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Detailed analyses of past major and minor seismo-volcanic events can help
to understand the eruptive behavior of volcanoes and the underlying physical
and chemical processes. Catalogs of these eruptions and, specifically, seismo-
volcanic events may be generated using continuous seismic recordings at
stations in the proximity of volcanoes. Here, we apply a recently-developed
automated approach Adaptive-Window Volcanic Event Selection Analysis
Module (AWESAM) to seismic data from Stromboli (Italy), Mount Etna (Italy), Yasur
(Vanuatu) and Whakaari (New Zealand). We perform an inter-event time analysis
to identify characteristic patterns in the events’ recurrence time and the volcanic
activity. Using this identical approach for all volcanoes, we were able to discover
that despite their differing types and activity, they exhibit similar statistical
behaviors. For Whakaari, we noticed a bimodal inter-event time distribution for
large events. Since this observation is based on single station data, further in-
depth investigations are needed once more data is available in future. We also
derive a new amplitude-frequency relationship from seismo-volcanic events.
With this relation, we can confirm a change in slope for large events at Stromboli,
which is based on 10 years of data. Additionally, we apply a classification model
to events from Stromboli to differentiate between low-period (LP) events and
high-frequency (HF) events and found an alternating behavior in the frequency
of these events before and after the two paroxysms in 2019.

KEYWORDS

inter-event time, amplitude statistics, AWESAM, seismo-volcanic events, event
classification

1 Introduction

Despite the growing interest in the continuous monitoring of volcanoes worldwide,
accurately forecasting eruptions remains a significant challenge for researchers. As a
result, early warning systems frequently fail to provide timely alerts. This is evident in
the fatalities caused by recent volcanic eruptions, such as those at Stromboli in 2019
(Andronico et al., 2021) and Whakaari in 2019 (Dempsey et al., 2020). The difficulty arises
from the complex, dynamic processes involved, where numerous interconnected (and often
unknown) parameters play a role. Nevertheless, analyzing the history of volcanic activitymay
reveal characteristic patterns and potential precursors for eruptions. This could not only
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enhance our understanding of the physical processes occurring
within volcanoes but also contribute to the development of more
reliable early warning systems.

Identifying potential precursors or regularities in the data is a
crucial task, as it may form the basis for early warning systems and
event forecasting. For instance, Dempsey et al. (2020) observed an
unusual peak in the tremor data recorded atWhakaari several hours
to days before an eruption. Later, this finding was applied to several
other volcanoes in New Zealand and Alaska by Ardid Segura et al.
(2022). For Etna, Langer et al. (2011) detected changes in tremor
1–9 h before the onset of eruptive activity using an unsupervised
classification tool (employing self-organizing maps).

The goal of this study is to enhance the characterization of
volcanic activity and identify patterns that could contribute to the
improvement of early warning systems.The statistical analysis relies
on event catalogs generated from seismic data spanning multiple
years with various types of events, ranging from major to small
eruptions. This approach allowed us to do a long-term comparison
of the activity and enhances the statistical significance of the
findings.

This type of analysis, particularly focusing on inter-event time
analysis and amplitude-frequency relations, has been conducted
in various contexts for many volcanoes. Nishimura et al. (2016)
compared the amplitude-frequency relations of six volcanoes
located in Japan, Indonesia, and Italy for different time periods.
However, as some of these volcanoes are less active or not
continuously monitored, only a few thousand events were analyzed
per volcano. Similarly, Lehr and Rabbel (2021) analyzed data from
Villarrica (Chile) to plot the amplitude-frequency relations and
derive amplitude distributions. In this case, only 12 days of data were
analyzed.

Since volcanic activity can change drastically over extended
time periods, using data from longer intervals will provide a more
representative analysis. Additionally, the characteristics of large
eruptions that occur only a few times per year (or less) can only
be investigated by examining sufficiently long time intervals. For
instance, Bevilacqua et al. (2020) conducted an extensive analysis
of a historical catalog for Stromboli spanning from 1880 to
2020, which included paroxysmal events and major explosions.
Further, they executed a detailed inter-event time analysis for
this period. However, the inclusion and analysis of smaller events
requires instrumentally recorded data, which implies that such
an extensive time span cannot currently be considered for this
purpose.

2 Data

This study analyzes data from four volcanoes: Stromboli (Italy),
Mount Etna (Italy), Yasur (Vanuatu), andWhakaari (New Zealand).
These island volcanoes were selected based on their regular activity
and the availability of open, reliable seismic data. Additionally, we
focused on volcanoes with at least two operational seismological
stations, as illustrated in Figure 1. Exemplary 1-h extracts of data
from each volcano are displayed in Figure 2. However, due to the
significant variations in volcanic activity over time, these signals are
not representative of the entire time span. Each volcano exhibits
unique characteristics in its activity.

Stromboli (Italy) is an island volcano situated near Sicily,
with documented activity dating back to the 8th century AD
(Andronico et al., 2021). It is known for its frequent Strombolian
explosions that occur every few minutes and can be observed at
several craters within the crater terrace.Thesemedium-sized events,
attributed to coalescing andbursting gas bubbles (Nabyl et al., 1997),
eject pyroclastic material up to several dozen meters. However,
occasional paroxysmal events also occur, posing a serious threat
to residents and tourists on the island. The most recent paroxysms
occurred in relatively quick succession on July 3, 2019 and August
28, 2019.They ejectedmaterial several kilometers from the vents and
an eruption column rose to a height of 5 km (Giudicepietro et al.,
2020; Andronico et al., 2021). Fortunately, paroxysms are relatively
rare, with only 36 occurrences in the last 140 years according to
a historical catalog (Bevilacqua et al., 2020). However, paroxysms
occurred very irregularly in the past (the longest break in paroxysms
is from 1960 to 2002). Their origin is not completely understood
(Giudicepietro et al., 2020). Two selected seismic stations (of many
others) have been considered on the island, positioned on opposite
sides of the volcano and at approximately equal distances from
the crater terrace (IV.IST3, IV. ISTR). They have been operational
since 2013, with data accessible through the INGV data center
(Istituto Nazionale di Geofisica e Vulcanologia, 2005).

Mount Etna (Italy), situated on the island of Sicily, is the
largest volcano in Europe. Over the past 30 years, it has experienced
active and intense explosive and effusive activity, with eruptions
characterized by Strombolian activity, lava fountains, and the
formation of eruption columns (Bisson et al., 2021). The Istituto
Nazionale di Geofisica e Vulcanologia (INGV) (2005) has installed
numerous seismic stations in close proximity to the volcano.
However, to detect even smaller events, we selected only stations
within a radius of approximately 1 km around the central crater
(IV.ECNE, IV. ECPN). These two stations have been operational
since 2021.

Yasur (Vanuatu) is a volcano on Tanna Island. Its activity
is characterized by very frequent Strombolian explosions, which,
similar to Stromboli, are connected to the bursting of gas bubbles
(Woitischek et al., 2020). Typically, these events last up to 20 s and
eject material up to several hundred meters (Marchetti et al., 2013).
We analyzed data from the ARC-Vanuatu Seismic Experiment
(Pelletier et al., 2011) conducted in 2008-2009, selecting the two
closest stations to the crater (ZO.Y31, ZO. Y32).

Whakaari (New Zealand) is a partially submerged andesite
volcano forming a small island in the Bay of Plenty. It is
currently New Zealand’s most active volcano (Kilgour et al., 2021).
Whakaari’s activity primarily consists of phreatic, phreatomagmatic,
and magmatic eruptions (Burton et al., 2021), which are caused by
the release of pressurized fluids and gas. During volcanic unrest in
the central crater cone, hot springs can be found, and the release
of steam often produces gas plumes (Kilgour et al., 2021). Here,
too, rare violent explosions can occur, as demonstrated by a tragic
event in 2019, when 47 tourists were on the island during an
eruption, resulting in the deaths of 22 people (Burton et al., 2021).
There is one operational station (NZ.WIZ) that has been providing
data through GeoNet (GNS Science, 2021) since 2007. Data from
another station (NZ.WSRZ), placed on the opposite side of the
volcano, are available for the time from 2013 to 2021. However, the
signals recorded at this station were found to be very noisy, and
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FIGURE 1
Locations of seismic stations used in this study (black pins) and the location of the central crater (orange triangle) for each volcano. OpenStreetMap,
https://www.openstreetmap.org.

therefore they were not used in our analysis. Because of this, we
had to alter the catalog creation process slightly (see next section).
Nonetheless, Whakaari remains interesting for our analysis due
to its longest data record. Furthermore, its activity, distinct from
Strombolian eruptions, makes it interesting to compare to the other
volcanoes.

Broadband stations were analyzed at all volcanoes, with three
channels (HHN, HHE, and HHZ) employed. The instruments
used and their sensitivities were consistent across each volcano,
respectively. We accounted for instrument sensitivity to obtain
velocity seismograms. For further information regarding the sensors
and instrument response, please refer to Supplementary Table S1 in
the Supplementary Material.

3 Methods

3.1 Catalog creation: AWESAM

The Adaptive-Window Volcanic Event Selection Analysis
Module (AWESAM) is a tool designed to automatically detect
seismo-volcanic events from seismic data (Fenner et al., 2022).
Originally developed for data from Stromboli, the module has
been generalized for this paper to work with various volcanoes
and different types of volcanic activity. To achieve this, the event
detection algorithm has been extended, making it suitable for
volcanoes with high activity (e.g., Yasur, see also Table 1 for details
about the frequency of seismo-volcanic events) as well as those with
less seismic activity (e.g., Whakaari).

The catalog creation consists of multiple steps: First, the seismic
recordings undergo bandpass-filtered using consistent parameters
for all stations (0.7–5 Hz). Then, the Adaptive MaxFilter algorithm
is applied, followed by a prominence-peak detection, which allows
for a direct determination of event times. The amplitude, on the
other hand, would be distorted due to the strict frequency interval
chosen in the bandpass-filtering. This is why the amplitude is
determined from each component (North, East, and Up) separately
with a different filter (0.7–10 Hz). When referring to the amplitude
subsequently, it denotes the average value derived from the three
directional amplitudes.This process is carried out independently for
two stations (called principal and complementary station) that are at
a similar distance from the volcano (if available).

Next, the complementary catalog is compared to the principal
catalog in the catalog consolidation algorithm, which assigns events
that appear at both stations a high event probability and events that
occur at only one station a low event probability, thus accounting
for station-specific local disturbances.This value provides ameasure
of the probability that the event’s origin is volcanic. Finally, each
event is assigned a probability that it is a regional or distant
tectonic earthquake with the help of an earthquake catalog such
as (ISC, 2023). However, this method is only reliable for larger
earthquakes. That is, why we use the global catalog instead of local
ones, which might include a greater number of small earthquakes
(that the algorithm struggles to accurately analyze). The global
ISC catalog, on the other hand, covers a significantly broader
area.

The catalogs used for further analysis were created using
AWESAM.All data up until December 2022were taken into account
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FIGURE 2
One hour of example data for each volcano, along with a detailed waveform of a single event (right). The data has been bandpass-filtered within the
range of 0.7–10 Hz.

TABLE 1 Statistics of the catalogs created with AWESAM for all volcanoes. The provided durations represent the data utilized in our analysis (data from
Stromboli in 2012 was found not reliable and was, therefore, not used). ForWhakaari, the complementary station (NZ.WSRZ) was not used because of its high
noise level. The first and second distances indicate the distance from the crater to the principal and complementary stations, respectively.

Duration Number of events Events per year Principal station Complementary station Distance

Stromboli 2013–2022 (10.0 years) 1,439,000 144,000 IV.IST3 IV.ISTR 1.76/1.87 km

Etna 2020–2022 (2.5 years) 280,000 111,000 IV.ECPN IV.ECNE 1.41/1.37 km

Yasur 2008–2009 (0.7 years) 241,000 344,000 Z0.Y32 ZO.Y31 0.59/0.51 km

Whakaari 2007–2022 (15.6 years) 315,000 20,000 NZ.WIZ – 1.0 km

(data with too many gaps was discarded, for example, a couple of
months in 2012 at Stromboli). Statistics of the resulting catalogs are
summarized in Table 1.

Before analyzing these catalogs, they were filtered so that only
events with a high volcanic event probability were included in
the analysis. To do this, the event probability pev and earthquake
probability peq were combined to form p = pev ⋅ (1− peq), which
reflects the total probability that the event’s origin is volcanic. If
the event probability is not available, for example, if one of the two
stations has an outage, then p = 1− peq. For the subsequent analysis,
we only considered events with a probability p > 0.3. This threshold
was chosen empirically while looking at exemplary events from all
volcanoes to avoid inadvertently excluding volcanic events and was
found to be suitable.

Of course, the noise levelmakes it difficult to detect small events.
Therefore, the noise level is the single most important limit to the
catalog’s completeness. Additionally, changing noise levels over time
result in a varying completeness amplitude.

3.2 Event classification

The preceding description did not differentiate between event
types. Nevertheless, making such a distinction could unveil
characteristic patterns in volcanic activity. Among all the volcanoes
studied, we possess the most comprehensive catalog for Stromboli.
As a result, we implemented an event classification tailored
specifically for Stromboli.

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2023.1228103
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Fenner et al. 10.3389/feart.2023.1228103

FIGURE 3
Example waveforms and spectrograms of events (from Stromboli) classified with a model based on a wavelet scattering transform and a t-SNE
embedding. Long-period (LP) events have a characteristic low-frequency content, while high-frequency (HF) events have much higher frequencies.
Events from the class “indeterminate” could not be assigned to a class conclusively.

For the classification process (Laumann et al., 2023), the data
are initially encoded using the Wavelet scattering transform
(Mallat, 2012). Subsequently, the events are embedded into a
lower-dimensional space using t-stochastic neighbor embedding
(t-SNE) (van der Maaten and Hinton, 2008). These embedded
events can then be classified with a simple k-nearest-neighbor
classification.This algorithm,whichwas trained using a dataset from
Llaima (Canário et al., 2020), clusters the events into the following
classes: long-period (LP) events, volcano-tectonic events (VT),
tremors, and regional or distant earthquakes. Each of these event
classes exhibits a characteristic frequency content and waveform
(Wassermann, 2012; Zobin, 2009). Other event types, such as hybrid
events, are not classified separately. Unlike the other event types,
regional and distant earthquakes are not directly related to the
volcano.

To classify events, a 60-s window starting 10 s before the
maximum amplitude of each event is used. If two events are
within this window, the data are trimmed appropriately and the
remainder is replaced by trailing zeros. Before the classification,
these data are normalized and bandpass filtered the same way as
the training data. While studying the waveforms of the different
classes, differences in LP and VT events were observed, but tremors
and tectonic events seemed to be misclassified. In these two classes,
no specific characteristics could be observed, and also events with
similarities to LP and VT events were noticed. Therefore, we
combined these two classes into the class called “indeterminate”,
see Figure 3. Nevertheless, the classification is still useful, because
the LP events exhibit a characteristic low-frequency component
and VT events have high-frequency components. That is, why,
in the following, we refer to VT events as high-frequency (HF)

events. However, as we are employing a method trained on data
from a different volcano, it is anticipated that some events may be
misclassified.

4 Results

4.1 Amplitude and inter-event time
statistics

Figure 4 displays all events in the catalogs for each volcano, with
the color representing the relative density of events. It is important to
note that amplitudes cannot be compared across different volcanoes
due to the use of different instruments and setups.Wedid not correct
for these differences, as they have no impact on our subsequent
analysis. The minimal amplitude of events varies over time, which
is related to the fluctuating noise level (caused by volcanic activity,
wind, or ocean waves).

Whakaari has the fewest detected events by far, with events
occurring on average every 30 min. Etna and Stromboli have much
more frequent seismo-volcanic events, occurring every 4–5 min.
Yasur has an even higher event frequency, with an average inter-
event time of 1.5 min. The average event duration for small events
is approximately 40 s. These observations support our previous
description that volcanic activity varies significantly among the four
volcanoes. The plot also highlights the two paroxysms at Stromboli
in 2019.

Figure 4 illustrates that the double paroxysm in 2019
was accompanied by a high density of medium-sized events
(10–20 μm/s). In Section 4.2, the features of the activity before and
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FIGURE 4
All seismo-volcanic events in the analyzed catalogs. The color represents the relative density of events. Note that different time spans and durations are
shown. The double paroxysm in 2019 at Stromboli is also indicated.

after the paroxysms are analyzed in greater detail. It is important to
note that seismic amplitude is only a rough measure of the severity
of a volcanic eruption, as ejected material, duration, and other
factors are unknown. Therefore, events with similar amplitudes in
2020-2022 do not necessarily mean that all of these are classified as
paroxysms.

The amplitude-frequency relation in Figure 5 shows the fraction
of all events that exceed a particular amplitude and is analogous
to the Gutenberg-Richter plot used for earthquakes. To facilitate a
comparison of the curves, the median noise level (and the standard
deviation) ismarked in each plot. It was estimated by the 0.9 quantile
of the absolute data and was computed per hour. The value of 0.90
was chosen based on observations and is the best approximation for
the noise level. The median was chosen (instead of the average) to
avoid outliers affecting the result.

The green lines in Figure 5 represent the data from the whole
catalog. In the cases of Etna, Yasur and Whakaari, this average
approximately follows a linear relation that gradually diminishes
towards low amplitudes. This is similar to the Gutenberg-Richter
relation for earthquakes. Stromboli, however, shows an interesting
change in slope.

To visualize the different slopes in the amplitude-frequency
relation, a linear fit was applied to the linear section of each relation.
The resulting slopes, or more precisely the absolute values of the
slopes, are shown in Figure 6, along with the respective fitting errors.

Because Stromboli exhibits two linear sections with different slopes,
separate fits were done. It is important to note that the station
distance and instrument properties are likely to have no impact on
the slope (as only the logarithm of amplitude is considered). Among
these volcanoes, Yasur has the highest slope, while Whakaari shows
the lowest. This slope is a characteristic property of the volcano,
reflecting the relative frequency of larger and smaller events. A
lower value indicates that larger amplitudes are relatively abundant.
Next, these amplitude distributions will be studied in more
detail.

Figure 7 shows the amplitude distributions in the left panels.
As already noted, the (absolute) amplitudes cannot be compared
for different volcanoes due to different station setups. The grey
lines again mark the median noise level (for better comparability).
The fit with a normal distribution (green line in each plot) shows
that the logarithm of the amplitude is approximately normally
distributed for most volcanoes (meaning that the amplitude is
log-normally distributed). Whakaari exhibits a deviation for larger
eruptions.

In addition to the amplitude distributions, the inter-event-time
distributions are presented [Figure 7 (right)]. Inter-event time is
defined as the time elapsed between an event and the subsequent
event, which, in most instances, is equivalent to calculating the
time difference relative to the previous event. Naturally, data gaps
influence the inter-event time, but this impact is limited to the last
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FIGURE 5
Amplitude-frequency relation (analogous to the Gutenberg-Richter relation; lines show the fraction of events that exceed a certain amplitude). The
colored lines illustrate the time evolution for every 10 days and the median noise levels for each volcano are indicated. Additionally, the amplitude
ranges used to calculate the slopes of the average (green curve) in Figure 6 are displayed too.

FIGURE 6
Slopes of the linear sections of the amplitude-frequency relation (Figure 5). The two linear sections of the relation for Stromboli were fitted separately.
Figure 5 also shows the used amplitude ranges.

event preceding a gap. Given that data-gaps are relatively infrequent,
their effect on the overall distribution is generally negligible, with the
exception of a few potential outliers.

Again, the logarithm of the inter-event time follows a normal
distribution for Yasur and Whakaari indicating that the inter-event
time follows a log-normal distribution. For Etna, there is a notable
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FIGURE 7
Amplitude distributions (left) and inter-event time (right). All distributions are fitted with a normal distribution (green lines). μiet and μamp are the average
inter-event times and average amplitudes respectively. Note that the mean μ and standard deviation σ written in the legend refer to the original and not
to the log-transformed amplitude.

excess of events with high inter-event times, in comparison to
a normal distribution of events. Conversely, for Stromboli, there
is a marked deficit of events on the high inter-event time side.
However, one should take into account that the results depend on
the completeness of the catalog. The completeness, in turn, heavily
depends on the noise level in the data. The detection of more events
naturally leads to smaller inter-event times.

To address this issue and reveal the relationship between inter-
event time and amplitude, Figure 8 illustrates the inter-event time
distribution for various amplitudes. It is crucial to note that we
recompute the inter-event time after selecting events from the
respective amplitude bin. Consequently, the distribution displays
the time difference between events within the same amplitude bin.
The primary advantage of this representation is that the outcome
is largely independent of the catalog’s completeness. Note that, for
readability, some very large events lie outside the displayed ranges.

As anticipated, the distribution shifts towards longer inter-event
times for higher amplitudes. At Stromboli and Yasur, the inter-event
time distribution broadens for smaller events (see the lower right
sections in Figures 8A, C). This implies that the fraction of long
inter-event times increases for very small events. This phenomenon
is a result of the fluctuating noise level, which determines the
minimum amplitude that can be detected.

The relationship between amplitude and inter-event time is
further investigated by calculating the median inter-event time per

amplitude bin.Themedian was chosen over the average tominimize
the influence of outliers on the results. This curve is also depicted
in Figure 8, along with the standard deviation of the distribution.
For instance, in the case of Etna, if an event with an amplitude of
600 μm/s occurs, the average recurrence time for an event of the
same amplitude is approximately 14 days (2 ⋅ 104 min). However, the
variance (as indicated by the standard deviation) is quite substantial,
ranging from 2 to 70 days (3 ⋅ 103–106 min). As anticipated, for
all volcanoes, the inter-event time more or less linearly increases
with amplitude. Nonetheless, for larger amplitudes, the slope
increases, suggesting that the average recurrence time increases
more slowly for high-amplitude events. For some volcanoes,
the area representing the standard deviations ceases for larger
amplitudes. The reason for this is that, in cases with a low
number of events (in the most extreme instances, one or zero),
the standard deviation loses its meaning and is consequently not
displayed.

Interestingly, for Whakaari, the distribution exhibits two
maxima of inter-event time for events with amplitudes between
25 and 75 μm/s. The first maximum occurs at approximately
100 min, while the second appears at around 140 days (see
ellipses in Figure 8D). It is worth noting that, unlike the other
volcanoes, we were unable to apply catalog consolidation for
Whakaari, which could have introduced a bias in the selection of
events.
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FIGURE 8
Inter-event time distribution as a function of amplitude. The inter-event time only refers to events from the respective amplitude bin. The green lines
represent the median inter-event time for events within each amplitude bin, along with their respective standard deviation. A few events fall outside the
shown range. The two ellipses in (D) show the two apparent maxima of event densities for Whakaari.

4.2 Event classification

Based on the classification introduced in Section 3.2, the
previous analysis methods can be similarly applied to each type of
event. The following analysis was only conducted for the catalog
from Stromboli, as it is the most comprehensive catalog and the
change in slope presents the most intriguing pattern for further
investigation.

Figure 9 firstly presents all events by event class for Stromboli,
with color indicating the relative density of events. Additionally,
the number of events per month is displayed beneath each panel.
Additionally, Figure 10 provides a more detailed examination of
2019. Notably, significant changes in activity are observed before
and after the two paroxysms in 2019 (as shown in the Figure).
Interestingly, the two paroxysms appear to have a significant impact
on the types of events that occur: prior to the first paroxysmon July 3,
the number of HF events is unusually high. Approximately 1 month
before the first paroxysms, the number of HF events abruptly drops.
In the days following the first paroxysm, the density of HF events
increases, albeit not to the initial level. After the second paroxysm,
the number of LP events again increases following a slight decline
for about 1 month between the two paroxysms.

Computing the amplitude-frequency relation for the different
event types also yields interesting results. Figure 11 confirms
that the largest events are HF events. For events of this class,
the change in slope is also the most pronounced. Although
there is a slight indication of a slope change for LP events, it
is not as evident as it is for HF events. However, this could
also be explained by the misclassification of a few events. In
(Fenner et al., 2022), it was hypothesized that the slope change
is due to different event types. Even though this classification
did not identify a specific event class that could explain the
change in slope, we cannot discount the possibility of sub-
event types within the HF events that might account for this
phenomenon.

We also examined the inter-event time and amplitude
distributions, as well as the inter-event time distributions per
amplitude for the separate event classes (see Supplementary
 Material; Supplementary Figures S2, S3). The amplitude distri-
butions are similar across all event types, suggesting that there is
no clear relationship between event type and amplitude. Similarly,
the inter-event time distributions show comparable characteristics
across all types.
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FIGURE 9
All classified events by event class (LP event, HF event, and indeterminate) for Stromboli. The green curve illustrates the number of events per month
for each event type. The double paroxysm in 2019 is highlighted. The gray area is shown in more detail in Figure 10.

5 Discussion

Overall, the figures presented in the previous section
demonstrate a clear consistency when comparing the volcanoes
based on the frequency of all volcanic events (see Table 1). While
Stromboli and Etna exhibit a similar frequency of events (per time
interval), Yasur has considerably more. For Whakaari, which has
the fewest detected events, it should be noted that the number
of low-amplitude events may be overestimated because catalog
consolidation (i.e., the comparison of two catalogs from two
stations) could not be used due to the second station being
excessively noisy.

Figure 5A shows a change in slope in the amplitude-frequency
relation for Stromboli towards high-amplitude events. Our previous
research (Fenner et al., 2022) already showed this relation for
Stromboli, but only for data from 2 years.There, this change in slope
was already observed for amplitudes larger than ca. 100 μm/s. This
implies that there aremore large events compared to the distribution
observed for earthquakes and it was suggested that this might be
related to a different source mechanism of large events. However,
this conclusion was drawn from a sample of just 10 events. In this
study, we extend the analysis to 10 years of data and validate the
observed change in slope (Figure 5A). The increased sample size
allows for more statistically significant results, as we now have over
50 events exceeding 100 μm/s. However, as the majority of detected
events (1.4 million) were observed at Stromboli, we cannot rule out

the possibility that the change in slope would also appear for the
other volcanoes if more data were available. Thus, we do not know
if this is a unique property of Stromboli, or if it is more generally
applicable. It is also worth noting that the change in slope cannot
be explained by distant earthquakes, as they were excluded based on
the ISC earthquake catalog.

By further analyzing event types for Stromboli, we primarily
attribute the change in slope to high-frequency events (Figure 11).
High-frequency volcanic events are typically associated with the
movement of magma and volcanic gases leading to fracturing
(Wassermann, 2012). However, it is possible that if a more detailed
classification into further event types were implemented, more
differences might emerge.

Inmost cases, the amplitude-frequency curve flattens out for low
amplitudes. Assuming an exponential distribution for the logarithm
of event amplitudes (which is observed for earthquakes and is
the underlying distribution for the Gutenberg-Richter law), the
slope should continue even for small events. On the one hand,
this flattening can be explained by the catalog’s completeness–as
the noise level obscures small events, these cannot be detected.
On the other hand, Lehr and Rabbel (2021), Nishimura et al.
(2016), and Cauchie et al. (2015) found evidence suggesting that the
flattening cannot be explained by low detection levels. Instead, it
could be related to a different amplitude distribution that decreases
for small amplitudes compared to the exponential distribution,
resulting in a unimodal distribution (i.e., with a maximum for a
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FIGURE 10
All classified events by event class in 2019 at Stromboli. The two paroxysms had a clear influence on the event types both before and after their
occurrence. For further description, refer to Figure 9.

certain amplitude). For Yasur, this is the most obvious: the average
noise level is much lower than the amplitude where the flattening
of the curve begins. The assumption of a different amplitude
distribution is further supported by the same distributions observed
for jet height or gas masses for other volcanoes (Lehr and Rabbel,
2021).

By analyzing the inter-event time distributions for different
amplitudes (Figure 8), we found no evidence of any periodic
recurrence of events for any given amplitude across all the
volcanoes studied. Similarly, the classification of event types for
Stromboli revealed no distinct recurrence time per event type
(Supplementary Figure S2 in Supplementary Material). Instead,
we observed a log-normal distribution for the inter-event time
across all volcanoes, a pattern also reported in other studies
(Cauchie et al., 2015). Given that Strombolian eruptions are
often attributed to the coalescence and bursting of gas bubbles
(Nabyl et al., 1997), we may infer that the formation of these
gas bubbles within the magma column also follows a log-normal
distribution.

As suspected from the analysis of the amplitude-frequency
relations (Figure 5), the distributions are indeed unimodal.
However, for all volcanoes, the noise level is close to the center
of the distribution. Based on this observation, the true maximum
(if it exists) could be at lower amplitudes. Since the noise level

constraints the detection of smaller events, the true distribution
remains unknown from the catalogs. For Whakaari, the high
number of events close to the noise level can be attributed to the
fact that we did not use catalog consolidation for this volcano
as the second station was deemed unsuitable due to its elevated
noise level.

There appears to be an alternating pattern between the two event
types. In summary, the frequency content of the events preceding
both paroxysms was high until 1 month before the first paroxysm.
Subsequently, more low-frequency events occurred. This anomaly
commences 1 month before the first paroxysm. This observation
aligns with the findings from (Giudicepietro et al., 2020), who
analyzed the polarity and fractal dimension of the signal and
noticed a significant change 1 month prior to the first paroxysm.
Similar behavior has also been observed in other volcanoes, such
as the Augustine Volcano in Alaska (Buurman and West, 2010). To
establish whether these anomalies observed in event types before
and after paroxysms are consistently related to large eruptions,
further analysis is essential.

In the inter-event time distribution as a function of the
amplitude (Figure 8) there appears to be a bimodal event
distribution.This observation is unfortunately based on only a small
number of events, which could potentially affect the significance
of the finding. The two dominant recurrence times seem to be
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FIGURE 11
Amplitude frequency relations per amplitude at Stromboli. The change in slope is most pronounced for HF events.

100 min and 140 days. This long-term periodicity was already
documented in volcanic activity. For instance, a study by Qu et al.
(2011) suggests the presence of multiple oscillations (10–100 years).
Also, similar patterns were observed by Srivastava et al. (2021) in
a two-to-three-year periodicity in large earthquakes. However,
the analysis for Whakaari relies solely on data from one station,
and more research and data are necessary to gain more robust
insights.

Our selection of volcanoes was primarily guided by data
availability, which resulted in a focus on volcanoes associated
with convergence/subduction tectonic regimes. However, it would
be important to consider volcanoes located in divergent plate
boundaries or intraplate volcanoes as well. Future studies could
aim to incorporate different types of volcanoes. Further, this study
was primarily focused on open-conduit volcanoes. However, closed-
vent volcanoes with regular seismic activity could be considered
for analysis in a similar way. AWESAM does not differentiate
between event types and we expect that it could detect events
from closed systems in the same way. Therefore, comparing open
and closed systems could yield additional insights and reveal
possible differences. Also, this work does not consider the impact
of different types of volcanic activity (e.g., phreatic and magmatic
eruptions). However, we plan to address this aspect in future
research.

6 Conclusion

The comparison of the seismo-volcanic event catalogs from four
volcanoes (Stromboli, Mount Etna, Yasur, and Whakaari) facilitates
some interesting conclusions about their volcanic activity. Using the
same tool for all volcanoes enables a meaningful comparison. All
four volcanoes, despite their different type and frequency of events,
show similar characteristics. For example, the amplitude-frequency
relation, the inter-event time distributions and the amplitude
distributions show similar trends.

We have confirmed the change in slope for Stromboli in
the amplitude-frequency relation (Figure 5A), a phenomenon
previously observed in another study (Fenner et al., 2022). This
implies that there are an unusually high number of very high-
amplitude events. With an increased number of events now, the
result holds more statistical significance. With this analysis, it is
further possible to determine the average recurrence time of events
with specific amplitudes for each volcano.

Additionally, we examined the double paroxysm in 2019 at
Stromboli. It appears that therewas a higher occurrence ofHF events
before the paroxysms, while LP events were more prominent after
the paroxysms.

In conclusion, the event-detection methodology presented can
be applied to volcano monitoring. It offers the possibility to quickly
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identify and analyze relevant events, particularly when multiple
stations are available for catalog consolidation in near real-time.
The analysis of inter-event times and amplitude statistics offers the
detection and characterization of volcanic unrest phases, similar to
RSAManalysis (Endo andMurray, 1991), and can provide enhanced
constraints for early warning systems.
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