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In order to explore the deterioration mechanism of mechanical properties of
phosphate rock under different saturation time, the degradation mechanism of
phosphoric rock samples under different saturation duration was analyzed by
laboratory test, theoretical analysis and neural network modeling, and the results is
as follows: saturation of water will result in deterioration of mechanical properties of
samples. The peak compressive strength and peak strain of the samples decreased
graduallywith the increaseof saturation time. The averagepeak strengthof 12, 24, and
36 h saturated specimens is 8.6%, 21.1%, and 32.2% lower than that of natural
specimens, and the peak strain is 5.9%, 13.9%, and 31.3% lower, respectively. The
stress-strain curves of the samples with water saturation for 36 h have more jitter
stages after the peak, indicating that the plastic characteristics of the samples will be
increasedwithwater saturation for a long time. The neural networkmethodwas used
to analyze the test parameters and themechanical parameters of the samples, and the
mechanical properties under the action of saturated water and confining pressure
were obtained. The neural network model was established to represent the
mechanical properties of the samples, and the average accuracy of the model
was 0.89. The model can be used to predict and verify the mechanical properties
of samples under other saturation and confining pressure conditions in the limited
region. The research results can provide theoretical reference for the deterioration
mechanism of confining pressure in water-rich roadway.
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1 Introduction

The phenomenon of water gushing often occurs in the process of roadway excavation in a
mine in Yunnan Province. Soaking and saturation will result in deterioration of mechanical
properties of rock mass, thus increasing the difficulty of tunneling and support (Liu et al., 2023a;
Liu et al., 2023b; Liu et al., 2023c). Therefore, it is of great significance to explore the deterioration
mechanism of rock mechanical properties under different saturation duration conditions.

Many scholars at home and abroad have done a lot of research on the water deterioration
mechanism of rock (Ni et al., 2005; Wood, 2015; Ma et al., 2020; Wang et al., 2020; Wang
et al., 2023a; Wang et al., 2023b). Feng et al. (2022) explored the instability fracture
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characteristics of red sandstone samples under different water-
bearing states under the combination of static and dynamic states
through laboratory tests, and concluded that the mechanical
response of natural sandstone samples was typical characteristic
of rock burst, while the mechanical response of saturated sandstone
samples was mainly reflected in the degree of rock sample
fragmentation. In the study on the changes of rock mechanical
properties and meso-structural characteristics under water
saturation, Zhao (2022) conducted triaxial compression and
scanning electron microscope tests under different confining
pressures and water saturation conditions, and concluded that
with the increase of water saturation, the mechanical properties
of sandstone continue to decline, the water saturation deterioration
effect of sandstone is significant, and the water saturation effect
promotes the development of microcracks. Water and rock sample
volume have obvious influences on physical mechanics and
deformation characteristics of sandstone. Through experiments,
Wang et al. (2019) concluded that: the elastic modulus and
deformation modulus of sandstones are negatively correlated
with the rock sample volume. The Poisson’s ratio of dry
sandstones increases with the increase of rock sample volume,
while that of saturated sandstones increases first with the
increase of rock sample volume and then becomes stable. The
presence of water has no obvious effect on the failure
morphology of rock sample under uniaxial compression. In the
study on deformation characteristics of saturated rock mass in cold
region, Jia et al. (2023) pointed out that the freeze-thaw strain
characteristic values of saturated rock are related to fracture length,
width and rock lithology, and that freeze-thaw failure of fractured
rock is a process of gradual accumulation of residual strain. Water
environments (water content, osmotic water pressure), loading
rates, generalized stress relaxation have obvious deterioration
effects on the aging characteristics of rock. Considering the aging
characteristics of surrounding rock under the action of water
environment, it is of great significance for the long-term stability
control of tunnel (Chen, 2021). By studying the tensile strength and
failure mechanism of rock damaged by hydrothermal coupling at
different loading rates, Wang et al. (2020) pointed out that the
indirect tensile strength of water-saturated sandstone specimens was
lower than that of dry specimens, and the strain rate dependence of
water-saturated rock samples was stronger than that of dry rock. A
large number of electromagnetic radiation (EMR) signals are
released in the loading failure process of water-bearing fractured
rock mass, which can provide certain guidance for the monitoring
and warning of related geological disasters. Related research results
showed that compared with dry rock samples, saturated rock
samples had lower compressive strength, earlier cracking time,
more complex failure mode, and lower proportion of high
frequency signal of saturated rock samples than dry rock samples
(Shen et al., 2021).

In recent years, neural network model has been widely used in
rock mechanics research experiments (Zhang et al., 1991). Chen
(2022) proposed an acoustic emission positioning method that
combines spectrum analysis and convolutional neural network
without the need for wave velocity model and time pick, which
effectively improves the acoustic emission positioning accuracy and
avoids the shortcomings of traditional positioning methods,
providing a new idea for rock acoustic emission positioning. By

introducing BP neural network, Chen (2022) took drilling
experiment data import as the input layer and rock mechanics
parameters as the output layer. Through the prediction of composite
samples, the prediction accuracy of the trained BP neural network
model on rock mechanics parameters and the identification ability
of rock interface were verified. By establishing the fracture network
topography prediction model based on artificial neural network
under the influence of multiple factors, Feng (2021) sorted the
factors affecting the results of shale fracture network topography,
providing a new idea to solve the environmental problems in shale
gas exploitation.

The above scholars have done a lot of research on the water-
bearing deterioration mechanism of rocks and reached a lot of
conclusions, but there are few studies on the deterioration law of
rock mechanical properties under different water-saturation
duration (Zhang et al., 2018; Wu et al., 2021). Therefore, triaxial
compression test were carried out on phosphate rock in this paper to
explore the changes of mechanical properties of rock under three
conditions of 12, 24 and 36 h. On this basis, the neural network
method was used to analyze the test parameters and sample
mechanical parameters. The discrete data points were extended
to the continuous definition domain on the number line, and the
neural network model based on multi-layer perceptron was
established, in order to provide theoretical reference for the
excavation and support of water-rich roadway in a Yunnan mine.

2 Sample and methods

2.1 Specimen preparation

The rock sample in this paper is taken from the phosphorus block
rock in the upper layer of phosphate mine roadway in Yunnan. The
selected rock sample was cut and polished to make a standard cylindrical
sample with φ 50 × 100mm. Meanwhile, in order to avoid the influence
of the end friction effect on the test, the flatness of the end face was
controlled within 0.02 mm, the surface of the specimen was smooth
without obvious joints and cracks, and the cylindrical specimen was
manufactured in strict accordance with the standards of the International
Society of Rock Mechanics, as shown in Figure 1.

2.2 Testing device

1) Ultrasound Testing Device.

The longitudinal wave velocity was carried out by the UTA-2000A
intelligent ultra-sonic monitor (as shown in Figure 2A). The sampling
frequency is 10MHz; sensor frequency is 35 kHz, and Vaseline cream as
coupling agent is used between the sample and sensors.

2) Fatigue loading test and triaxial compression test were carried out
on a QKX-YD-1000 electro-hydraulic servo rock dynamic fatigue
test machine, which was produced by Qingdao Qiankunxing
Intelligent Technology Co., Ltd., Qingdao, Shandong Province.
As shown in Figures 2B, C. The maximum axial load of the system
is 800 kN, the maximum loading speed is 800 mm/min, and the
maximum displacement is 50 mm (Wang 2021).
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2.3 Test methods

1) Grouping: The specimens are divided into 4 groups, labeled as
Group A, Group B, Group C, and Group D, with 8 specimens in
each group. Group A specimens undergo no treatment and are
labeled as the natural group. Specimens in Group B, Group C, and
Group Dwere forced to fill with water in a vacuum saturator for 12,
24, 36 h, respectively, and then sealed with plastic wrap.

2) Measurement of physical properties: Calipers and an electronic
balance are used to measure the dimensions and mass of the
specimens, and calculate the density. The UTA-2000A Intelligent
Ultrasonic Monitoring Instrument (Figure 3A) is used to
conduct ultrasonic testing on the specimens. Based on the
density and ultrasonic testing results, homogeneous specimens
are selected for further testing.

3) Conventional triaxial tests: Conduct conventional triaxial
tests on the A, B, C, and D groups of specimens to
measure mechanical parameters such as peak strength (σ1),
peak strain (εc), elastic modulus (E), cohesion (c), and angle of

internal friction (f). In this experiment, the confining pressure
for the three groups of specimens is set at 4, 6, 8, 10, and
12 MPa.

3 Test results and analysis

Figure 3 shows the stress-strain curves of the samples in the
conventional triaxial compression test. As can be seen from Figure 3,
the variation of stress-strain curve of samples of each group roughly
went through four stages: compaction, elasticity, yield and failure. 1)
Compaction stage: the original cracks inside the sample were
compacted to form nonlinear compression deformation; 2)
Elastic stage: the stress-strain curve was basically linear, obeying
Hooke’s law; 3) Yield stage: as the axial stress continues to load, the
material with low strength inside the sample first enters the yield
failure stage, the stress-strain curve deviated from the straight line,
and the increased rate of axial stress gradually decreases; 4) Failure
stage: when the sample reached the ultimate strength, the bearing

FIGURE 1
Cylindrical standard sample.

FIGURE 2
Testing device. (A)UTA 2001A ultrasonic inspectionmonitor. (B)QKX-YD-1000 electro-hydraulic servo rock dynamic fatigue test machine. (C) Test
schematic diagram.
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capacity of the sample decreased rapidly with the increase of
deformation, and the deformation damage of the sample was
further aggravated.

Observe the peak stress of samples in each group in Figure 3. For
Group A, the peak strength of the sample is 169.9 MPa when the
confining pressure is 4 MPa. When the confining pressure is 6, 8,
10 and 12 MPa, the peak strength of each sample increases by 18.7%,
38.1%, 60.9%, and 87.1%, respectively. For Group B, the peak
strength of the samples is 151.2 MPa when the confining
pressure is 4 MPa. When the confining pressure is 6, 8, 10 and
12 MPa, the peak strength of each sample increases by 25.4%, 41.1%,
67.0%, and 90.0%, respectively. For Group C, the peak strength of
the samples is 84.17 MPa when the confining pressure is 4 MPa.
When the confining pressure is 6, 8, 10 and 12 MPa, the peak
strength of each sample increases by 17.6%, 39.7%, 70.1%, and
97.8%, respectively. For Group D, the peak strength of the samples is
91.5 MPa when the confining pressure is 4 MPa. When the
confining pressure is 6, 8, 10 and 12 MPa, the peak strength of
each sample increases by 41.9%, 63.3%, 127.0%, and 154.7%,
respectively.

Meanwhile, the transverse comparison of samples of each group
shows that the peak strength of samples in Group A (239.5 MPa) is
the largest, and the average peak strength of samples in Group B
(218.8 MPa), Group C (189.1 MPa), and Group D (162.3 MPa)
under different confining pressures is 8.6%, 21.1%, and 32.2%
lower than that of Group A, respectively. The peak strain of
samples in Group A (1.89×10−2) is the largest, and the average
peak strain of samples in Group B (1.78×10−2), Group C (1.63×10−2),
and Group D (1.30×10−2) under different confining pressures is
5.9%, 13.9%, and 31.3% lower than that of Group A, respectively,
indicating that saturation of water has an obvious deterioration
effect on samples.

According to Mohr-Coulomb strength criterion, the maximum
shear stress of the sample bearing is determined by cohesion and
internal friction Angle, which can be expressed as (Wei et al., 2020):

τ � c + μσ (1)
where, c is cohesion; μ is the internal friction coefficient, μ � tanφ, φ
is the Angle of internal friction; σ is the normal stress on the surface
of the damage. If expressed as principal stress, then:

FIGURE 3
The stress-strain curves of the samples in the conventional triaxial compression test under different water length conditions. (A) Group A (0 h).
(B) Group B (12 h). (C) Group C (24 h). (D) Group D (36 h).
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σ1 � kσ3 + Q (2)
where, σ1 is the peak strength; k andQ arematerial strength parameters,
and the relationship between their values and c, φ is as follows:

φ � arcsin
k − 1( )
k + 1( ) (3)

c � Q
1 − sinφ( )
2 cosφ( ) (4)

According to Eq. 2, the relationship between the peak strength
and confining pressure of the samples was obtained by regression,
and the mechanical parameters of the samples of each group were
calculated, as shown in Table 1.

4 Neural network analysis

4.1 Neural network model training

A neural network prediction model with saturation time and
confining pressure as influencing factors was developed. In the
model, peak strains, peak strength and elastic modulus as the
output factors, as shown in Figure 4.

As shown in Figure 4, the activation function of the hidden layer
of the multi-layer perceptron is the hyperbolic tangent function
(Aras et al., 2020; Moussas et al., 2021):

tanhx � sinhx

coshx
� ex − e−x

ex + e−x
(5)

In Figure 3, the calculation formula of the weight of each input
layer is as follows:

ω1n 1 × 3( ) � random −1, 1( ) × 3)[ ]
ω2n 1 × 4( ) � random −1, 1( ) × 4)[ ]{ (6)

1) Set the initial random weight (for the convenience of calculation,
we take the deviation as the first input factor), where ω1n(1 × 3)
and ω2n (1 × 4) are the weights of the input layer and the hidden
layer, respectively.

2) The factors of the input layer are multiplied by the weight:

P � x1, x2( ) w11, w12, w13( )T � X1, X2, X3( ) (7)
Type, x1 and x2 for input layer saturation time and confining

pressure.

3) Calculate the output of hidden layer:

TABLE 1 Mechanical parameters of each group of samples.

Group σ3 (MPa) σ1 (MPa) εc (10–2) E (GPa) c (MPa) φ (°)

A (Nature) 4 169.88 1.77 12.96 10.77 63.75

6 201.69 1.79 19.51

8 234.54 1.78 16.85

10 273.40 1.99 17.99

12 317.84 2.12 22.29

B (Soak for 12 h) 4 151.24 1.62 10.88 10.35 62.58

6 189.73 1.71 14.41

8 213.35 1.72 15.12

10 252.54 1.83 17.59

12 287.37 2.01 16.03

C (Soak for 24 h) 4 130.34 1.34 18.28 7.42 62.09

6 153.25 1.57 23.40

8 182.08 1.62 22.76

10 221.74 1.72 28.06

12 257.84 1.89 23.16

D (Soak for 36 h) 4 91.49 0.88 9.51 9.00 53.13

6 129.86 1.31 17.16

8 149.40 1.24 14.04

10 207.65 1.41 16.95

12 233.02 1.65 15.52
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Y1 � H 1: 1( ) � tanh X1 +X2 +X3( ) (8)

4) The error between the hidden layer output result and the real
result was calculated:

E � 1
2
Ytarget − Yout1( )2

yout1 � eynet1 − e−ynet1

eynet1 + e−ynet1

ynet1 � X1 +X2 +X3

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(9)

where, E for error, Ynet1 is the input signal received by the hidden
layer, namely, the weighting of each factor and the input layer. Yout1

is the output value of the activation function of hidden layers.

5) Update weight:

Taking the saturation time factor as an example, updating the
weights after the error back propagation requires first calculating the
partial derivative of ω11 with the overall error, namely, ∂E

∂w11 value.
For the convenience of calculation, ∂E

∂w11 can be decomposed into:

∂E
∂w11

� ∂E
∂yout1

· ∂yout1

∂ynet1
· ∂ynet1

∂w11
(10)

According to Eq. 9, the values of each split term are calculated in
turn, and it can be seen that:

∂E
∂yout1

� Yout1 − Ytarget

∂yout1

∂ynet1
� ∂ ez−e−z

ez+e−z[ ]
∂z

∣∣∣∣∣∣∣∣∣ z�ynet1 �
∂

sinh z( )
cosh z( )[ ]
∂z

� 1 − tanh2 z( ) � 1 − eynet1 − e−ynet1

eynet1 + e−ynet1
( )2

∂ynet1

∂w11
� ∂ w11x1 + w12x2( )

∂w11
� x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

Substituting Eq. 11 into Eq. 10:

∂E
∂w11

� Yout1 − Ytarget( ) · 1 − eynet1 − e−ynet1

eynet1 + e−ynet1
( )2[ ] · x1 (12)

Using the calculation results of Equation 12, the value of the
saturation time w11 was updated:

w11
′ � w11 − η · ∂E

∂w11
(13)

The comparison of the results calculated by the neural network
model in the figure with the original data is shown in Figure 5.

Figure 5 shows that the peak strain and peak strength prediction
results obtained by the neural network model of the multilayer
perceptron are highly similar to the original restoration results,
while the difference between the peak modulus prediction results
and the original data is more obvious. In order to analyze the fitting
degree of the model in detail, the residual coefficients and correlation
coefficients of the prediction results of the three dependent variables
need to be calculated. The remaining error was calculated as follows:

δi � Yi − yi (14)

δ*i �
δi − �δ

σ
(15)

where, δi is residual, Yi is neural network forecast, Yi is original
value, δi* is the standardization of residual value, δ is the average of
the residual, σ is the standard deviation. So, peak strain, peak
strength and elastic modulus of the forecast curve and the
correlation coefficient of the original curve R2 can be calculated
as follows:

R2 � ∑n
i�1δ

2
i∑n

i�1 Yi − �y( )2 (16)

Figure 6 shows the residuals and standard deviations of the
predicted peak strain and peak strength compared to the actual
values. As can be seen from the figure, both standardized residual
values are between [-2,2], The absolute value of the peak strain of

FIGURE 4
Diagram of the neural network model.
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residual |δi| mostly falls in the interval [0,20], the absolute value of
the peak strength, residual |δi| mostly in the interval [0,0.2]. The
correlation coefficient of peak strain was 0.93, the correlation
coefficient of peak strength was 0.85. It is shown that the multi-
layer perceptron neural network model has good results in the
prediction of peak strain and peak strength. The correlation
coefficient of elastic modulus was −2.98. It shows that the multi-
layer perceptron neural network model cannot predict the elastic
modulus well, and further shows that the correlation between the
input factor saturation time and the confining pressure and the
elastic modulus is poor.

4.2 Neural network model prediction

The above calculation results show that the saturation time
and confining pressure have little effect on the elastic modulus, so
only the peak strain and peak strength are predicted in
continuous intervals below. The discrete input factors of
saturation time and confinement pressure were extended into
a continuous domain and imported into the trained multi-layer
perceptron neural network model for prediction, and 444 sets of
predicted values were obtained. Among them, the saturation time
was extended from 0, 12, 24, and 36 groups to a continuous

FIGURE 5
Comparison of neural network prediction results and actual values. (A) Peak strain. (B) Peak strength. (C) Elasticity modulus.

Frontiers in Earth Science frontiersin.org07

Li et al. 10.3389/feart.2023.1227742

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1227742


FIGURE 6
Training results. (A) Residuals. (B) Standardized residuals.

FIGURE 7
Neural network prediction results. (A) Plot of peak strength versus duration of saturation. (B) Plot of peak strain versus duration of satiation time. (C)
Plot of peak strength versus confining pressure. (D) Plot of peak strain versus confining pressure.
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interval of 0–36, and the confining pressure was extended from 4,
6, 8, 10, and 12 groups to a continuous interval of 0–12.

Under the same saturation time, the average value of peak
strain and peak strength corresponding to different confining
pressures at the same saturation time was calculated, and 37 sets
of data were obtained. Under the same confining pressure, the
average value of peak strain and peak strength corresponding to
different filling times under the same confining pressure was
calculated to obtain 12 sets of data. The average value was
calculated using the following formula:

σn � 1
n
∑n

1
xi

εn � 1
n
∑n

1
xi

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

In the formula, σn is the average of peak strain, εn is the mean of
the peak strength, xi represents the corresponding peak stress and
peak strength values for each group of variables, and n is the number
of dependent variables.

To visualize the effects of saturation time and confining pressure
on peak strain and peak strength, we fit the predicted curves
separately. Different confining pressure values and different
saturated time were used as independent variables, and peak
strain and peak strength values were used as dependent variables.
Cubic polynomials were used for fitting, and the fitting formula was
as follows:

σ � 223 − 0.85 t − 0.11t2 + 0.0021t3

ε � 1.84 − 0.005 t − 9.8 × 10−4t2 + 1.94 × 10−5 t3

σ � 2.276σ3 + 2.155σ3
2 − 0.108σ3

3

ε � 0.016σ3 + 0.008σ3
2 − 3.878σ3

3 × 10−4

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (18)

The fitting curve is shown in Figure 7. The correlation
between the fitted curve and the original data was 0.99,
indicating that the cubic polynomial fitting effect was good,
and the fitted curve could predict the peak strain and peak
strength in a continuous interval. It can be seen from the figure
that the peak strain and peak strength increase continuously
with the increase of confining pressure, and the peak strain
decreases gradually with the increase of water saturation time.
Under the same water retention time, the peak strain and peak
strength increased with the increase of confining pressure, and
the increase amplitude showed a trend of first increasing and
then decreasing. Under the same confining pressure, the peak
strain and peak strength decreased with the increase of water
saturation time, and the decreasing amplitude also showed a
trend of first increasing and then decreasing.

5 Conclusion

In this paper, the degradation mechanism of phosphoric rock
samples under different saturation duration was analyzed by
laboratory test, theoretical analysis and neural network modeling,
and the results is as follows:

1) The peak compressive strength and peak strain of the samples
decreased gradually with the increase of saturation time. The
average peak strength of 12, 24, and 36 h saturated specimens is
8.6%, 21.1%, and 32.2% lower than that of natural samples, and
the peak strain is 5.9%, 13.9%, and 31.3% lower, respectively. It
indicates that saturated water has obvious deterioration on
mechanical properties of samples.

2) The stress-strain curves of the samples with water saturation for
36 h have more jitter stages after the peak, indicating that the
plastic characteristics of the samples will be increased with water
saturation for a long time.

3) The neural network model was established to characterize the
change of mechanical properties of the samples. The average
accuracy of the model was 0.89. This model can well show the
variation of mechanical properties of samples under the action of
saturated water and confining pressure.

4) The model can be used to predict and verify the mechanical
properties of samples under other saturation and confining
pressure conditions in the limited region. The research results
can provide theoretical reference for the deterioration
mechanism of confining pressure in water-rich roadway.
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