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Introduction: Underground hydrogen (H2) storage is a prominent technique to
enable a large-scale H2-based economy as part of the global energy mix for net-
zero carbon emission. Recently, basalts have gained interest as potential caprocks
for subsurface H2 storage due to their low permeability, vast extension, and
potential volumetric capacity induced by structural entrapment of the buoyant
H2. Wettability represents a fundamental parameter which controls the capillary-
entrapment of stored gases in porous media.

Methods: The present study evaluates the wettability of basalt/H2/brine system of
two basalt samples fromHarrat Uwayrid, a Cenozoic volcanic field, in Saudi Arabia.
The H2/basalt contact angle was measured using a relevant reservoir brine (10%
NaCl) under storage conditions of 323K temperature and pressure ranges from
3 to 28 MPa using themodified sessile dropmethod. The surface roughness of the
basaltic rocks was determined to ensure accurate results.

Results: The investigated Saudi basalt samples are water-wet, thereby they did not
achieve a 100% hydrogen wetting phase even at 28 MPa pressure. The measured
contact angles slightly decrease as pressure increases, thereby pressure did not
significantly influences the height of the H2 column.

Discussion:We interpret this trend to the slight increase in H2 density with increasing
pressure as well as to the olivine-rich mineralogical composition of the Saudi basalt.
Thus, from the wettability aspects, Saudi basalt has the potential to store a large
volume of H2 (>1,400m height) and maintain its excellent storage capacity even in
deep, high-pressure regimes. This study demonstrates that the basalt rock texture
(pore throat radii) and mineralogy control their capacity for subsurface H2 storage.

KEYWORDS

hydrogen, Saudi basalt, Harrat Uwayrid, wettability, seal integrity, subsurface storage

1 Introduction

Global efforts are underway to reduce harmful anthropogenic emissions of greenhouse
gases such as carbon dioxide (CO2) by adopting strict environmental regulations and
transitioning toward a diversified energy mix instead of complete reliance on fossil fuels
(IEA, 2018; Hashemi et al., 2021; Alanazi et al., 2023a). Hydrogen (H2) emerges as a
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promising clean fuel to support decarbonization by converting
energy production from fossil fuels into a more efficient and
environmental-friendly form, thus supporting the transition into
renewable and sustainable resources (McCollom and Bach, 2009;
Prinzhofer et al., 2018; Pan et al., 2021; Leila et al., 2022; Alanazi
et al., 2023b). However, a wide-scale implementation of an H2-based
economy requires a medium of giga-to tera-scale storage capacity,
which is theoretically associated with specific geological contexts
such as saline aquifers, depleted oil and gas reservoirs, and salt
caverns (e.g., Tarkowski, 2019; Heinemann et al., 2021). Successful
industrial-scale H2 geological storage has been implemented in salt
caverns due to their impervious characteristics and perfect seal
integrity (Michalski et al., 2017; Al-Mukainah et al., 2022).

Sedimentary formations with existing infrastructures such as
depleted reservoirs have attracted attention for subsurface storage
due to their efficient pore system, storage, and sealing capacities
(Pfeiffer et al., 2017; Yekta et al., 2018; Tarkowski, 2019; Alanazi
et al., 2022c). Furthermore, volcanic basaltic rocks have recently
been recognized as an unconventional storage medium and a
potential rival to sedimentary formations (Iglauer et al., 2020).
Basaltic rocks often exist vastly on the continents in the form of
extensive dykes and sills. They also cover approximately two-thirds
of the oceanic crust (Gislason and Oelkers, 2014; Matter et al., 2016).
Therefore, various efforts started to investigate their suitability for
CO2 storage in terms of pore system, permeability, trapping
mechanisms, and sealing efficiency (Gislason et al., 2010; Iglauer
et al., 2020). However, the efficacy of basaltic rocks for H2 storage
still need further investigation.

The primary trapping mechanisms are structural/residual
trapping, dissolution, and mineralization trapping (Bui et al.,
2018). The latter has shown a CO2 mineralization in basalt
within time scales superior to those predicted for clastic
sedimentary rocks (White et al., 2020). However, for H2

subsurface storage, the residual and structural trapping
mechanisms are more pronounced. In contrast to the hydrogen
storage being cyclic in nature, it might be worth emphasizing the
permanent nature of CO2 storage for contrast (Ma et al., 2019;
Alanazi et al., 2022a; Alanazi et al., 2022c; Ali et al., 2022b; Alanazi
et al., 2023c). In addition, H2 storage requires a cushion gas (e.g.,
CO2, N2, and CH4) to remain in place and maintain the hydrostatic
pressure of the reservoir (Kanaani et al., 2022).

The wettability of basalt/gas/brine is a crucial parameter
controlling the trapping efficiency of the buoyant gas beneath a
caprock (Hosseini et al., 2022c). The flow behaviour and interfacial
characteristics of H2-brine in the subsurface differ from CO2 and
CH4 (Chow et al., 2018). The interfacial tension between rock and
gas plays a significant role in gas storage within the pore system.
Therefore, the gas-rock wettability is a critical parameter in
understanding the rock’s capability for entrapment. Wettability
controls the gas flow and migration within a rock pore structure,
affecting storage capacity and sealing efficiency (Blunt, 2016; Ali
et al., 2022a). While basalt/CO2/brine wettability studies are
available with limited testing conditions (Iglauer et al., 2020;
Abdulelah et al., 2021; Al-Yaseri et al., 2021b), there is a
noticeable lack of studies on basalt/H2 wettability limited to two
studies; one theoretical and another experimental (Table 1). Al-
yaseri et al. (2021a) and Al-Yaseri et al. (2021b) developed empirical
correlations using contact angle measurements and densities of

helium (He), carbon dioxide (CO2), nitrogen (N2), methane
(CH4), and argon (Ar) to predict the three-phase contact angles
of basalt/H2/brine at the same conditions (Al-Yaseri and Jha, 2021).
While, Hosseini et al. (2022a) reported experimental measurements
of contact angles for basalt using the tilted plate method at two
temperatures (308 and 343K) and varying pressure from 5 to
20 MPa. Previous studies that tackled the basalt/H2 wettability
measurements outlined a weak to intermediate water-wet
behaviour for the basalt at elevated levels of pressure and
temperature. This behaviour would be beneficial for storing thick
hydrogen columns in the subsurface.

The present study provides an experimental investigation of the
H2/brine wettability of two basalt samples collected from the
Cenozoic Harrat Uwayridh volcanic field in the northwest of
Saudi Arabia (Figure 1). The basalt wettability was measured at
various geological storage conditions to explore their potential for
subsurface H2 storage. In theory, thick basaltic rocks can provide
good sealing properties for H2 storage in the underlying clastic
reservoirs (Hosseini et al., 2022a). Basaltic rocks’ capillary sealing
efficiency and storage capacity are significant characteristics to be
tested. Accordingly, the sealing efficiency represented by capillary
entry pressure and maximum static H2 column should be calculated
to assess the storage feasibility using basalt rocks’ typical pore sizes
(Duncan and Al-Amri, 2013; Espinoza and Santamarina, 2017;
Alanazi et al., 2022a; Alanazi et al., 2022b; Ali et al., 2022b;
Alanazi et al., 2022c).

2 Materials and methods

2.1 Basaltic samples

Two Saudi basaltic samples were collected from Harrat Uwayrid, a
Cenozoic volcanic field in the Medina region, NW Saudi Arabia,
Figure 1 (Duncan and Al-Amri, 2013). The Harrat Uwayrid
comprises an elongate NW-SE oriented volcanic field of a strongly
eroded basaltic plateau extending over approximately 230 km2. The
Harrat Uwayrid basalt overlies above the Cambrian continental
sandstones of the Siq Formation (Coleman et al., 1983; Altherr
et al., 2019). The age of Harrat Uwayrid basalts ranges from
Miocene to Quaternary, contemporaneous with the several episodes
of volcanic activities in Arabia (Kaliwoda et al., 2007). The Miocene
basalt is strongly eroded and consists mainly of alkali olivine basalt,
whereas the younger Quaternary basalt contains mantle xenoliths and
megacrysts (Altherr et al., 2019). The samples were selected from two
locations north and south of the elongated volcanic field. The
investigation aims to study the efficiency of Harrat Uwayrid basaltic
rocks as a seal and evaluate potential hydrogen storage in the underlying
Cambrian sandstone formation for a practical period of time.

2.2 Sample characterization

2.2.1 X-ray diffraction and scanning electron
microscopy

Whole-rock X-ray diffraction (XRD) analysis was conducted on
the Saudi basalt samples. The samples were powdered and measured
for XRD using a Bruker-D8 Advance diffractometer (Bruker AXS
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GmbH, Karlsruhe, Germany). The measurement comprised a step
scan in the Bragg-Brentano geometry having a CuKα radiation of
40 kV and 40 mA to measure XRD peaks. The XRD peak
interpretation was performed using Bruker-EVA software and
peak comparison with the International Centre for Diffraction
Data (ICCD) standard database.

The SEM analysis was performed on the two Harrat Uwayrid
basalt samples using JEOL’s JSM-7001F Schottky SEM. Polished

sections from the basalt samples were first mounted on aluminium
stubs. The mounted sections were then coated with gold before the
SEM analysis.

2.2.2 Fourier transform infrared spectroscopy
(FTIR)

The spectra of Fourier Transform Infrared Spectroscopy (FTIR)
are sensitive to variations in mineralogy and crystal structure, and

TABLE 1 Summary of wettability investigations of basalt/CO2/brine systems.

References Basalt source Pressure,
MPa

Temperature, K, °C Brine salinity,
wt%

Main findings

Iglauer et al.
(2020)

CarbFix, Hellisheidi
geothermal area,
Southwest Iceland

5–17 308.15 K (35 °C) and
333.15 K (60 °C)

4% NaCl, 4% CaCl2,
1% MgCl2, and 1% KCl

The contact angle increases with pressure and
decreases with temperature. Basalt showed an
intermediate water-wet to weakly CO2-wet
similar to sedimentary caprocks linked to the
similarity in elemental composition and total
organic carbon (TOC)

Al-Yaseri et al.
(2021a)

5–20 323 K (~50 °C) 0.3 Molality NaCl Contact angle increases with pressure, and SiO2

nanoparticles turn the CO2-wet basalt surface into
weakly water-wet

Abdulelah et al.
(2021)

4–20 308 K (35 °C) and
333 K (60 °C)

4% NaCl, 4% CaCl2,
1% MgCl2, and 1% KCl

Basalt’s CO2 sealing capacity is reduced as the
contact angle (pressure) and temperature
increases

Al-Yaseri et al.
(2021b)

Western Australia (WA)
basalts

0.1–20 298 and 323 K
(~25°C–50 °C)

Deionized water and
ultra-pure NaCl salt

Basalt turned from water-wet, into an utterly CO2

wet with pressure

FIGURE 1
Harrat volcanic fields on the Arabian peninsula shown the tectonic map of the Arabian shield (A) and (B) a map of Harrat Uwayridh and neighbouring
plates, adopted from Altherr et al. (2019).
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therefore they are qualitatively utilized to identify the mineral phases
in the samples based on their crystal structure. FTIR determines the
absorption wavelengths related to the molecular excitation states of
covalent bonds in the composition of the samples (Mbonyiryivuze

et al., 2015). FTIR spectra for the Saudi basalt samples were obtained
utilizing a Bruker TENSOR-27 FTIR spectrometer containing a
source of infrared waves, a beam splitter, and equipped with a
susceptible DigiTectTMdetector system. Approximately 0.5 mg of

FIGURE 2
Schematic experimental design for the contact angle measurements of H2/basalt/brine systems.

FIGURE 3
Interpreted XRD patterns illustrating the mineralogical composition of the studied Saudi basalt 1 (A) and 2 (B).
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the powdered samples were mounted in metal disks, then dispersed
in 200 mg of KBr before heating at 120 °C to release the absorbed
water. The samples were scanned in the wavenumber region of
4,000–400 cm−1 to obtain the FITR spectra.

2.2.3 Total organic carbon (TOC) analysis
The total organic carbon (TOC) content in the two Saudi basalt

samples was measured using Rock-Eval pyrolysis 7S (©Vinci
Technologies). The apparatus is equipped with an oven allowing
a high-temperature pyrolysis and air oxidation of approximately
10 mg of the powdered basalt samples. The oven temperature rates
were adjusted from 0.1°C to 50°C/mn, with a 0.1 °C step.

2.2.4 Surface roughness measurement
The surface roughness of a sample can significantly affect the

wettability and, in turn, the contact angles of the H2/brine/basalt
system (AlRatrout et al., 2018; Mehmani et al., 2019). It has been
reported that the irregularity of a solid surface or surface roughness

is directly linked to the hydrophobicity status of that solid caused by
fluids entrapment in the surface’s depressions (Morrow, 1975; Yen,
2015; Li et al., 2022). Thus, the surface roughness of Saudi basalt
samples was measured using a surface roughness analyzer (KRÜSS
GmbH, Germany). The KRÜSS GmbH uses the confocal
microscopy technique to build a spatial schematic of the surface
topography of high resolution using a rotating disk. The roughness
of the selected vertical readings is provided based on the best root
mean error of the multiple locations of the sample’s surface.

2.3 Experimental measurement of contact
angle

The contact angles were measured using the modified sessile drop
method utilizing a KRÜSS fluid drop analyzer (DSA100 model) and a
high-pressure and high-temperature (HPHT) optical cell (Figure 2).
Pure H2 gas (99.99 mol%) and a synthetic reservoir brine of 10 wt%

TABLE 2 A comparison of XRD quantitative analysis results of the bulk mineralogy for the Saudi basalt samples compared to the mineral compositions of the
previously analyzed basalt samples for wettability and underground gas storage.

Sample Mineral phases Abundance (%) Study

Saudi basalt 1 Anorthite 44.3 This work

Olivine 14.7

Diopside-ferrian 24.8

Nepheline 16.3

Saudi basalt 2 Anorthite 57.1 This work

Olivine 24.4

Magnesioferrite 17.6

Albite 0.8

Iranian basalt Anorthite 55 Hosseini et al. (2022a)

Augite 25

Orthoclase 16

Lizardite 4

Icelandic basalt 1 Labradorite 29.30 Abdulelah et al. (2021)

Augite, Antarctica 18.25

Montmorillonite 2.30

Volcanic glass 50.15

Icelandic basalt 2 Labradorite 58.6 Al-Yaseri et al. (2021a)

Augite 36.5

Montmorillonite 4.6

Quartz 0.3

Western Australia (WA) basalt Labradorite 58.6 Al-Yaseri et al. (2021b)

Anorthite 21.3

Augite 18.9

Nontronite <1

Ilmenite <1
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NaCl were used for the contact angle measurements at testing
conditions. First, the basalt sample was cleaned with distilled water
and dichloromethane, cut into 1 cm × 1 cm × 0.5 cm dimensions.
Further cleaning by purging with nitrogen was conducted prior to
emplacement of the samples on a horizontal plate inside a high-
temperature and pressure (HTHP) cell. Then, the H2 is injected and
pressurized using an ISCO pump (500 D) of 0.001MPa precision. The
temperature is increased using an electrical heater to reach the desired
temperature (323K). Afterwards, a brine droplet of 5 μL (±2 μL) is

manually introduced through a needle dispenser, controlled by another
ISCO pump, and released on the substrate surface. Finally, the contact
angle is measured at adiabatic conditions in a continuous increment
measurement where the pressure increases gradually from 3MPa to
28 MPa, and the contact angle is measured at each pressure step. The
purpose of such modified measurement from the conventional sessile
drop method is to measure the hydrogen contact angle at high pressure
levels whichmay occur in the subsurface where a continuous pressure is
applied by surrounding rocks and formation fluids when H2 is injected
into the geological formation for subsurface storage. Al-Mukainah et al.
(2022) have recently adopted the same modified sessile drop method
(applied in this work) to measure H2/shale/brine contact angles and
evaluate potential H2 storage in shale formations (Al-Mukainah et al.,
2022). Images were acquired using a high-resolution camera to capture
the drop behaviour during the experiment. The contact angle is then
analyzed using KRÜSS DSA software. The contact angle measurement
was repeated three times for better accuracy. The average standard
deviation for the contact angle from the two samples was
approximately ±3°. Before the contact angle measurement, the
surface roughness of the basalt samples was determined using the
Surface Roughness Analyzer (KRÜSS GmbH) (Al-Yaseri et al., 2021c).

3 Results and discussion

3.1 Characterization of Harrat Uwayrid basalt

The measured TOC values for the analyzed basalt samples
(1 and 2) were approximately 0.05 wt% and 0.03 wt%,
respectively, measured by Rock-Eval pyrolysis. The XRD results

FIGURE 4
FTIR spectra of the analyzed Saudi basalt samples.

FIGURE 5
SEM microphotographs illustrating the surface morphology and textural characteristics of the studied Saudi basalt 1 (A,B) and 2 (C,D).
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provide reveal a semi-quantitative mineralogy analysis (Figure 3).
The analyzed samples were collected from two different locations
(south and north) to evaluate any changes in the mineral
composition that could potentially influence H2/basalt/brine
wettability. The XRD analysis demonstrates a similarity in the
primary minerals between the two samples, dominated by
anorthite and olivine of about 44.3% and 57.1% for anorthite,
14.7%, and 24.4% for olivine in the Saudi basalt 1 and 2,
respectively. Clinopyroxene (diopside) and nepheline were also
found only in Saudi basalt 1 (24.8% and 16.3%, respectively),
while Saudi basalt 2 contains magnesioferrite (~17.6%) and traces
of albite and vermiculite that were missing in Saudi basalt 1.

A mineralogical comparison between the investigated Saudi
basalts and other basaltic rocks tested for underground gas
storage (Table 2) reveals significant differences, which may
influence the wettability measurement and storage efficiency of
H2 beneath the basalts. Relative to other basalt samples (Iranian
and Icelandic basalts), Saudi basalts are enriched in olivine relative
to plagioclase and alteration products (e.g., clays). Such variation in
mineralogy typifies a differential alteration (Harnois, 1988; Weltje

et al., 1998; Dessert et al., 2003; Leila et al., 2018; Leila et al., 2021).
For example, olivine minerals are more susceptible to chemical
weathering and alteration into other phases such as serpentine; thus,
enrichment of olivine phases would infer into fresh and un-altered
samples. Therefore, the Saudi basalts are fresh samples, whereas
other basalt samples were subjected to more severe chemical
alteration. Such variation in chemical alteration may impact the
wettability measurements and hence the storage potential. Notably,
nano-capillary pores are more common in clays and these
nanopores may become saturated with hydrogen, and hence
reduce the storage capability of the basaltic rock. Additionally,
the occurrence of specific clay phases that are susceptible to
hydro-swelling (e.g., Montmorillonite) would decrease pore
throat size and pore system connectivity (Aksu et al., 2015; Jiu
et al., 2021). Thereby, variation in mineralogical composition would
significantly impact the capillary behaviors and sealing capacity of
the naturally-impervious rocks.

The FTIR measurement indicates the dominant chemical
functional groups on a rock surface, significantly contributing to
the wettability status (Madhurima et al., 2011; Cheng et al., 2014;

FIGURE 6
Surface roughness of Saudi basalt samples tested over 25 by 40 µm regions of each sample—(A) Saudi basalt 1 of 29.74 µmmean roughness and (B)
Saudi basalt 2 of 25.14 µm mean roughness.
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Pillai et al., 2018). The FTIR analysis of the Saudi basalt samples
demonstrated that SiO2 is the primary chemical group on the
samples’ surface (Figure 4). Visible wave numbers in the range of
1,000 and 1,200 cm−1 correspond to the Si-O-Si bond (OH and Choi,
2010; Waman et al., 2011; Liu et al., 2019). The interpreted Si-O-Si
bond is attributed to the presence of silica and silicate minerals in the
studied basalt samples. The more pronounced Si-O-Si bond in Saudi
basalt 1 is most likely related to the occurrence of nepheline which is
absent in basalt 2. Weak absorption at 800 cm−1 corresponds to Si-
H2/(Si-H2)n band. This band is more significant in the Saudi basalt

2 sample typifying a more hydrophilic characteristics relative to
basalt 1 sample (Liu et al., 2019). FTIR is also corroborated by XRD
and XRF which confirmed a silica-rich samples. According to XRF
data, basalts 1 and 2 contain 36.16% and 37.50% SiO2, respectively.

The SEM analysis focuses on the basalt samples’ surface
morphology and micro-scale characteristics, such as the fracture
andmatrix porosity, which can significantly influence the wettability
measurement (Rucker et al., 2019). Micro, irregular, stylolite-like
fractures were found with more intensity in Saudi basalt 1 (Figures
5A, B) compared to the Saudi basalt 2 sample (Figures 5C, D). Both
samples showed low matrix porosity in the micro- and nano-scales.
However, matrix porosity is relatively more significant in Saudi
basalt 2 sample (Figure 5D). Notably, the fracture and matrix pores
are scattered and non-connected, suggesting that the studied Saudi
basalts are impervious with nano-scale pore throats. The surface
roughness analyzer indicated a root-mean-square (RMS) from
different vertical locations of approximately 29.74 and 25.14 µm
surface roughness for Saudi basalt 1 and Saudi basalt 2, respectively
(Figure 6). The RMS roughness is a measure of the standard
deviation in the surface heights values, thus reflecting the extent
of surface irregularities (Gadelmawla et al., 2002). The surface
topography of the samples induces a paramount impact on the
rock-fluid contact angle. Irregular, rough surfaces with high RMS
values often enhance the wetting behavior of the sample (Johnson
and Dettre, 1964). Additionally, irregular surfaces usually show
water-wet behavior. Nevertheless, the influence of the surface
roughness becomes insignificant below 1,000 µm (Al-Yaseri et al.,
2016). Thus, it does not impact the wetting characteristics of storage
formation rocks (Al-Mukainah et al., 2022).

3.2 Effect of pressure on H2/basalt/brine
wettability

The static H2/brine/basalt contact angles of the two samples were
measured at different pressures up to 28MPa and a temperature of
323K (Figure 7). The Saudi basalt 2 displayed slightly higher contact
angles than Saudi basalt 1. The H2 wettability of Saudi basalt
2 demonstrated a more hydrophilic behavior than Saudi basalt 1,
mainly attributed to the Si- H2 bond FTIR peak, which is higher in
Saudi basalt 2 than Saudi basalt 1. However, the variation in contact
angle measurements could be attributed only to surface roughness
differences (AlRatrout et al., 2018; Mehmani et al., 2019). Nevertheless,
both samples displayed a strong to intermediate water-wet behaviour
and demonstrated a slight decrease in pressure, which is linked to the
decline of interfacial between the brine and H2 gas (Figure 8). Images of
drop profiles are shown in Figures 9, 10 for the different pressure steps
confirming the observation of the contact angle measurements. These
profiles demonstrate intermediate to strongly water-wet behaviour.

Overall, the contact angles for both basalt samples displayed an
initial steep drop as pressure increased from 2.5 MPa to 10 MPa,
which started to level up at 10 MPa pressure. The observed decrease
in the contact angles with pressure differs from some of the gas/
basalt/brine measurements, for example, (Iglauer et al., 2020; Al-
Yaseri et al., 2021a; Hosseini et al., 2022b), where the contact angle
increase with pressure. In this work, the modified sessile drop is
applied, where the contact angle is measured for each pressure step
in a continuous pressure increment approach. Moreover, the

FIGURE 7
Static contact angles of H2/brine systems on Saudi basalt samples
at different pressures and constant temperature of 323K. The
uncertainty bars in the plots range from 2.1° to 3.3° (with the relative
standard uncertainties of 1K for temperature and 0.1 psi for
pressure).

FIGURE 8
Hydrogen/brine interfacial tension at different pressures and
constant temperature of 323K, extrapolated from the data in Chow
et al. (2018) with ±1 mN/m uncertainty.
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decrease in contact angle with pressure for the H2/basalt/brine
system is related to the decline of H2-brine interfacial tension
(IFT) with increasing pressure (Figure 8) and the very low
density of H2 compared to CO2, where the cohesive forces
between gas molecules and rock matrix increase at higher
pressures (Yekeen et al., 2021; Al-Mukainah et al., 2022).

3.3 H2/brine wettability of Saudi basalt
compared to Iranian basalt

The present work measured the static contact angle of H2/
basalt/brine. While the only available work of H2/basalt/brine
wettability in the literature by Hosseini et al. (2022b) was
conducted using the tilted plate method, first introduced by
Lander et al. (1993), and provides dynamic contact angles. The
tilted plate method theoretically attempts to represent the
imbibition (wetting phase displacing non-wetting) and
drainage (non-wetting phase displacing wetting) processes by
correlating them to tail contact angles of a brine drop on a tilted
rock surface, the receding contact angle (θr) and advancing
contact angle (θa).

In the literature, there is extensive experimental work applying
the tilted plate method to investigate underground H2 storage using
different rock types, where the dynamic contact angles are related to
the intrinsic contact angle or the equilibrium contact angle (θe)
(Morrow, 1975; Chow et al., 2018; Liang et al., 2020; Hashemi et al.,
2021; Ali et al., 2022b). The equilibrium contact angle can be
calculated using Tadmore’s empirical approach (Tadmor, 2004)
based on Young’s equation and Neumann’s equation of state (Li
andNeumann, 1992; Kwok and Neumann, 1999) as a function of the
receding (θr) and advancing (θa) contact angles as shown in Eq. 1:

θe � cos−1
ℵa cos θa +ℵr cos θr

ℵa + ℵr
( ) (1)

Where θa, θr represent advancing and receding contact angles,
andℵa andℵr are correlation parameters (receding and advancing),
calculated as shown in Eqs 2, 3:

ℵa �
�������������������

sin 3θa
2 − 3cos θa + cos 3θa

[ ]3

√
(2)

ℵr �
������������������

sin 3θr
2 − 3cos θr + cos 3θr

[ ]3

√
(3)

FIGURE 9
Sessile drop of brine on Saudi basalt-1 surrounded by hydrogen, measured at a constant temperature of 323K and different pressure steps (A) 3 MPa,
(B) 7 MPa, (C) 14 MPa, (D) 21 MPa, (E) 24 MPa, and (F) 28 MPa.
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The above correlation was used to calculate θe from the dynamic
contact angles measured at two different temperatures (308 K and
343 K) by Hosseini et al. (2022a). Then, it was used for comparison
with H2/basalt/brine static contact angles in this study, which was

conducted at a temperature of 323 K (Figure 11). The comparison
reveals a relatively close approximation, particularly at low pressures
(less than 10 MPa). The trend of the measured contact angles differs
due to the different applied experimental techniques.

The modified sessile drop used in this work depends onmaintaining
an isolated gas environment and measuring the change in drop contact
angles at each pressure point via a subsequent increase of the pressure
inside the high-pressure, high-temperature cell. In contrast, the titled-
plate method measures the dynamic contact angles in a stepwise
procedure involving using multiple rock samples and depressurizing
the cell each step to load the new sample. Moreover, the mineralogy
comparison based on XRD analysis listed in Table 2 demonstrates that
the Saudi basalts have different mineral compositions than the Iranian
basalt. The Iranian basalt composition contains more lizardite and
plagioclase; thus, it can exhibit a wettability behaviour similar to clay-
rich rocks (Abramov et al., 2019; Al-Yaseri et al., 2021c).

3.4 Capillary sealing efficiency and H2 static
column height

The sealing efficiency of a caprock is evaluated by studying
capillary characteristics at the interface between the formation brine
in the caprock and the injected gas. A non-wetting phase (e.g., CO2

and H2) cannot invade the rock until the pressure drop exceeds a
certain threshold, which is known as the capillary entry pressure

FIGURE 10
Sessile drop of brine on Saudi basalt-2 surrounded by hydrogen, measured at a constant temperature of 323K and varying pressures—(A) 3 MPa, (B)
7 MPa, (C) 14 MPa, (D) 21 MPa, (E) 24 MPa, and (F) 28 MPa.

FIGURE 11
Static contact angles of H2/brine systems of Saudi basalt samples
at 323K, compared to the calculated equivalent contact angles on
Iranian basalts at 308K and 343K (Hosseini et al., 2022a).
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(pce) and determined by the Laplace equation (Espinoza and
Santamarina, 2017), as follows:

pce �
2γlg cos θg

r
(4)

where γlg is the brine/gas interfacial tension, and θg is the contact
angle of the gas, and r is the effective pore throat radius of the rock.

The sealing capacity and storage efficiency of the studied basalt
samples at 323K is obtained by calculating the static height of the H2

column that can be safely trapped beneath the basaltic rocks using
Eq. 5 (Dake, 1978):

hg
max � 2γlg cos θg

rg ρl − ρg( ) (5)

where hgmax is the maximum static height of the column that can be
safely trapped beneath the seal (Iglauer, 2022), g is the gravitational
acceleration, ρl and ρg are the density of the liquid and gas phases,
respectively.

The capillary entry pressure (pce) and maximum static gas
column height (hgmax) was evaluated using the contact angle
measurements and density differences following Eqs 4 and 5,
Figures 12A, B. In addition, theoretical pore throat radii values in

FIGURE 12
Density variation over pressure (A) and the density difference
between 10%NaCl brine and hydrogen at varying pressure and
constant temperature of 323K (B). Note: the data were extracted from
NIST database (Lemmon et al., 2018).

FIGURE 13
The calculated sealing efficiency of H2/basalt/brine systems
versus pressure for Saudi basalts represented by—(A) The capillary
entry pressure (pce) and (B) themaximum static height of the hydrogen
column (hg

max ).

FIGURE 14
The calculated maximum H2 column heights of the Saudi basalts
compared to those of—(A)H2/Iranian basalts by Hosseini et al. (2022a)
and (B) CO2/basalts by Iglauer et al. (2020) and Al-Yaseri et al. (2021b).
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the range of 10 and 25 nm were used to evaluate the impact of the
pore throat radius on the sample wettability. Basaltic rocks’ average
pore throat size can range from 6 to 32 nm (Al-Yaseri et al., 2021a;
Abdulelah et al., 2021; Hosseini et al., 2022a). The mean pore throat
radius of r = 6 nm (Hosseini et al., 2022a) was utilized to calculate
the column height for H2/Iranian basalt and CO2/Icelandic basalt
studies. Thus, the H2 column height for the Saudi basalts was
recalculated using r = 6 nm to present an equivalent comparison.
While for the CO2/WA basalt, r = 29 nmwas used as obtained by Al-
Yaseri et al. (2021b). The H2 column height is used to calculate the
hydrogen storage capacity or maximum mass of H2 that can be
safely stored in basaltic rock (Shah et al., 2008).

The calculations in this study using H2/basalt/brine contact
angles demonstrate an insignificant influence of pressure on pce

and hgmax, while the pore throat radius demonstrated the highest
impact on the sealing efficiency and H2 storage capacities
(Figure 13). The calculated pce values vary significantly with the
pore throat radius with approximately a two-fold decrease in pce

with increasing the pore throat radius from 10 to 25 nm
(Figure 13A). The Saudi basalt samples with their pore throat
radii less than 10 nm will be able to store a hydrogen column
higher than 1,000 m (Figure 13B).

Notably, the pce in Saudi basalt 1 was always higher than in Saudi
basalt 2, consistent with the contact anglemeasurements, as the elevated
hydrogen wettability of Saudi basalt 2 would result in a lower pce.
Moreover, the pce values of the Saudi basalt samples did not vary
significantly with increasing pressure, which can be interpreted as the
semi-constant density of H2 at elevated pressures. The strong water-wet
status and less variation in pce with pressure suggests the good sealing
efficiency of Saudi basalt for underground H2 storage.

The obtained gas column height versus pressure trend of the
Saudi basalts varies from that reported in the literature for the
H2/Iranian basalts (Hosseini et al., 2022a) and CO2/basalts
(Iglauer et al., 2020; Al-Yaseri et al., 2021b) (Figures 14A, B).
The CO2/brine/basalt behaviour could be attributed to the sharp
increase in CO2 density with pressure; therefore, a rapidly
increasing pressure is expected. On the other hand, we
hypothesize that the wide difference in H2 column height
versus pressure between Saudi and Iranian basalts is most
likely attributed to their different mineralogy and the presence
of some silicate-rich phases (e.g., lizardite) in the Iranian basalt
and, therefore, it behaves like clay-rich rocks and become fully-
hydrogen wet as pressure increases.

4 Conclusion

• The present study examines the brine wettability of the Saudi
basaltic rocks surrounded by H2 to explore their potential for
subsurface H2 geological storage using the modified form of
sessile drop contact angle measurement.

• The Saudi basalt samples are olivine and pyroxene rich with
low content of alternation products (e.g., clays).

• The wettability measurements showed that the samples are
water-wet. However, the impact of slight variations in
mineralogy and surface roughness was paramount in the
contact angle measurements.

• The H2/brine/Saudi basalt system showed trends vary
significantly from those reported in the literature for CO2/
basalt and H2/basalt systems which are attributed to variations
in the gas phases as well as the basalt mineralogy.

• The present results demonstrate that pore throat radius has
the paramount control on the H2 column height, and the
Saudi basalt with average pore throat radii of 10 nm can
store more than 1,200 m of H2 column. Moreover, the
H2 column did not vary significantly with pressure,
which is beneficial for optimal deep geological H2 storage.
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