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This study aims to assess the projected precipitation and temperature changes at
the coastal karstic aquifer of Salento (Apulia, Southern Italy) under the
Representative Concentration Pathway RCP4.5. For this purpose, an ensemble
of twelve Regional Climate Models (RCMs) driven by several General Circulation
Models (GCMs) were collected. Eight bias-correction (BC) methods were applied
at daily time steps, and their results were assessed on monthly and annual time
steps, using daily records from 19 and 11 precipitation and temperature (minimum
and maximum) stations, respectively, for the period 1960–2005. Missing data in
the observed dataset were filled-in applying the best performing techniques out of
the 5 that were employed and tested. The Linear Scaling and the Power
Transformation were found to be the most effective methods for precipitation
BC at the case study, while all methods performed equally well in correcting air
temperature datasets. Results of future climate projections show a decrease in
precipitation of about 6% and an increase in temperature of 2°C until the end of
this century, compared to the historical period (1971–2005). This study forms the
first comprehensive attempt to test the scientific literature’s most widely used
bias-correction methods over the study area. The case studymay be considered a
benchmark for circum-Mediterranean regions because of its high
geomorphological and structural complexity, regional size, surface water
scarcity, and significant water withdrawals for human activities.
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1 Introduction

Climate change impact studies on water resources systems need to be representative of
the local climatic conditions. General Circulation Models (GCMs) are often affected by
uncertainty predominantly due to low resolutions (approximately 100–250 Km) that
inevitably lack regional details (Randall et al., 2007). Several downscaling methods have
been developed to transform the large-scale information of GCMs to finer scales
(25–50 Km), resulting in Regional Climate Models (RCMs) (Teutschbein and Seibert,
2012; Maraun, 2016). Mishra et al. (2023) demonstrated that increasing the horizontal
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resolution of RCMs (the high-resolution- 25 km-versus low-
resolution- 50 km-) can improve the seasonal mean precipitation,
temperature, circulation, frequency distribution of daily
precipitation, and precipitation extremes over the complex region
of India, although bias still occurs depending on the regions and the
aspects investigated. Several authors discussed on the RCMs’
limitations (Christensen et al., 1998; Varis et al., 2004; Déqué,
2007; Teutschbein and Seibert, 2012), in terms of inaccurate
seasonal precipitation patterns, overestimate wet days, or
incorrectly yield extreme temperatures. For this reason, several
bias-correction (BC) methods were developed to overcome the
significant bias in RCMs, adapting simulated data to local
observations in terms of mean and variance (scaling methods) or
distribution probabilities. Lyra and Loukas (2023) implemented five
BC methods to correct monthly precipitation and temperature data
from an ensemble of GCM/RCM in the coastal agricultural Almyros
Basin (Greece), demonstrating how bias-corrected simulated data
still exhibits deviations from observations. They recommended the
use of an integrated approach between BC methods and multi-
model ensemble to define the best combination for hydrogeological
modelling. Similar considerations were achieved by Tefera et al.
(2023) in the Jemma sub-basin of the Upper Blue Nile Basin, which
showed that BC methods affect the signal of climate change and
extreme rainfall events with variable performance depending on
the adopted technique. Recent studies utilise machine learning
algorithms to minimise bias in RCMs simulations. Singh et al.
(2023) used Autoencoder-Decoder and Residual Neural Network
to successfully achieve bias-corrected simulated data of
precipitation in India from CORDEX-SA domain and
additionally to rescale the output to a finer resolution. Seo and
Ahn (2023) compared the performance of empirical quantile
mapping and the Long Short-Term Memory machine learning
model for summertime daily rainfall simulation of Weather
Research and Forecasting analysis in South Korea, concluding
that despite quantile mapping performed better in terms of
summertime mean and monthly rainfall, the machine learning
algorithm reflects better the interannual precipitation variability.
Therefore, using BC methods may introduce uncertainty in
climate risk assessments due to the potential for diverse
algorithms to yield varying impact results (Iizumi et al., 2017).
Moreover, further uncertainty may be attributed to the accuracy
of observation data (Kim et al., 2015) and the historical period
used as a reference (Chen et al., 2015; Gampe et al., 2019; Li et al.,
2010). The incompleteness of precipitation and temperature data
is a frequent issue that can affect the quality and accuracy of
subsequent analyses (Sattari et al., 2017; Armanuos et al., 2020).
In the literature, missing data in time series may be managed on
the basis of the two different categories in which they can be
distinguished: very limited missing values and extensive or
consecutive gaps (Aieb et al., 2019). For simplicity, very
limited missing values can be excluded from the dataset (Song
et al., 2008). However, this procedure could introduce an
additional bias in successive analyses. For the latter category,
many imputed missing value methods are available (Li et al.,
2007), the effectiveness of which can vary depending on various
factors, i.e., the percentage of missing values, the mechanism of
data loss, the considered variables, and the respective
correlations.

Through uncertainty analysis, Senatore et al. (2022)
demonstrated in a catchment located in Southern Italy that the
primary source of uncertainty is introduced by GCMs, followed by
RCMs and applied BC methods. Noto et al. (2023b) argued that the
intricate sequence of modelling procedures, i.e., emission scenarios,
climate models, downscaling and/or bias-correction techniques, and
hydrological models, involves a certain level of uncertainty that
spreads throughout the entire process, resulting in divergent and
occasionally unexpected outcomes. Thus, an ensemble of RCM
simulations and field observation data may be considered
together with different bias-correction methods to simultaneously
evaluate the uncertainties of each simulated dataset and the
performance of every technique (Fantini et al., 2018). This
recommendation is particularly relevant when the hydrological
variables are used to investigate future impacts in areas highly
vulnerable to climate change, such as the Mediterranean basin
(Giorgi and Lionello, 2008; IPCC, 2014).

The impacts of climate change in regions surrounding the
Mediterranean are identified as the most critical (Noto et al.,
2023a) since water shortage is a crucial obstacle. Generally, the
coastal aquifers facing these areas are typically the ones where
groundwater resources are needed for their economic
sustainment, as they are by their nature geologically, structurally,
or climatically characterised by a lack of water resources. The
worrying trend of rising temperatures, increasing frequency and
severity of drought periods, and decreasing amounts of annual
rainfall will compromise the already critical condition of
groundwater reserves with consequent socio-economic
implications (Linares et al., 2020). From one perspective, these
expected trends may affect groundwater availability. Sordo-Ward
et al. (2019) pointed out that current water shortage problems are
expected to exacerbate in the future in many southern European
basins in Portugal, Spain, France, Switzerland, Italy, Greece,
Macedonia, Bulgaria, and Turkey. By simulating the application
of adaptation policies for water resources management for
irrigation, they showed a potential improvement in facing the
effects of long-term climate change. Pardo-Iguzquiza et al. (2019)
investigated the effect of climate change on the karst aquifer
recharge in the Sierra de las Nieves (southern Spain) for the
period 2071–2,100 based on the RCP8.5 scenario, estimating a
potential reduction in average recharge of around 53%.

Moreover, the economic sector may witness an increase in drought
and heat stress, altering food provision and energy production and
affecting human health. For example, Abd-Elmabod et al. (2020)
evaluated the future impacts of climate change under the A1B
scenario (i.e., a balanced scenario based on the assumption of
similar improvement rates for all energy supply and end-use
technologies) on land capability and yield reduction of wheat and
sunflowers in Andalucia (Southern Spain) demonstrated a decrease in
sunflowers production due to their sensitivity to projected increasing
temperature. Lange (2019) suggested that the water, climate,
development and political stability challenges of climate change in
the MENA region (the Middle East, including the Eastern
Mediterranean region and North Africa) require an integrated
approach through the creation of a regional cooperation and a joint
research and stakeholder community to plan adaptation andmitigation
strategies (e.g., increased resource use efficiency, integrated technology
assessments for power generation, and increased reliance on renewable/

Frontiers in Earth Science frontiersin.org02

Alfio et al. 10.3389/feart.2023.1231296

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1231296


solar technologies) to address water and energy scarcity and ensure a
secure and sustainable future for Mediterranean societies.

In this context, Apulia (Southern Italy) can be considered a
benchmark of such issues because it is a region with a geographical
position and geomorphological characteristics prone to hydro-
climatic hazards accelerated by prolonged drought periods and
increasing temperatures. At the same time, the region lacks
surface water bodies to cover domestic, agricultural, industrial,
and environmental needs. Therefore, water demands are satisfied
solely by groundwater abstracted from the regional karstic aquifer
through numerous production wells. Groundwater overexploitation
leads to aquifer depletion and dramatic quality deterioration due to
seawater intrusion, accelerated by climate change, overall creating
alarming conditions for water security. Despite the criticality of the
condition, few studies are elaborated on assessing future climate
scenarios and their relative impacts on the region. Kapur et al. (2007)
predicted an increasing trend in temperature and
evapotranspiration and a non-significant change in annual
precipitation until 2,100, with consequent implications on
agricultural productivity (i.e., increasing crop water demand,
higher use of pesticides, reduced volume in the water supply
system). The projected variations, also confirmed by D’Oria et al.
(2018), should negatively impact water resources, especially in a
complex semi-arid area of high-water demand that is covered by a
highly vulnerable and already deteriorated aquifer system, where a
deficient water budget has been established. High vulnerability,
coupled with the alarming results of the reported climate
parameters’ evolution and their consequent impacts on the
region, calls for in-depth investigation at a local scale to
substantiate and detail climate change projections that will drive
awareness raise and support planning of mitigation and adaptation
measures. To discuss the future hydrological impacts of climate
change on a local scale, the Salento aquifer, a regional coastal karstic
system located in the southern part of the Apulia region, was
selected. Due to its vulnerability which is driven by its
hydroclimatic conditions and hydrogeological setting, and the
criticality of water security to the socio-economic welfare of the
region, Salento may be considered a reference case study for the
Mediterranean zone.

We tested five methodologies to infill missing data in the
observations’ dataset, evaluating their performance to select the
most efficient for precipitation and temperature variables.
Secondly, projected daily precipitation and minimum and
maximum temperature data were selected from an ensemble of
twelve RCMs belonging to the EURO-CORDEX domain (Jacob
et al., 2014). Using the filled daily meteorological observations
(i.e., precipitation and temperature), eight BC methods were
implemented to improve the RCMs’ simulations in terms of local
climate variability representation. Although the BC methodologies
adopted are now well established in the scientific literature, this
study represents the first comprehensive attempt to examine the
most appropriate and widely implemented techniques towards
compiling a well-founded selection strategy. Two different
approaches may be adopted to analyse the performance of BC
methods in future climate scenarios. In climatology, the projected
bias-corrected data over a future period are usually compared to the
original incorrect simulations as the main focus is to investigate how
BC algorithms influence historical and projected climate data (Dieng

et al., 2022); in contrast, from a hydrogeological impact assessment
point of view, these are typically compared with historical
observations (Pfeifer et al., 2015; Arampatzis et al., 2018; Sperna
Weiland et al., 2021). In this study, the corresponding bias-corrected
results were compared with observed data on a monthly and annual
step for the historical period (1971–2005) to assess RCM and BC
performance. After selecting two-time windows for near to medium
(2031–2060) and distant (2071–2,100) future, trend analyses were
performed comparing the projected with the corresponding
precipitation and temperature data of 1971–2005 on monthly
and annual time steps. Finally, the potential impacts of
precipitation and temperature projected changes over the study
area were discussed in a qualitative aspect, as quantified analysis
through hydrogeological modelling is out of the scope of this
investigation.

This work aims to develop an integrated approach to investigate
the potential implications of climate change on the hydrological
cycle of coastal aquifers with a higher degree of reliability through a
comprehensive assessment of climate projections and BC
techniques. Moreover, it forms a prelude in estimating future
meteorological time series, constituting the hydrological input
data for subsequent analysis. Focusing on assessments based on
local scale, this approach is proposed to be valid and of interest for
catchments located in the Mediterranean basin. This is essential for
developing an understanding of the system’s evolution, increasing
institutional and societal awareness of the risks to which water
resources are exposed, and designing feasible solutions that enhance
resilience and safeguard their security.

Section 2 of the paper is devoted to a general description of the
study area, the observational datasets used, and the methodologies
adopted; Section 3 presents the results of infilling techniques and BC
methods, whilst Section 4 summarises the main findings, looking at
their potential effects on the water resource management of the
Salento aquifer system.

2 Materials and methods

2.1 Case study area

Salento study area is part of the Apulia region, a peninsula
located in southeastern Italy. It covers ca 2,760 km2 and extends
from the Ionian to the Adriatic Sea (Figure 1). This domain is almost
flat, with an average elevation of 100 m AMSL; a few gentle hills rise
in the southern part, coinciding with the main recharge area.
Ephemeral and poorly incised streams cross the area since they
are mainly dry, and surface runoff is mainly occurring in response to
intense precipitation events. The geological setting comprises multi-
layered litho-stratigraphic units of Cretaceous age (De Filippis et al.,
2019), dislocated in Horst and Graben structures. The deep aquifer,
whose extension coincides with Salento, lays on the carbonate
basement, with groundwater principally flowing in unconfined
conditions and freshwater floating above salt water. The
dominant hydraulic behaviour of the deep aquifer in response to
recharge processes is the baseflow, which confers great inertia and
high storage capacity (Balacco et al., 2022b). Mediterranean climate
characterises the Salento area with mild, wet winters and hot, dry
summers. Mean annual precipitation is about 600 mm (Portoghese
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et al., 2005), mostly occurring during the autumn-winter season.
Several moderate to severe drought events have affected Salento in
the last 70 years (Alfio et al., 2020). Agriculture and tourism are the
main economic activity sectors in Salento that are both groundwater
dependent, in absence of sufficient surface water resources.
Consequently, due to the vulnerability of the karstic system to
climate change, the major economic activities of the region are
also climate dependent.

2.2 Historical data and missing values filling
in methods

Daily historical climate observations were provided by the Civil
Protection of theApulia Government (www.protezionecivile.puglia.it) for
22 precipitation and 19 temperature stations from 1960 to 2005 (except
SAL_MS6 and SAL_MS14, which date from 1971 to 2005). From this
database, 19 precipitation (Pr) and 11 temperature (maximum–Tmax-,
and minimum–Tmin-) stations were selected and used due to their
consistent time series with less than 7%missing values. Figure 1 illustrates
the spatial distribution of the selected meteorological stations over the
study area, and the main characteristics detailing missing value
percentages are reported in the Supplementary Material.

This study implements five imputation methods for missing
values filling in daily Pr, Tmax, and Tmin datasets, evaluating their
performances using Pearson’s coefficient (R), Nash-Sutcliffe
Efficiency (NSE), and Similarity Index (SI). The adopted methods
are briefly described in the following paragraphs. Hereafter, target
and reference stations refer to the meteorological station with
missing values and those selected to estimate them, respectively.

Mean Substitution method (MS) is the most straightforward
imputation method. It replaces the daily missing value at the target

station with the corresponding mean of the values recorded in the
selected reference stations. Aissia et al. (2017) suggested that the MS
technique applies when missing values are less than 10%.

Thiessen polygons (TH) is one of the most widely applied
methods in hydrology, assigning to each meteorological station a
weight factor proportionate to the area for which it is representative.
It assumes that meteorological parameters are constant in each
Thiessen polygon and equal to the figure recorded in the station. In
this case, missing values correspond to the values from the polygon
of the reference station in which the target station occurred.

In the Inverse Distance Weighting (IDW) method, missing
values at the target station correspond to a weighted average of
the data at the reference stations. The weighting parameters depend
on the spatial distances from the target station. This method is
appropriate for highly correlated data.

Multiple Imputation by Chained Equations (MICE) is an advanced
method which accounts for multiple sets of plausible imputed values
through a prediction model built on already available data in the
reference stations (Zhang, 2016). This procedure relies on three
main steps (Buuren and Groothuis-Oudshoorn, 2011), starting by
substituting missing data at the target station with a set of imputed
values drawn from a distribution fitted to the reference time series; the
linear regression parameters of each set of the imputed dataset are then
estimated and pooled following Rubin (1987), resulting in the final
linear regression parameters with which missing values are imputed.
Two MICE approaches were employed in this study, namely, the
Predictive Mean Matching (MICE_pmm, Aguilera et al., 2020) and
the Random Forest (MICE_rf, Jing et al., 2022).

The iterative procedure for selecting the reference stations and
infilling missing values was performed in R software. A recording
period without missing values for all stations (1971–1976 for
precipitation and 2000–2002 for temperature) was identified since the

FIGURE 1
Study area and spatial distribution of precipitation and temperature stations.
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analyses can be performed on a subset of the datasetwithoutmissing data.
Successively, a rate of 10% of data was randomly assumed to be missing
since the highest missing value percentage found in the dataset was about
7%. Missing data distribution in each target station was then filled by
selecting a set of reference stations close to those affected by missing
values according to climatic and physical behaviour. In fact, being a
peninsula facing the Adriatic Sea on one side and the Ionian Sea on the
other, the weather conditions are not influenced solely by altitude, as is
generally the case inland, but also by other factors such as proximity to the
sea. The temperatures in Salento are significantly influenced by the
mitigating presence of the Ionian andAdriatic Seas, whose winds blowing
on both sides establish distinct weather conditions. Consequently, the
selection of reference stations for each target station was performed
setting four climatic and physical criteria to be met: (i) a Pearson’s
correlation coefficient R greater than 0.70 between the target and
reference stations’ recordings, (ii) a distance of less than 20 Km
between them, (iii) an altitude difference of less than 80m, and (iv)
exposure to the same sea (Adriatic or Ionian). As a result, the algorithm
selects the nearest reference station that shares a comparable elevation
with the target station, is exposed to the same sea, and exhibits a strong
correlation with the target. An algorithm of 1,000 iterations was then
applied for each method setting as convergence criterion a difference of
less than 0.01 (mm for precipitation and °C for temperature data). Finally,
the metrics (R, NSE, and SI) were calculated between observations and
estimated data over the specified time interval to check the performance
and determine the optimal data-filling approach.

2.3 Climate model data and bias-correction
methods

In this study, simulated precipitation, minimum and maximum
temperature raw data derived from the EURO-CORDEX initiative
were used (Jacob et al., 2014), in which several GCMs, resulted from

the CMIP5 project (Coupled Model Intercomparison Phase 5;
Taylor et al., 2012), were dynamically downscaled and provided
with a resolution of 0.11°. An ensemble of 12 RCMs was analysed to
account for the uncertainty of the climate model projections. The
selected RCMs have been widely applied in climate change impact
assessment studies in the Mediterranean region (D’Oria et al., 2018;
Senatore et al., 2022; Peres et al., 2020). This selection represents a
sufficiently varied range of RCM and GCM combinations, as it
encompasses 7 RCMs driven by 4 distinct GCMs. Only the results of
the RCP4.5 intermediate scenario for 1960–2005 and
2006–2,100 were considered, as it refers to a stabilisation
scenario assuming the invocation of climate policies to achieve
the goal of limiting emissions and radiative forcing (Thomson
et al., 2011). The more plausible outcomes are reflected by
RCP4.5 considering the current (and, to a certain degree,
pledged) policies (Hausfather and Peters, 2020). In contrast,
RCP8.5 is a high emissions scenario, representative of the wide
range of non-climate policy scenarios (van Vuuren et al., 2011).
Table 1 lists the model used, renamed with an acronym comprising
two letters referring to the GCM name and two to the RCM name.

Eight precipitation and seven temperature BC methods were
applied to the selected RCMs data using historical daily climate
observations from 1960 to 2005 (Table 2). The simulated values
corresponding to the observed data positions were extracted from
the RCM grid using the nearest-neighbour interpolation technique
(Matiu and Hanzer, 2022). The results were analysed on a monthly
and annual basis and compared to the corresponding precipitation
and temperature data of 1960–2005. Taylor diagrams (Taylor, 2001)
were used to analyse and depict the performance of each BCmethod
since they incorporate correlation coefficient, centred root mean
square difference and standard deviation into a single graph. BC
methods were applied using the well-developed and tested
climate4R (Iturbide et al., 2019) and downscaleR (Marsh et al.,
2018) libraries for R software. The correction factor for daily data in
all methods is based on a sliding window (Smitha et al., 2018),
referring to 31 days. The BC methods briefly reported below are
generally distinguished into (i) scaling and (ii) distribution
adjustment techniques. Scaling methods include the Linear
Scaling method (LS), the Local Intensity scaling of precipitation
(LOCI), the Power Transformation of Precipitation (PTR), and the
Variance scaling of temperature (VAR). In contrast, Empirical

TABLE 1 List and acronyms of used GCM-RCM combinations. 1R Colin et al.,
2010, Herrmann et al., 2011; 2R Rockel et al., 2008; 3R Christensen et al., 1998; 4R

van Meijgaard et al., 2008; 5R Samuelsson et al., 2011, Kupiainen et al., 2011; 6R

Jacob et al., 2012; 7R Skamarock et al., 2008; 1G Voldoire et al., 2013; 2G

Hazeleger et al., 2010; 3G Giorgetta et al., 2013; 4G Dufresne et al., 2013.

RCM GCM Model acronym

ALADIN531R CNRM-CERFACS-CNRM-CM51G AL_CN

CCLM4-8–172R

CNRM-CERFACS-CNRM-CM5 CC_CN

ICHEC-EC-EARTH2G CC_IC

MPI-M-MPI-ESM-LR3G CC_MP

HIRHAM53R ICHEC-EC-EARTH HI_IC

RACMO224R ICHEC-EC-EARTH RA_IC

RCA45R

CNRM-CERFACS-CNRM-CM5 RC_CN

ICHEC-EC-EARTH RC_IC

IPSL-IPSL-CM5A-MR4G RC_IP

MPI-M-MPI-ESM-LR RC_MP

REMO20096R MPI-M-MPI-ESM-LR RE_MP

WRF331F7R IPSL-IPSL-CM5A-MR WF_IP

TABLE 2 Lists and acronyms of the implemented BC methods.

BC methods Method acronym Variables

Empirical Quantile Mapping EQM Pr, Tmax, Tmin

Linear Scaling LS Pr, Tmax, Tmin

Parametric Quantile Mapping PQM Pr, Tmax, Tmin

Generalised Quantile Mapping GPQM Pr, Tmax, Tmin

Local intensity scaling LOCI Pr

Power transformation of precipitation PTR Pr

Detrended quantile matching DQM Pr, Tmax, Tmin

Quantile delta mapping QDM Pr, Tmax, Tmin

Variance scaling of temperature VAR Tmax, Tmin
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Quantile Mapping (EQM), Parametric Quantile Mapping (PQM),
Generalised Quantile Mapping (GPQM), Detrended Quantile
Matching (DQM), and Quantile Delta Mapping (QDM) belong
to the second category.

The LS method consists of scaling simulated data with a
multiplicative or additive factor calculated as the difference/ratio
between the observed and the simulated mean in the reference
period (Lender and Buishand, 2007). The multiplicative factor is
typically used with variables with a lower bound (e.g., precipitation
or wind speed), while the additive is preferably applicable to
unbounded variables (e.g., temperature).

The LOCI technique (Schmidli et al., 2006) is an improvement
of the LS approach because it involves the adjustment of the mean as
well as both wet day frequencies and intensities of rainfall time
series, by setting a common precipitation threshold for all
considered stations (Pthres= 0.20 mm for the Salento case study)
such that the number of simulated days exceeding this threshold
matches the number of observed days.

While LS and LOCI account for the bias in the mean
precipitation, the PTR and the VAR approach adjust the variance
and the mean of raw RCM data. The PTR introduced by Leander
and Buishand (2007) uses an exponential function permitting
changes in the mean and the standard deviation of the dataset. It
is designed only for precipitation data due to the power function
applied. The VAR is the complementary approach for temperature
data, developed to correct the mean and variance of normally
distributed variables (Chen et al., 2011a; Chen et al., 2011b).

In contrast, the quantile mapping BC methods commonly
correct bias between simulated and observed data, equating
cumulative distribution functions (CDFs) of both datasets. The
EQM method fits the CDF of simulated data to that of the
observations, effectively correcting bias in the mean, standard
deviation, and quantiles. This technique also adjusts the
overestimation of wet or dry day frequency (defined as days with
precipitation above or below Pthres in the observation dataset)
following Themeßl et al. (2012) and Wilcke et al. (2013).

The PQM algorithm uses a theoretical distribution calibrated
over the training period. Usually, the Gamma distribution applies to
precipitation (Piani et al., 2009), while the Gaussian distribution is
appropriate for temperature data (Collados-Lara et al., 2018). As for
EQM, the overestimation of wet or dry day frequency is assumed
considering the above-cited Pthres.

Gutjahr and Heinemann (2013) proposed the GPQM technique,
which uses two theoretical distributions, i.e., the Gamma
distribution to values under the threshold given by the 95th
percentile and a general Pareto distribution to values above the
threshold. This threshold is the 95th percentile of the observed and
predicted wet-day distribution. For temperature data, the general
Pareto distribution relates to values below the fifth percentile and the
Normal distribution to the rest of the values. The wet-day frequency
adjustment is also considered. This method aimed to adjust the
extreme and non-extreme values separately.

The QDM method (Cannon et al., 2015) preserves the change
signal in the simulated quantiles of variables, considering a bias-
corrected value term obtained from the observations dataset and the
relative change term (delta) obtained from the simulated data.
Therefore, model projections are firstly detrended per quantile,
and quantile mapping is applied to correct systematic

distributional biases compared to the observations. Secondly, the
removed projected trends are restored to the bias-corrected
quantiles.

The DQM algorithm is similar to the previous method. It applies
the EQM to the detrended series and then reapplies the mean trend
to the bias-adjusted series. It preserves the long-term mean signal in
a climate change context. More details and differences between
QDM and DQM are explicitly provided by Cannon et al. (2015).

Choosing the most effective BC method is challenging because
different statistical metrics may lead to inconsistent results (Gado
et al., 2022). In this framework, the compromise programming
proposed by Zeleny (1973) was applied to determine the most
effective BC methods and evaluate the future scenario. It consists
of measuring the distance of each method from the ideal value of the
selected metrics and opting for the minimum one as the best
method. The distance Lcp is estimated as follows:

Lcp � ∑J
j�1

f j − f *j
∣∣∣∣∣ ∣∣∣∣∣p⎡⎢⎢⎣ ⎤⎥⎥⎦

1
p

where J is the number of the metrics used, fj is the normalised value
of metric j obtained for a given method and f*

j is the ideal value of
the metric; p represents the maximal deviation and is equal to 1 for
linear and 2 for Euclidean distance measure. In this study, a linear
scale is used. The adopted metrics, calculated on a monthly scale, are
Root Mean Square error (RMSE), Spearman correlation coefficient
(RHO), Nash-Sutcliffe Efficiency (NSE), and Percent bias error
(BIAS).

3 Results

3.1 Missing values generation

Five methods for imputed missing values in the hydrological
time series of the Salento case study were evaluated in terms of the
number of iterations for reaching the threshold value set in two
successive steps of filling, and the main metrics (i.e., R, NSE, and SI).
A preliminary analysis of the precipitation and temperature datasets
preceded to calculate the percentage of missing values and
investigate the presence of a potential trend. The rate of missing
values in the dataset is very low, with a maximum value of 7% for
precipitation and 5% for temperature. No trend was detected on an
annual and monthly scale for both climate variables. Figure 2
presents the resulting performance of each missing value-filling
methodology. The methodologies were applied on a daily scale in
the reference period and evaluated monthly. In the case of
precipitation, which is a random signal, the estimated daily
values differed from the observed ones, particularly on days with
higher precipitation. However, when examining the data on
monthly aggregates, the results were accurate, which is further
confirmed by the robust metrics acquired. Supplementary Figure
S3 in Supplementary Material illustrates the monthly comparison
between the observed and estimated amount of precipitation, as well
as the maximum and minimum temperatures, for each of the data
interpolation methods used during the reference period for Lecce
meteorological station. It is worth noting that all methods perform
effectively in the task of filling in missing data, as indicated by the
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significant R and SI coefficients calculated, along with the NSE
coefficients. The number of iterations for reaching the convergence
criterion of 0.01 mm for precipitation and 0.01°C for temperature is
also minimal, especially for temperature. In the case of precipitation,
some methods need more steps to reach convergence (Thiessen and
IDW). Based on a combined evaluation of the metrics and the
number of iterations to reach convergence, the MICE_pmm and the
MS methods were selected for filling-in missing data in the
precipitation and temperature daily time series, respectively.

3.2 Outputs in BC methods

In this study, an ensemble of 12 RCMs was analysed, and several
BC methods were applied to account for uncertainty due to climate
projections. Since the Salento aquifer has a great storage capacity
and exhibits a slow response to precipitation and temperature
variability (Balacco et al., 2022b), we focused on the monthly and
annual assessment of the results. Furthermore, although the analyses
were carried out for each station, the results reported refer to the
ensemble’s average values for characterising the climate trend on a
regional dimension.

AL_CN and WF_IP were excluded from precipitation analyses
because their performance was significantly inconsistent compared
to the observations, even after applying the BC methods. Although
the seasonality is largely reproduced, the uncorrected monthly
average precipitation of the other selected RCMs significantly
deviates from the observed ones. In fact, raw data tend to
overestimate spring-summer depths and underestimate autumn-
winter ones.

Figure 3 shows the Taylor diagrams compiled by raw and bias-
corrected RCM precipitation from 1971 to 2005 on a monthly
interval. They are normalised to the standard deviation of the
observed data and expressed as mm/month. Thus, bias-corrected
RCMs showing high correlation coefficients and standard deviations
closer to one represent datasets more similar to the observed
patterns. Correlation coefficients of raw RCM datasets range
between 0.15 (RC_IP) and 0.29 (CC_CN and RC_CN). After bias
correction, they improve among each RCM and BC method,
especially for LS, EQM, PQM, and PTR. The standard deviation
varies between 0.58 mm/month (RC_IP) and 1.05 mm/month (RC_
IC) for raw data, while LS, EQM, LOCI, and PTR display values
closer to one after the bias correction of almost all RCMs. Taylor
diagrams of maximum and minimum temperature are included in
the Supplementary Material (Supplementary Figure S1, S2,
respectively). They clearly demonstrate that all raw RCMs
present high values of correlation coefficients, ranging between
0.94 and 0.96 and standard deviations varying from 0.80°C/
month to 1.13°C/month. Applied BC methods improve the
standard deviation more than the correlation coefficient. No
significant difference in the performance between RCMs and BC
methods was identified.

The calculated metrics for monthly precipitation and
temperature data, i.e., RMSE, RHO, NSE, and BIAS, were
reported in Supplementary Material, for brevity (Table 2–4).
Regarding precipitation, results differ among each RCM and BC
method. It is noted that LS, EQM, LOCI, and PTR generally show
better coefficients compared to the other more sophisticated
techniques, especially in terms of percent bias error. In contrast,
temperature outcomes confirm that all methods perform well in

FIGURE 2
Number of iteration boxplots and final R, NSE, and SI coefficients for each filling method referring, respectively, to Pr (top side), Tmax (middle side)
and Tmin (bottom side).
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adjusting raw simulated data, and no significant deviations between
RCMs can be detected.

Figure 4 highlights the monthly precipitation mean values of raw
and bias-corrected simulated data for 1971–2005. Raw and bias-
corrected RCM simulations were compared with the historical
observations (dashed line). The monthly precipitation averages of raw
RCM data demonstrate that, in general, RCMs underestimate monthly
precipitation, especially during autumn months, when the
underestimation is considerable. After BC, the monthly bias-corrected

precipitation of each ensemble member is comparable with that of the
observation data, with the best fit presented for LS, EQM, and PTR
techniques. GPQM, DQM, and QDM present more significant
variability than the observed trend, with values usually overestimating
monthly precipitation, especially during the wet period. Conversely to
precipitation results, all 12 RCMs were considered for the temperature
dataset. The monthly averages of the bias-corrected minimum and
maximum temperature of each RCM perform well compared to the
observed data for all BC methods (Figure 5). Raw RCM matched the

FIGURE 3
Taylor diagrams of monthly raw and bias-corrected RCMs precipitation data for the period 1971–2005.
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observed data well (except for WF_IP), capturing at least the pattern;
after the BC, bias was considerably reduced.

Compromise programming (CP) results were used to select the
most suitable bias-corrected data for assessing projected
precipitation and temperature trends. Figure 6 highlights the
results of CP for precipitation in terms of mean values of Lcp.
The most efficient methods are LS, PTR, and LOCI. Nevertheless,
LOCI was excluded from the future trend analysis because there are
still some considerable biases in monthly average precipitation after
BC, as illustrated in Figure 4. Regarding temperature, all BC
methods perform well. For the sake of brevity, LS and VAR
methods were selected to discuss future trends in temperature.

3.3 Future changes

Precipitation and minimum and maximum temperature datasets
provided by each raw and bias-corrected RCM for the entire projection

period 2006–2,100 were divided into two 30-year intervals (2031–2060,
2071–2,100) and compared with the reference period 1971–2005 on
monthly and annual intervals. The correction factors assessed in the
reference period for each BCmethodwere used to correct the bias in the
scenario period, as usually considered in climate studies. To evaluate the
effect of the selected methods on future projections, the mean annual
amount and the change signal were calculated for each RCM in the two
30-years periods from the observed reference. Specifically, the climate
change signal refers to the percentage difference between future raw and
bias-corrected RCMs output for precipitation, and deviations for
temperature, from the reference period. Results reported in Table 3
and Table 4 refer to the average ensemble of all station time series.
Figures 7, 8 show the boxplots and climate change signals of the annual
precipitation of raw and bias-corrected RCMs, for brevity. Temperature
results are instead shown in the Supplementary Material
(Supplementary Figures S4–S7).

It has been revealed that, among the others, LS and PTR adapt
simulated data of the selected RCMs to local observations in terms of

TABLE 3 Summary of annual precipitation change scenarios.

BC method Period Annual precipitation
trend

Average annual
precipitation [mm]

Average annual precipitation
change [%]

Historical 1971–2005 + 655.3 na

LS 2031–2060 - 613.2 −6.4

PTR 2031–2060 + 616.5 −5.9

LS 2071–2,100 + 616.8 −5.9

PTR 2071–2,100 + 624.5 −4.7

TABLE 4 Summary of annual minimum and maximum change scenarios.

BC
method

Period Annual
Tmax trend

Average
annual
Tmax [°C]

Average annual
Tmax difference [°C]

Annual Tmin

trend
Average
annual
Tmin [°C]

Average annual
Tmin difference [°C]

Historical 1971–2005 + 20.5 na + 12.9 na

LS 2031–2060 + 21.9 1.4 + 14.2 1.3

EQM 2031–2060 + 22 1.5 + 14.2 1.3

PQM 2031–2060 + 22 1.5 + 14 1.1

GPQM 2031–2060 + 22 1.5 + 14.2 1.3

DQM 2031–2060 + 21.9 1.4 + 14.1 1.2

QDM 2031–2060 + 21.9 1.4 + 14.2 1.3

VAR 2031–2060 + 21.9 1.4 + 14.2 1.3

LS 2071–2,100 + 22.6 2.1 + 14.8 1.9

EQM 2071–2,100 + 22.6 2.1 + 14.8 1.9

PQM 2071–2,100 + 22.6 2.1 + 14.6 1.7

GPQM 2071–2,100 + 22.6 2.1 + 14.8 1.9

DQM 2071–2,100 + 22.6 2.1 + 14.8 1.9

QDM 2071–2,100 + 22.6 2.1 + 14.8 1.9

VAR 2071–2,100 + 22.6 2.1 + 14.8 1.9
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monthly mean precipitation during the reference period (1971–2005).
However, when evaluating the future projections, the raw RCMs
consistently project a reduction in the mean value in both periods,
except for RC_CN and RA_IC, which show higher mean precipitation
(Figure 7). In contrast, bias-corrected simulated data overestimate the
mean annual amount in most cases (e.g., CC_CN, CC_IC, CC_MP,
HI_IC, RC_IP, RE_MP). Both methods appear to be appropriate in
preserving the climate change signal of most of the RCMs in
2031–2060 and 2071–2,100 (Figure 8). Few exceptions are CC_CN,
for which LS and PTR triggered a change in the negative climate change
signal of raw data into a positive one in 2071–2,100, and RA_IC, which
experienced a changing trend from positive to negative in 2031–2060.
In general, all bias-corrected RCMs attenuate the climate change signals
compared to raw data. Different results can be detected for minimum
and maximum temperature, for which all raw simulations project an
increase in the mean value in both periods compared to the reference
period, except for RA_IC, RC_CN, and RC_IC which display a slight
reduction in minimum temperature. However, when referring to bias-
corrected data, LS and VAR tend to overestimate the mean annual
temperature in most cases. LS and VAR preserve the positive climate
change signals in both periods, except for RA_IC, RC_CN, RC_IC, and
RC_MP for which BC methods triggered a change from negative to
positive climate change signals.

Figure 9 shows the temporal variation in annual precipitation
(blue line) on the top, and the monthly precipitation change on the
bottom, resulting from the average of the 10 RCMs, bias-corrected
with LS and PTR for 2031–2060 and 2071–2,100. The results
indicate a wide interannual variation of average precipitation,

while the 95% confidence interval (light blue area) range of about
200 mm reveals the considerable degree of uncertainty around
projected annual precipitation, introduced by the different
climate realisation presented from the RCM-GCM combinations.
For the near to medium future, the data revealed that the annual
precipitation trend was relatively stable, with no clear indication of a
significant increase or decrease. This outcome was consistent across
both LS and PTR methods, as indicated in Figure 9. In contrast, in
2071–2,100, a slightly positive trend in annual precipitation became
more noticeable. However, bias-corrected data showed consistently
lower values for both periods when compared to historical
observations, pointing towards a potential decrease in
precipitation over time. Table 3 summarises the above-presented
results. Annual precipitation for the Salento study area decreases by
6.4% and 5.9% for LS and 5.9% and 4.7% for PTR in 2031–2060 and
2071–2,100, respectively, compared to the historical period
(1971–2005). The monthly precipitation change is mainly
negative in the short and long term, with some exceptions during
the late spring-early summer period (April-June), which appears to
be increasing (Figure 9).

Table 4 summarises the annual average bias-corrected results of
maximum and minimum temperatures for all BC techniques referring
to the RCMs ensemble. Figure 10 highlights the temporal variation in
maximum temperature (blue lines), resulting from the 12 RCMs’
average bias-corrected with LS (A) and VAR (B) for 2031–2060 and
2071–2,100, respectively. The linear trend (orange lines) outlines an
increasing pattern for both periods. In contrast to precipitation results,
air temperature simulations show a limited interannual variation of

FIGURE 4
Average monthly precipitation of raw and bias-corrected RCM data for 1971–2005.
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average temperature and moderate deviations in annual temperature
projections resulting from all the selected RCMs (light blue area). The
average annual maximum temperature resulting from bias-corrected
data was around 22°C in 2031–2060°C and 22.6°C in 2071–2,100,
demonstrating a high difference from the observed average in
1971–2005 (20.5°C). No significant deviation among the BC
methods was detected (Table 4). Similarly, the annual minimum
temperature resulting from bias-corrected data was around 14.1°C in
2031–2060°C and 14.8°C in 2071–2,100 compared to the value of 12.9°C

in 1971–2005. Therefore, higher future maximum and minimum
temperatures were estimated. The annual maximum and minimum
temperatures increased compared to the reference period by 1.4°C and
1.3°C on average (2031–2060), respectively. Considerable increase was
detected for the period 2071–2,100 (2.1°C and 1.9°C for maximum and
minimum temperatures, respectively). On a monthly scale, maximum
and minimum temperatures for almost all months in the two analysed
time windows increase, especially during summer. For brevity, Figure
10 (bottom side) represents the monthly change results for the
maximum temperature in the two periods and for LS and VAR
since the results for the minimum temperature were similar.

Figure 11 shows the projection of the total annual precipitation and
minimum and maximum temperature in 2015–2,100 of the RCM
ensemble’s average values bias-corrected through the LS method. The
results are represented in terms of a 10-year moving average to mitigate
natural variability and emphasise the climate change signal. Themedian
values of the climate models (blue line) reveal no significant changes in
precipitation time series in the future, whilst the variability between the
RCMs (blue shadow) indicates high uncertainty in the climate
projections. In contrast, the temperature projections suggest a
progressive warming in the region under investigation.

4 Discussion

The future patterns of precipitation and temperature were assessed
for a Mediterranean aquifer, which is strongly affected by frequent and

FIGURE 5
Average monthly maximum (left-hand side) and minimum temperature (right-hand side) of raw and bias-corrected RCM data for 1971–2005.

FIGURE 6
Average values of compromise programming results for
precipitation.
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severe drought events (Alfio et al., 2020) and prone to hydro-climatic
hazards. Several BC methods were applied to the RCMs to consider
each simulated dataset’s uncertainties and the performance of every
methodology. Then, the most suitable BC methods and RCMs for
precipitation and temperature data were selected, and future trends
until the end of this century were determined.

Missing data in meteorological datasets remains a recurrent
problem, and their accurate filling is a difficult task, especially when
the available meteorological stations are scarce compared to the size of
basins (Aguilera et al., 2020). We computed an iterative procedure by
testing five techniques to fill-in missing data in the observed dataset,
obtaining satisfactory results for all methods. This outcome is probably

FIGURE 7
Boxplots of the annual precipitation of RCM simulations with (LS, PTR) andwithout (RCP4.5) bias correction for 2031–2060 (in blue) and 2071–2,100
(in orange). In the boxplots, whiskers indicate the minimum andmaximum value of precipitation; the horizontal lines refer to the 25th percentile, median,
and 75th percentile from the bottom to the top of each boxplot, and the point symbols represent outliers.
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related to the pre-screening performed in selecting the reference
stations, which required a higher correlation coefficient, a fair
distance and elevation difference, and exposure to the same sea
compared to the station containing missing values. Therefore, the
criteria established for the selection of the reference stations in the
context of the present study can be considered for precipitation and air
temperature data imputation in areas with similar hydroclimatic setups.
Finally, Multiple Imputation by Chain equations proved a suitable
method for filling-in missing hydrological values. Turrado et al. (2014)
obtained excellent results in estimating daily solar radiation in the
Galicia catchment (Spain) compared with other methods like Ordinary
Kriging; Wesonga (2015) used it to handle incomplete wind speed time
series registered in the Entebbe International Airport (Uganda).
Abdullah et al. (2022) studied extreme temperature and rainfall

events in Bangladesh after using the MICE technique and
implementing the predictive mean matching algorithm to fill in
missing daily values. MS method was selected for filling-in missing
data in the temperature daily time series; however, all tried methods
performed equally well. Being aware that the evaluation of data-filling
techniques should encompass both their ability to capture average
values over time and their capacity to handle extreme events, in this
research, however, the analysis of extreme events has been neglected, as
the focus of the work is to understand the broader future trends
monthly and yearly. Moreover, a substantial amount of data may be
required to accurately analyse extreme events. In this case, the
timeframe used for evaluating the filling-in method performance
(1971–1976 for precipitation and 2000–2002 for temperature) is
unfeasible for extreme event assessment.

FIGURE 8
Climate change signals of annual precipitation of RCM simulations with (LS, PTR) and without (RCP4.5) bias correction for 2031–2060 (in blue) and
2071–2,100 (orange).
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The selected models’ ensemble can simulate temperature better
than precipitation, and this outcome agrees with the results of Peres
et al. (2020), which refers to the entire southern Italy. Thus, the
whole ensemble was considered for temperature analyses. At the
same time, we excluded AL_CN and WF_IP models from
precipitation analysis since the climatic seasonality of the study
area was not well reflected, even after the application of BCmethods.
This approach could be valid for climate change projection studies at
regions in the mid-latitudes characterised by Mediterranean climate

(i.e., mild, wet winters and hot, dry summers). However, its
applicability should be thoroughly assessed.

Improving simulated raw precipitation data is more complex
than temperature in the bias correction context. In this study, all BC
methods slightly improve the RCM datasets, but there are significant
deviations in reproduction of the observed characteristics, especially
in the case of precipitation (Fang et al., 2015). In general, the
identified RCMs are sufficiently representative of the
precipitation and temperature conditions, although a significant

FIGURE 9
Average annual precipitation andmonthly precipitation change (bold blue line) with 95% confidence interval (light blue area) based on the data of the
10 RCMs, bias-corrected with LS and PTRmethods for the period 2031–2060 and 2071–2,100, respectively. Orange line indicates the trend, and the light
orange area refers to its 95% confidence interval. Annual precipitation for LS (top left-hand side), PTR (top right-hand side); monthly precipitation change
for the two selected periods for LS (bottom left-hand side) and PTR (bottom right-hand side).

FIGURE 10
Average maximum temperature and monthly maximum temperature change (bold blue line) and 95% confidence interval (light blue area) based on
the data of the 12 RCMs, bias-corrected with LS and VAR methods for the period 2031–2060 and 2071–2,100, respectively. Orange line indicates the
trend, and the light orange area refers to its 95% confidence interval. Annual precipitation for LS (top left-hand side), VAR (top right-hand side); monthly
precipitation change for the two selected periods for LS (bottom left-hand side) and VAR (bottom right-hand side).
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variation exists among them compared to the observed time series.
The LS and the PTR algorithms could finally be considered the best
BC methodologies for precipitation time series for the case study,
while quantile methods (i.e., GPQM, DQM, and QDM) tend to
overestimate monthly precipitation, especially during the wet
period. On the contrary, in the case of temperature datasets, all
methods perform satisfactorily, and the results agree with the
observation time series. Although BC methods adjust model
output to fit observations and reduce systematic errors, the
underlying assumptions of the various techniques are often
questionable and, therefore, represent another source of
uncertainty in climate change impact assessment studies. This is
also because several BC methods were tailored to the specific
characteristics of catchments up to basin scale, resulting
watershed-dependent and, therefore, inappropriate in other
contexts (Tumsa, 2022). According to Mendez et al. (2020),
selecting appropriate methods in arid and semi-arid regions
becomes more challenging due to the scarce, irregular, and
random nature of precipitation patterns. Future precipitation and
temperature outcomes demonstrate that BC methods tend to
overestimate the annual mean, with differences that depend also
on the analysed RCMs. Another source of uncertainty stems from
their ability to preserve the climate change signal or to capture future
extreme events. In this case, the climate change signal is sensitive
only to RCMs since LS and PTR for precipitation and LS and VAR
for temperature generally display comparable results. However,
there are regions where climate change patterns and extreme
event assessments are influenced by the choice of the BC
methods. For example, Tefera et al. (2023) demonstrated in the
Jemma sub-basin of the Upper Blue Nile Basin that the behavior of
linear scaling and distribution mapping techniques differs in
extreme events and climate change signals under different RCMs
and emission scenarios. Despite the improvements in this field, it is
challenging to handle with the cascade effect of uncertainty
introduced by the entire modelling procedure, i.e., the choice of
GCM/RCM simulations, the evaluation of the emission scenario, the
selection of BC methods, the quality of the observed datasets (Noto
et al., 2023b). Bias correction of RCM simulations is therefore
indispensable, specifically when these datasets are used as input
for hydrological modelling (Gado et al., 2022), although it is
paramount to implement an integrated approach between BC
methods and multi-model ensemble to address the existing

uncertainties (Lyra and Loukas, 2023). Nevertheless, such a task
is out of the scope of this paper, as further detailed investigations
need to be carried out prior to successfully modelling it. At present
state, the geological and structural complexity of the system and its
high degree of anisotropy hinder development of a numerical
hydrological model. This investigation aims to outline the
preliminary tasks for defining future scenarios of the
meteorological data to drive the climatic input data of a
hydrological model. As an outcome of the generated climate
projections in the study area, an overview of the potential
impacts of future meteorological trends on water resources is
discussed.

Results on future climate projections show a potential reduction
in precipitation and an increase in temperature for the Salento study
area until the end of this century compared to the historical period
(1971–2005). In 2031–2060, an annual precipitation change
of −6.1%, on average, is expected, while in 2071–2,100, a slight
increase compared to the previous period is denoted, with a negative
change of −5.3%, on average. The gradual temperature increase,
which is detectable also during the historical period, agrees with the
results of D’Oria et al. (2018). The average annual minimum and
maximum temperatures vary by more than 2°C under the
RCP4.5 scenario.

Precipitation and temperature projections are in agreement with
those produced by Bucchignani et al. (2016) through the analysis of
high-resolution simulations with COSMO-CLM over Italy. Concerning
the study area, they suggested a moderate precipitation decrease during
the winter-autumn period (from September to February) and a
moderate-significant reduction during the rest of the months under
the RCP4.5 scenario in 2071–2,100, compared to the reference period
1971–2010. Under the same conditions, an increase of more than 2°C
was estimated for the mean temperature. These patterns are critical for
all environments where inadequate attention is addressed to water
resources management, especially so where highly vulnerable aquifer
systems cater for almost all regional water demands, as in Salento. Just
by the projected climate trends, it could be argued that precipitation
regime variations and significantly rising temperatures should
compromise aquifer recharge rates due to higher evapotranspiration
levels and, at least in some periods, reduced precipitation.

In several catchments of the Mediterranean basin, like the Salento
aquifer, the principal groundwater stress is linked to the agricultural and
tourism sectors; water demand generally increases in summer,

FIGURE 11
Annual precipitation (left-hand side), annual maximum temperature (middle side) and minimum temperature (right-hand side) in terms of 10-year
moving average in the period 2015–2,100 according to the RCP4.5 scenario.
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coinciding with the irrigation season and the concentration of
thousands of tourists. The projected decrease in precipitation,
especially during summer and early autumn, is expected to further
increase the already elevated water demand. Consequently,
anthropogenic pressures may worsen the already critical water
shortages, which reflects the aquifer overexploitation that triggers
groundwater quality degradation due to, amongst others, saline
water intrusion. Land use changes may also impact on aquifer
recharge. Inland and coastal urbanisation expansion for the
development of tourism facilities convert large soil covered areas to
impermeable or low permeability clusters that impede deep percolation
and, therefore, potential aquifer recharge whilst increasing surface
runoff and, consequently, flood risks. In addition, the concurrent
increase in temperature increases water loss on such surfaces
through evaporation. On the other hand, the higher pattern in
minimum and maximum temperatures could affect the agricultural
sector since the consequent increase in the potential evapotranspiration
will likely determine a rise in crop water needs. Crops’ heat stress due to
the maximum temperature increase could alter crop growth and yield,
leading to significant economic losses and food production deficits.

Future groundwater availability in the Salento aquifer is expected
to be compromised by the estimated decreasing precipitation and
increasing temperature, as highlighted in previous studies (Kapur
et al., 2007; Lionello et al., 2014; D’Oria et al., 2018). This is especially
so, in the absence of any surface water bodies in the region, which sets
all pressure on groundwater, thus exacerbating water deficit
conditions and worsening its’ quality characteristics
predominantly due to seawater intrusion. Wu et al. (2020)
demonstrated that changes in groundwater could depend more on
increased evapotranspiration than on reduced precipitation patterns,
especially in dry areas. A fully coupled climate model applied to seven
aquifers that have experienced severe groundwater heads decline
demonstrated that groundwater depletion may result either from
human pressures imposed on overexploited systems or adverse
natural hydro-climatic drivers (i.e., higher evapotranspiration,
snowmelt reduction) even in mildly exploited systems. Human
imposed drivers may be more impactful on groundwater
resources than climate change; however, coupling afore drivers
certainly maximises impacts. Using the Landsat archive,
Huntington et al. (2016) found a meaningful correlation between
changes in annual vegetation vigor, precipitation, evaporative rate,
groundwater depth, and land and water management, providing a
helpful interpretation of the investigated groundwater-dependent
ecosystem. It should be noted that the historical period selected
for this study included severe and prolonged drought events and
extensive aquifer overexploitation periods, which had already
significantly affected groundwater quality and availability (Balacco
et al., 2022a). Due to the coastal nature of the aquifer, groundwater
suffered an increase in chloride concentrations, the initial values of
which did not recover even following rainy periods (Alfio et al.,
2020). Therefore, an eventual future reduction in rainfall compared
to the historical reference period, albeit modest (c.a. 6%), could
definitively compromise groundwater quality and availability, as the
concomitant reduction in recharge and increased abstractions may
accelerate the salinisation process.

Human pressures and projected climate change in the
Mediterranean basin do not leave space for any future
improvement in water resource abundance; therefore,

perspectives on water resource availability are alarming, and
management planning to strengthen resilience and ensure
security is of utmost essence. Further investigations on the
Salento aquifer are necessary to simulate the water balance in
response to climate change and groundwater abstraction effects.
Additional studies should be developed locally to quantify each
factor influencing the aquifer behaviour to develop a strategic water
resource management tool for complex systems.

5 Conclusion

In this research, future hydrological impacts of climate change have
been evaluated at the regional coastal karstic aquifer of Salento.
Historical precipitation and minimum and maximum temperature
datasets were previously infilled by testing five methodologies. Based
on the number of iterations, R, NSE, and SI, the MICE_pmm and the
MSmethods were selected for filling-inmissing data in the precipitation
and temperature daily time series, respectively. The trend analysis on
both climate variables reveals that no significant annual or monthly
trends are depicted in the reference period. An ensemble of 12 RCMs
under the RCP4.5 scenario was analysed, and different scaling and
distribution methods were applied daily. According to monthly and
annual assessments of BC methods’ results, all RCMs were considered
for the temperature dataset, whilst AL_CN and WF_IP were excluded
fromprecipitation analyses. Additionally, themost suitable BCmethods
for the precipitation dataset were LS and PTR, while all methods are
appropriate for temperature time series for the case study. Finally, future
projections reveal a decreasing precipitation trend of about 6% and an
increasing temperature pattern of 2°C compared to the historical period
(1971–2005) until 2,100 for the Salento study area. These outcomes
reveal a critical situation for the Salento aquifer since it can be expected a
limited recharge rates due to higher evapotranspiration levels, reduced
precipitation, and consequently increasing water demand. Without
water resource alternatives, anthropogenic pressures could worsen
current water shortages, potentially resulting in the deterioration of
groundwater quality, including the intrusion of saline water. Therefore,
water resource management in coastal basins expected to undergo
similar conditions could represent a common challenge which requires
focused attention, targeted solutions, and shared experiences among
similar contexts. This research represents a starting point for further
studies to determine a hydrogeological model of the study area with the
ability to simulate the water balance in response to climate change and
pumping effects. In this context, additional studies should be developed
locally to quantify groundwater withdrawal and investigate its impacts
on the aquifer status.
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