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Introduction: The Zhangjiapingzi gold deposit, located at the western margin of
the Yangtze Craton and controlled by the Jinhe-Chenghai deep fault, is a newly
discovered super-large gold deposit in the Danba-Mianning metallogenic belt.
The gold ore bodies are hosted in the Middle Triassic (T2) altered dolomite (Dm),
and have two types of mineralization: altered rock type and quartz vein type.
Previous studies on this deposit are rare, especially on the ore-fluid characteristics,
which limit the understanding on the ore genesis.

Methods: This study focused on fluid inclusions in quartz from altered rocks, and
used microthermometry and laser Raman spectroscopy to investigate the
properties and sources of ore-forming fluids, and to determine the ore genetic
type.

Results and discussion: The results show that the fluid inclusions are mainly CO2-
H2O-NaCl inclusions, with medium temperature (220–300°C), low salinity (<10%),
medium-low density (0.79–1.01 g/cm3) and high contents of CO2 and CH4,
resembling typical orogenic gold ore fluids. We suggest that the Zhangjiapingzi
is best classified as orogenic type, and our findings provide new insights into the
fluid origin and metallogenesis of orogenic gold deposits in the Danba-Mianning
metallogenic belt.
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1 Introduction

The morphology, composition, temperature-pressure conditions and trace element
contents of fluid inclusions can reflect the characteristics and evolution processes of ore-
forming fluids. By analyzing the fluid inclusion assemblages and compositions, the ore-fluid
formation, migration and evolution can be effectively reconstructed (Wilkinson, 2001; Sun
et al, 2018).
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The Zhangjiapingzi gold deposit is located at the western margin
of the Yangtze block, in the south of the Songpan-Ganzi orogenic
belt, and in the Danba-Mianning gold belt (Figure 1) (Bao, 2016).
According to the latest exploration results, the Zhangjiapingzi gold
deposit has a proven gold resource of about 120 tons, and is the only
super-large gold deposit in the gold belt, with a maximum grade of
36.68 g/t and an average grade of 2.03 g/t. The strata exposed in the
mining area are Middle Triassic (T2) medium-low grade
metamorphosed greenschist belt and altered dolomite, and the
ore bodies are mainly hosted in altered dolomite (Dm).

The previous studies on the geological characteristics, wall rock
alteration, prospecting direction and other basic geological
characteristics of this deposit have been carried out (Lan, 2013;
Luo et al, 2013; Yang et al, 2015; Bao, 2016; Xin et al, 2016; Zhou
et al, 2016; Wang et al, 2019), and the fluid inclusion characteristics
and stable isotope characteristics of this deposit have been
preliminarily revealed (Bao, 2016). These characteristics indicate
that the ore-forming fluid may be a mixture of metamorphic water
and fluids of other sources. The gold ore-forming material may have
derived from the mantle. The ore-forming temperature was
estimated at 87–442.1°C, and mineralization in the Danba-
Mianning gold belt was interpreted to have occurred in the
Himalayan (Cenozoic) period. However, the ore genesis has been
variably interpreted to be epithermal (Bao, 2016; Xin et al, 2016), or

orogenic (Zhao, 2019) style. The fluid inclusion characteristics of
epithermal deposit and orogenic type gold deposits are significantly
different (Groves et al, 1998; Kerrich et al, 2000; Chen, 2006;
Chen et al, 2007): epithermal mineralization has mainly gas-
liquid water inclusions, low temperature and low salinity ore-
forming fluids, which were mainly sourced from magmatic water
and meteoric water (lack CO2-rich fluids); orogenic-type gold
mineralization has mainly CO2-H2O fluid inclusions and gas-
liquid water inclusions. The ore-forming fluids are CO2-rich,
200–700°C, and are sourced mainly from metamorphic water.
Fluid inclusion studies on the Zhangjiapingzi gold deposit are
rare. Therefore, we use fluid inclusion microthermometry and
laser Raman spectroscopy to analyze the fluid inclusions in the
Zhangjiapingzi gold deposit. This helps to further investigate the
ore-forming fluid characteristics and evolution patterns, and to
determine the deposit genetic type.

2 Geological background

The Zhangjiapingzi gold deposit is located at the Danba-
Mianning gold belt at the junction of the southwest margin of
the Yangtze block and the Songpan-Ganzi orogenic belt. The region
has undergone multiple magmatic-hydrothermal and tectono-

FIGURE 1
Tectonic map of the Zhangjiapingzi gold deposit [(A,B) modified from Zhao (2019); (C) modified from Luo et al. (2013), respectively].
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thermal events. In the region, the Zhangjiapingzi, Chapuzi, and
Jinpingshan gold deposits were formed in the Himalayan (Cenozoic)
orogenic event (Bao, 2016), and their spatial distribution is mainly
controlled by fault structures and alteration zones. Regionally, gold-
rich strata were composed of the Indosinian (Triassic) marine mafic
volcanics. In the late Yanshanian (Late Jurassic-Cretaceous) period,
plate tectonics and crustal uplift have folded and faulted the regional
sequences, forming a 2 km-wide shear zone west of the Jinhe-
Chenghai deep fault. The intrusion of granite porphyry and
quartz veins occurred in the late Yanshanian to Himalayan
period, accompanied by upwelling of metal (incl. gold)-rich
mantle-derived fluid, forming the gold orebodies in favorable
structural positions. The ages of other gold (e.g., the Chapuzi,
Daping, Suoluogou) and REE (e.g., Maoniuping) deposits in the
region are of 36 to 28 Ma (Yang, 2000; Yang et al, 2000; Bao, 2016;
Fu et al, 2019; Zhang et al, 2021), which coincided with in the late
collision period and were older than the gold mineralization at
Zhangjiapingzi (24 Ma) (Bao, 2016). The Zhangjiapingzi deposit is
larger than the other deposits in the district, and its formation was
coeval with the regional tectonic transition from late collisional
orogeny, through intracontinental transpression to post-collision
crustal extension and rifting (Hou et al, 2006a; Hou et al, 2006b).

Exposed stratigraphy at Zhangjiapingzi consists of Middle
Triassic (T2) weakly metamorphosed greenstone belts and
metasomatized dolomite (ore host) (Figure 2). Local structures
are dominated by a series of NNE-trending compressional faults.
The orebodies are deformed by shear zones, F1 fault and their
secondary structures. There are a total of 97 orebodies, including five
major ones. No. 60 Orebody is a major orebody, which is 780 m-
long, 0.84–22.29 m-thick, with an average grade of 1.53 g/t. The
metallic mineral assemblage includes pyrite, tetrahedrite, galena,
and native gold (Figure 3), whilst non-metallic minerals include
mainly calcite and quartz. Microscopic observations show that the
gold occurs mainly as visible native gold particles in pyrite or along
pyrite fractures (Figure 4). The ores are mainly euhedral-subhedral

granular in texture (Figure 5), and are mainly disseminated, veinlet-
disseminated, and stockwork (Figure 6). Wallrock alterations
include chlorite, carbonate, pyrite, silicic, and sericite. The
mineralization comprises three stages (Bao, 2016): (I) early-ore
dolomite-pyrite-quartz (II) main-ore pyrite-tetrahedrite-quartz,
and (III) late-ore quartz-pyrite-dolomite.

3 Samples and analytical methods

In this study, we collected from the middle section of No.
60 Orebody in southern Zhangjiapingzi, including from surficial
exploration trench and drill holes ZKS1601, ZKS3406, and ZK3608.
Representative samples were selected for fluid inclusion
microthermometric and laser Raman.

Preparation of petrographic polished thin sections and fluid
inclusion sections was performed at the Nanjing Hongchuang
Geological Exploration Technology Services Co. Ltd. The
homogenization and freeze-thaw experiments for the fluid
inclusion microthermometry were conducted at the Fluid
Inclusion Laboratory of the Chengdu University of Technology
and the State Key Laboratory of Mineral Deposit Geochemistry,
Chinese Academy of Sciences. The LINKAM THMSG600 Heating
and Freezing Stage was used for the experiments, whilst the
HokieFlincs2012 and HokieFlincs2018 Excel spreadsheets were
used to calculate parameters such as fluid salinity and density
(Matthew et al, 2012; Matthew, 2018).

The analysis was carried out at the State Key Laboratory of Ore
Deposit Geochemistry (SKLODG), using a HR Evolution laser
Raman spectrometer with a microscope equipped with a 20 ×
objective (NA 0.25). The spot diameter is ~2 μm. A
backscattering geometry was used in the 100–1,600 cm-1 range,
using a 600 L mm-1 grating. The Raman spectra were acquired by
a 532 nm laser, with a power of ~100 mW, and two consecutive
acquisitions (20 s each) were used.

4 Results

4.1 Types and characteristics of fluid
inclusions

The fluid inclusions in this study can be classified into primary,
secondary, and pseudo-secondary. Primary fluid inclusions (size:
5–25 μm) are usually found in mineral grains or along the crystal
growth direction. Secondary fluid inclusions (size: 1–6 μm) are
distributed along the mineral crystal fractures. Pseudo-secondary
fluid inclusions (size: <5 μm) are mainly present in mineral crystals
in a banded distribution or overlap with primary fluid inclusions.
Our analysis is focused on primary fluid inclusions. According to the
classification criteria of fluid inclusions at room temperature and the
phase changes during the heating-freezing process (Roedder, 1984;
Lu et al, 2004), we divide the primary fluid inclusions in Stage I to III
quartz into four types: L-type, LV-type, C-type, and CO2-type. The
characteristics of each fluid inclusion type are described as follows:

L-type: At room temperature, they occur as pure liquid-phase
and are colorless transparent (Figure 7A). This inclusion type is
common in quartz but rare in calcite, and is usually elongated.

FIGURE 2
Geological map of Zhangjiapingzi gold deposit. [Modified from
Xin et al. (2016)].
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LV-type: they consist of both liquid and vapor phases and are
widely distributed in both quartz and calcite (Figures 7B–F, H,
K–M). According to the volume percentage of the vapor and liquid
phases in the inclusion, they can be further divided into the liquid-
rich (LV1-type) and vapor-rich (LV2-type) subtypes. At room
temperature, LV1-type inclusions are composed of gas and saline
phases, with the latter accounting for >50% of the total volume of the
inclusion. The inclusion size varies greatly (diameter: 10–20 μm),
whereas the gas-liquid ratio variation is relatively narrow. These
inclusions are often elliptical, elongated, quadrangular, or irregular
(Figures 7D, F). During the heating, the gas bubble volume gradually
decreased and finally homogenized with the liquid phase. In a few
cases, the gas bubble volume increased with increasing temperature,

and finally homogenized with the gas phase. Some larger inclusions
show “necking” phenomenon (Figure 7D). LV2-type inclusions are
more common than LV1-type inclusions and they commonly
coexist. They are composed of gas and saline phase at room
temperature, with the former occupying >50% of the total
volume. The inclusion size varies greatly (diameter: 15–20 μm, up
to ~30 μm). They are often negative crystal or elliptical in shape
(Figures 7A–F, H). During the heating, the gas bubble gradually
increased and finally homogenized with the gas phase
(Figures 7L, M).

C-type: They are well-developed in stage I and II (but not stage
III) quartz. The H2O liquid phase is mostly colorless and
transparent, while the CO2 phase is mostly gray-black. C-type

FIGURE 3
Field and hand-specimen photos of the Zhangjiapingzi gold ore: (A) pyrite; (B) cubic pyrite; (C) galena; (D) pseudomorphic goethite; (E) patchy
tetrahedrite in quartz vein; (F) patchy tetrahedrite.
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FIGURE 4
Backscattered electron image of pyrite from Zhangjiapingzi gold deposit. Py2- Stage II pyrite; Q-quartz; Au- gold.

FIGURE 5
Photomicrographs of the Zhangjiapingzi gold ore textures: (A) euhedral granular; (B) subhedral granular; (C) replacement residual; (D) replacement
pseudomorph; (E) stellar texture; (F) schistose texture. Py-pyrite; Lmt-limonite; Gn-galena; Q-quartz; Fuc- Fuchsite.
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inclusions account for ~25% of the total number of fluid inclusions.
These inclusions can be of two-phase (C1-type) or three-phase (C2-
type) at room temperature. C1-type contains liquid water and
gaseous CO2, and liquid CO2 appears at ca. 5–20°C (Figures 7C,
I). C1-type can be further classified into H2O-rich (C1a-type) and
CO2-rich (C1b-type), according to its proportion of CO2: C1a-type
(size: 5–18 μm) is mostly quadrangular or elliptical, while C1b-type
(size: 8–15 μm) homogenized mostly into liquid (minor into gas)
when heated, with negative crystal or irregular shapes. C2-type (size:
8–24 μm) contains gaseous CO2, liquid CO2, and liquid H2O
(Figures 7E, F, H, K). These inclusions are mostly elliptical,
elongated or irregular, and homogenized into gas when heated.

CO2-type: At room temperature, these inclusions comprise pure
liquid. They are grayish-black and negatively crystal-shaped
(Figure 7G), and are mostly hosted in quartz and largely absent
in calcite.

4.2 Laser Raman spectroscopy of fluid
inclusions

In this study, laser Raman spectroscopic analysis was performed on
all L-, LV-, C-, and CO2-type fluid inclusions from quartz, with the
results shown in Figure 8. For gas-liquid two-phase fluid inclusions, the

FIGURE 6
Photos of the Zhangjiapingzi gold ore: (A) sparsely disseminated texture; (B,C) densely disseminated texture; (D) veinlet texture; (E)massive texture;
(F) brecciated texture.
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characteristic peaks appearing before 1,000 cm-1 in Raman shifts are
generally affected by the host mineral quartz or the outer wall of the
fluid inclusion, and thus they are not further discussed here. The results
show that the liquid phase component is mainly CO2 (characteristic
peaks at 1,282–1,387 cm-1) and the gas phase component is mainly CH4

(characteristic peaks at 2915 cm-1).

4.3 Fluid inclusion microthermometry

In this study, microthermometric measurements were
conducted on seven well-preserved fluid inclusion (LV- and

C-type) samples, yielding a total of 168 data points. The fluid
inclusions analyzed were selected based on micro-petrographic
observations (Figure 9).

A: C2-type fluid inclusion at −100°C; B: Solid-state CO2 is still
visible at −56.9°C; C: Solid CO2 melts at −56.7°C, which is the
initial melting temperature; D: At 8.4°C, the daughter mineral is
not completely dissolved, and the gaseous-liquid CO2 boundary
becomes blurred; E: At 8.5°C, the daughter mineral disappears,
and the gaseous-liquid CO2 boundary becomes clear, and the
gaseous CO2 becomes a complete bubble, Consistent with room
temperature state; F: At 23.2°C, the C2-type inclusion
homogenized partially to gaseous phase; G: At 110°C, the

FIGURE 7
Microphotographs of fluid inclusions in the Zhangjiapingzi gold deposit: (A) L-type; (B) LV2-type; (C) LV2- and C1-type; (D) LV1- and LV2-type; (E)
LV2-, C1-, and C2-type; (F) LV1- and C2-type; (G) Type D; (H) LV2- and C2-type; (I) Secondary fluid inclusions developed along crystal fractures; (J)
Pseudo-secondary fluid inclusions along quartz growth zones; (K) LV2- and C2-type; (L,M) LV-type.
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gaseous CO2 expands gradually; H: At 173.2°C, C2-type inclusion
homogenized completely to gaseous phase.

From Table 1, it is shown that the homogenization temperatures
of LV-type fluid inclusions vary greatly from 185.2 to 380.6°C. Stage
I LV-type fluid inclusions have homogenization temperatures of
285.2–380.6°C (avg. 349.8°C) and ice melting temperatures
of −5.7 to −0.1°C (avg. −3.1°C), whilst stage II LV-type inclusions
have homogenization temperatures of 232.1–351.3°C (avg. 276.1°C)
and ice melting temperatures of −13.8 to −0.1°C (avg. −3.1°C). Stage
III LV-type inclusions have homogenization temperatures of
185.2–237.3°C (avg. 213.2°C) and ice melting temperatures

FIGURE 8
Laser Raman spectra of fluid inclusions from the Zhangjiapingzi gold ore (A,D) C1-type; (C) C2-type; (B) CO2-type.

FIGURE 9
Phase diagram of C2-type fluid inclusions from Zhangjiapingzi gold deposit.

TABLE 1 Microthermometric data statistics of LV-type fluid inclusions from the
Zhangjiapingzi gold deposit.

Ore stage n Th,tot/°C Tm,ice/°C

Avg. Avg.

Early (I) 31 285.2 to 380.6 349.8 −5.7 to −0.1 −3.1

Main (II) 92 232.1 to 351.3 276.1 −13.8 to −0.1 −3.1

Late (III) 18 185.2 to 237.3 213.2 −5.6 to −0.3 −2.5

Total 141 185.2 to 380.6 284.3 −13.8 to −0.1 −3.0
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of −5.6 to −0.3°C (avg. −2.5°C). Accordingly, mineralization
temperatures at Zhangjiapingzi are mainly 320 and 380°C in
stage I, 240–300°C in stage II, and 220 and 240°C in stage III
(Figure 10).

The vast majority of C-type fluid inclusions would burst or leak
when the temperature exceeds 190°C during the heating process.
Moreover, the larger the inclusion volume, the easier it is to burst.
This is why only a small number of C-type inclusions could yield
complete homogenization temperature in this study (Table 2).

From Table 2, it is shown that the initial melting temperatures of
stage I C-type fluid inclusions are −57.8 to −55.8°C (mean −56.6°C).
The daughter minerals disappeared at 6.1–9.8°C (mean 8.7°C).
Partial homogenization temperatures are 18.4–29.8°C (mean
25.4°C), whilst total homogenization temperatures are
196.7–317.6°C (mean 265.3°C). In stage II, the initial melting
temperatures of C-type inclusions are −57.5 to −56.1°C

(mean −56.6°C). The daughter minerals disappeared at 6.7–9.7°C
(mean 9.1°C). Partial homogenization temperatures are 20.1–23.2°C
(mean 21.6°C), whilst the total homogenization temperatures are
119.8–253.2°C (mean 180.0°C). From Figure 10, it is shown that the
mineralization temperatures at Zhangjiapingzi are concentrated
around 240–300°C in stage I, and 140–160°C and 220–260°C in
stage II.

4.4 Fluid salinity and density

The salinity and density for LV-type inclusions were
calculated using the HokieFlincs2012Excel spreadsheet
(Matthew et al, 2012), while those of C-type inclusions were
calculated using the HokieFlincs2018Excel spreadsheet
(Matthew, 2018).

FIGURE 10
Homogenization temperature (A,B) and salinity (C,D) histograms of fluid inclusions from the Zhangjiapingzi gold deposit.

TABLE 2 Microthermometric data of C-type fluid inclusions from the Zhangjiapingzi gold deposit.

Ore stage n Tm, CO2/°C Tm, cla/°C Th, CO2/°C Th, tot/°C

Avg. Avg. Avg. Avg.

Early (I) 12 −57.8 to −55.8 −56.6 6.1 to 9.8 8.7 18.4 to 29.8 25.4 196.7 to 317.6 265.3

Main (II) 15 −57.5 to −56.1 −56.6 6.7 to 9.7 9.1 20.1 to 23.2 21.6 119.8 to 253.2 180.0

Total 27 −57.8 to −55.8 −56.6 6.1 to 9.8 8.9 18.4 to 29.8 23.3 119.8 to 317.6 217.9

Note: Tm, CO2- initial melting temperature; Tm, cla-clathrates melting temperatures; Th, CO2- partial homogenization temperature; Th, tot-total homogenization temperature.
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In stage I, the calculated salinity of LV-type and C-type fluid
inclusions is of 0.18%–8.81% (avg. 5.02%) and 0.42%–7.29% (avg.
2.57%), respectively. The calculated fluid density of LV-type and C-type
inclusions is of 0.54–0.78 g/cm3 (avg. 0.67 g/cm3) and 0.79–1.01 g/cm3

(avg. 0.90 g/cm3), respectively. In stage II, LV-type and C-type
inclusions have salinity of 0.18%–17.61% (avg. 4.94%) and 0.63%–
6.28% (avg. 1.84%), respectively, and density of 0.66–0.91 (avg. 0.80 g/
cm3) and, 0.87–0.98 g/cm3 (avg. 0.94 g/cm3). In stage III, LV-type
inclusions have salinity of 0.53%–8.68% (avg. 4.12%), and density of
0.84–0.93 g/cm3 (avg. 0.88 g/cm3) (Table 3).

Petrographic observations indicate that LV-type and C-type
inclusions coexist in quartz veins. LV1-type inclusions
homogenized to the liquid phase, while some LV2-type
inclusions homogenized to the gas phase. There are also some
high-salinity LV1-type and C-type inclusions, indicating fluid
boiling during mineralization. Figures 10C, D shows that the
fluid salinity decreases from the early to late stage, whilst
Figure 11 shows that the fluid salinity and density are
correlated positively. Throughout the mineralization, the
density increases and the salinity decreases gradually. The
overall fluid salinity and density are below 10% and
0.79–1.01 g/cm3, indicating that the Zhangjiapingzi gold ore
fluids are of low salinity and medium-low density.

4.5 Mineralization pressure estimation

Fluid inclusion pressure estimation has always been
challenging, and the estimated mineralization pressure usually
refers to the trapping pressure of fluid inclusions. The
homogenization pressure of fluid inclusions can be obtained
based on their homogenization temperature, but the trapping
pressure needs to be corrected. In nature, the most common ore-

TABLE 3 Salinity and density statistics of fluid inclusions (FI) in the Zhangjiapingzi gold deposit.

Ore stage FI type n Salinity (wt% NaCleqv.) Density (g/cm3)

Avg. Avg.

Early (I) LV 31 0.18 to 8.81 5.02 0.54 to 0.78 0.67

C 12 0.42 to 7.29 2.57 0.79 to 1.01 0.90

Main (II) LV 92 0.18 to 17.61 4.94 0.66 to 0.91 0.80

C 15 0.63 to 6.28 1.84 0.87 to 0.98 0.94

Late (III) LV 18 0.53 to 8.68 4.12 0.84 to 0.93 0.88

Total LV 141 0.18 to 17.61 4.86 0.54 to 0.93 0.78

C 27 0.42 to 7.29 2.17 0.79 to 1.01 0.92

FIGURE 11
Density-salinity diagram of fluid inclusions from the Zhangjiapingzi gold deposit.

TABLE 4 Pressure of fluid inclusions (FI) in the Zhangjiapingzi gold deposit.

Ore stage Inclusion type n Pressure/MPa

Range Avg. Value

Early (I) LV 31 6.75–22.48 16.27

C 12 8.28–42.46 21.92

Main (II) LV 92 2.82–16.30 6.25

C 15 10.23–29.08 22.14

Late (III) LV 18 1.08–3.12 2.04

Total LV 141 1.08–22.48 7.92

C 27 8.28–42.46 22.05

Frontiers in Earth Science frontiersin.org10

Yan et al. 10.3389/feart.2023.1228019

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1228019


forming fluid system is the NaCl-H2O system, which exists in
almost any type of deposits. The Zhangjiapingzi gold ore-forming
fluids belong to the H2O-NaCl-CO2 system, and thus different
formulas are needed to calculate the pressure.

Matthew (2018) proposed a new pressure calculation method
for the NaCl-H2O fluid system, which is adopted here for LV-
type inclusions. Meanwhile, pressure calculation of C-type
inclusions used the formula for the H2O-NaCl-CO2 system
(Pudack et al, 2009; Matthew et al, 2012). The calculation
results are shown in Table 4.

In stage I, the estimated pressure of LV-type and C-type fluid
inclusions is of 6.75–22.48 MPa (avg. 16.27 MPa) and 8.28%–
42.46% (avg. 21.92%), respectively. In stage II, the estimated
pressure of LV-type and C-type inclusions is of 2.82–16.30 MPa
(avg. 6.25 MPa) and 10.23–29.08 MPa (avg. 22.14 MPa),

respectively. In stage III, the estimated pressure of LV-type
inclusions is 1.08–3.12 MPa (avg. 2.04 MPa). Estimated pressure
of the Zhangjiapingzi gold mineralization ranges from 1.08 to
42.46 MPa. As shown in Figure 12, the pressure of quartz fluid
inclusions decreases from the early to the late stage, except for some
outliers.

5 Discussion

5.1 Characteristics of ore-forming fluids

Primary fluid inclusions preserve the features and origin of ore-
forming fluids, which are crucial for the understanding of the ore
genesis (Hou et al, 2006a; Hu et al, 2014). Based on
microthermometry and petrographic observations, the fluid
inclusions from Zhangjiapingzi gold deposit are dominated by
CO2-H2O-NaCl inclusions. Our microthermometric analysis
indicates that the main ore stage fluid inclusions range from
220 to 300°C, with low salinities (<10%) and density
(0.79–1.01 g/cm3). Laser Raman analysis reveals that the
inclusions are CO2-rich, suggesting that the ore-forming fluid
was of medium-temperature, low-salinity, medium-low-density,
and CO2- and CH4-rich. Previous studies have shown that most
of the H-O isotope data fall within the metamorphic water field
(Figure 13), and the C-O data imply that the carbon of the ore-
forming fluid was originated from the mantle (Figure 14). This
indicates that the Zhangjiapingzi gold deposit has similar carbon
(δC13 = −7.40 to −3.44‰), oxygen (δO18

H2O = 4.4‰–6.7‰) and
sulfur (δ34S = 3‰–7‰) isotope compositions (Table 5) to those of
typical mantle-derived metamorphic-hydrothermal fluids (Luo et al,
2013; Xin et al, 2016; Xu et al, 2019; Li, 2001; Li et al, 2007; Li et al,
2005).

Generally, water-rock interaction, fluid mixing and CO2

degassing are common mechanisms for hydrothermal ore
deposition (Zheng, 1990; Zhang, 1997). Previous studies have
demonstrated (Zheng et al, 1993) that C and O isotopic

FIGURE 12
(A) Salinity-pressure plots for LV-type fluid inclusions; (B) pressure-homogenization temperature plot for C-type fluid inclusions in the
Zhangjiapingzi gold deposit. Base map is adapted from references (Yang et al, 2009; Sourirajan et al, 1962; Bodnar et al, 1962; Ulrich et al, 1962) (A) and
(Diamond et al, 2003; Li, 2021) (B).

FIGURE 13
Fluid inclusion δD-δO18

H2O diagram of gold deposits in the
Danba-Mianning gold metallogenic belt. Base map is adapted from
references (Taylor, 1974; Rollison et al, 2000).
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compositions are negatively correlated when the fluids are affected
by CO2 degassing or fluid-wallrock interaction, and such negative
correlation is found in our data. However, a simple fluid-wallrock
interaction cannot explain the wide δ13CV-PDB range
(−7.40 to −3.44) observed in the Zhangjiapingzi samples
(Table 5). This implies that water-rock interaction alone is
insufficient to account for metal precipitation. Pressure drop
(e.g., boiling) is a key process for CO2 degassing. We found that
coexisting fluid inclusions with different types and gas-liquid ratios
have similar total homogenization temperatures (within the same
field of view).

Figure 15 shows that although the homogenization temperature
variation is minor, their salinities vary widely. Some main-ore stage
fluid inclusions have high salinities (max 17.61%), while some have
low salinities (min 0.18%), implying fluid boiling. Table 4 shows that
from the early to late mineralization stages, LV-type inclusions
indicate a gradual decrease of ore-forming pressure (from 22.48 to
1.08 Mpa). During CO2 degassing of the ore-forming fluids, metallic
minerals precipitated as the fluid degassed CO2 and its pH increased.
The H-O isotope data plot within the metamorphic water field
(Figure 13), with minor contribution from the mantle-derived
magmatic water. This suggests that the ore-forming fluids may
have involved a mixture of metamorphic and magmatic fluids,
although fluid mixing alone cannot account for all the ore
precipitation.

5.2 Gold metallogeny at zhangjiapingzi

Based on previous studies (Lan, 2013; Luo et al, 2013; Yang
et al, 2015; Bao, 2016; Xin et al, 2016; Zhou et al, 2016; Wang et al,
2019) (Table 6), a comparison of Zhangjiapingzi gold deposit
with epithermal and orogenic types reveals that Zhangjiapingzi
gold deposit matches with orogenic features in terms of regional
tectonic setting, orebody features, ore types, wallrock alteration,
and the ore-forming fluid features and sources (Groves et al,
1998; Kerrich et al, 2000; Chen, 2006; Chen et al, 2007; Cline,
2018; Deng et al, 2020; Wang et al, 2022). The H isotope
composition (δD) of Zhangjiapingzi gold deposit ranges
from −78.06 to −23.35‰ (Table 5), which is consistent with
those of typical orogenic gold deposits (δD = −80 to −20‰)
(Ohmoto, 1997), further supporting that the Zhangjiapingzi is
orogenic type.

The Zhangjiapingzi gold deposit is situated in the Danba-
Mianning gold metallogenic belt, which borders the southwest
margin of Yangtze block and Songpan-Ganzi orogenic belt. This
area underwent the Yanshanian and Himalayan orogenic events,
leading to the development and modification of shear (and
alteration) zones that controlled the gold transport and
concentration (Bao et al, 2016). The regional orogeny may have

TABLE 5 Carbon-hydrogen-oxygen isotope compositions of different gold deposits in the Danba-Mianning gold ore belt.

Gold deposit δC13 (‰) C12/C13 δO18 (‰) δD (‰) δ34S (‰) Ref.

Zhangjiapingzi −3.92 to −5.64 88.81–89.45 13.86 to 15.00 — −6.0 to 12.0 Luo et al (2013)

Zhangjiapingzi −7.40 to −3.44 — 9.40 to 18.81 −78.06 to −23.35 Xin et al (2016)

Zhangjiapingzi — — 4.4 to 6.7 — 3.6 to 12.8 Zhao (2019)

Matoushan −6.50 to −3.50 — −9.50 to - 2.60 −79.50 to −43.50 −4.6 to 8.4 Li (2001)

Chapuzi — 88.80 to −89.41 14.90 to 15.89 −60.72 to −32.68 5.7 to 7.5 Li, 2001; Li et al. (2005), Li et al. (2007), Perea et al. (2020)

FIGURE 15
Salinity vs homogenization temperature plot of fluid inclusions
from the Zhangjiapingzi gold deposit. Base map is adapted from
reference (Rollison et al, 2000).

FIGURE 14
δ13CV-PDB vs δ18OV-SMOW diagram for the Zhangjiapingzi gold
deposit. Basemap is adapted from references (Luo et al, 2013; Xin et al,
2016).
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also provided the ore-forming materials, fluids and structures for
gold mineralization. Within the Zhangjiapingzi mining area, the
F1 fault (Figure 2) and its associated structures and alteration zones
are the main ore-hosting sites, as these structures created favorable
conditions for gold deposition. Based on our petrographic and
Raman spectroscopic analyses of fluid inclusions, the ore-forming
fluid was likely of medium-temperature (220–300°C), low-salinity
(<10%), medium-low-density (0.79–1.01 g/cm3), and CO2- and
CH4-rich, resembling orogenic-type ore-forming fluid and
suggesting an orogenic origin for this deposit.

6 Conclusion

Based on microthermometry and petrographic observations, the
fluid inclusions from Zhangjiapingzi gold deposit are dominated by
CO2-H2O-NaCl inclusions. The microthermometric data of fluid
inclusions from the main mineralization stage range from 220 to
300°C, with low salinities (<10%) and densities (0.79–1.01 g/cm3).
The ore-forming fluid exhibits medium-temperature, low-salinity,
medium-low-density, CO2- and CH4-rich features, which match
with the ore-forming fluid features of orogenic gold deposits,
suggesting an orogenic origin for this deposit.
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TABLE 6 Comparison of geological characteristics between Zhangjiapingzi gold deposit and epithermal and orogenic gold deposits.

Deposit features Zhangjiapingzi Au deposits Epithermal Au deposits Orogenic gold deposits

Tectonic background Intraplate tectonic transition, extension-rifting Island arc/continental arc/backarc
extension

Intraplate tectonic transition,
extension

Mineralization temperature and
depth

220–300°C, 0.11–6.34 km <200°C, 0–2 km 200–700°C, 2–10 km

Orebody feature Mainly stratiform Vein, stratiform, lensoidal Vein, stratiform

Ore type Altered rock, quartz vein Altered rock, quartz vein, tectonic breccia Altered rock, quartz vein, mylonite

Wallrock alteration Carbonate, chlorite, pyrite, sericite, silicic Chlorite, pyrite, sericite Carbonate, chlorite, pyrite, sericite

Ore fluid feature Salinity 0.18%–17.61%, density 0.79–1.01 g/cm3,
CO2-rich

Salinity <3–10%, CO2-poor Salinity 3%–10%, CO2-rich

Ore fluid source Mainly metamorphic Magmatic, meteoric Mainly metamorphic

Note: Characteristics of epithermal Au deposits and orogenic gold deposits are summarized from. Base map is adapted from references (Groves et al, 1998; Kerrich et al, 2000; Chen, 2006; Chen

et al, 2007; Cline, 2018; Deng et al, 2020; Wang et al, 2022).
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