However, we
faced the challenge of high bulk density values occurring at low
organic carbon values.

While low TOC values are common in northern lakes (Sobek
et al., 2014), our log-linear model produced unrealistic DBD
results, which exceeded physically possible values
(Supplementary Figure S4). We found the highest DBD
values in the deeper part of sediment core PG1341 at a depth
of 1,461–1,883 cm, where compaction also most likely had a
major impact on the material. We found that extrapolating
given empirical equations from the literature to lower organic
carbon values would result in a similar outcome
(Supplementary Figure S4). To enable a more realistic
representation, we assume that future models will have to
take these special cases with different degrees of sediment
compaction into account. We expect that a better

understanding of the occurring compaction in sediment
cores and its influence on the core composition will improve
DBD predictions.

Due to the overestimation of dry bulk density for low TOC
values of samples from deeper parts of sediment cores, and the
apparent clustering of predicted values between 0 and 100 mg/g
TOC, we considered several alternative prediction method to
our log-linear model. As we evaluated these methods based on
best-fit prediction metrics such as the R2 score, we found that
the supposedly best performing methods also showed signs of
overfitting. Overfitting means that a model shows a strong bias
towards seen data allowing only little room for variability for
interpreting unseen data (Bilbao and Bilbao, 2017; Ying, 2019).
Despite reducing the potential bias through cross validation, we
found that the small size of available data mainly contributed to
the overfitting in three cases (Random Forest Regression,
Gradient Boosting, and Extreme Gradient Boosting). An
increase in sample size could alleviate overfitting, as
hyperparameter tuning produces more reliable results (Ying,
2019). However, in our case, having only 211 data points (80%
of the total amount of training data points) available for
hyperparameter tuning resulted in no visible improvements.
We still assume that Random Forest Regression and Gradient
Boosting methods have the potential to outperform log-linear
models if more data is available. Other methods we tested may
not be suitable for the prediction of water content and dry bulk
density.

5 Conclusion

The purpose of the study was to determine whether there is
connection between carbon accumulation in northern lakes and
temperature changes that have occurred over the past 21,000 years.
We found a slightly positive relationship between OCAR and
temperature among our data collection, for which we generated
more data using our log-linear model that superseded other data
science techniques. While our dataset was diverse in terms of
location, age of the sediment, permafrost areas, lake parameters,
and catchment vegetation, we generally saw the highest OCAR
values occurring during Bølling Allerød (14,300 to 12,700 years
BP—38.07 g·m−2·yr−1) and the Early Holocene (11,700–8,200 years
BP—40.68 g·m−2·yr−1). This could indicate that rapid warming
events lead to high levels of carbon accumulation in lakes. As
warming progresses, this effect appears to change with lower
accumulation rates, presumably due to increased microbial
activity triggering carbon dioxide and methane outgassing. While
we achieved promising results with data from 28 sediment cores,
more data from northern lakes would help us to build a greater level
of confidence and accuracy on the matter.
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