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Assessing hurricane predictions in a changing climate is one of the most
challenging weather forecast problems today. Furthermore, effectively
integrating information-rich features that are specific to the growth of
hurricanes proves to be a difficult task due to the anticipated nonlinear
interactions during the spatio-temporal evolution of the tropical cyclone
system. Consequently, the need arises for complex and nonlinear models to
address this formidable scenario. In light of this, we introduce a novel framework
that combines a Convolutional Neural Network with a Random Forest
classification configuration. This innovative approach aims to identify the
critical spatial and temporal characteristics associated with the formation of
major hurricanes within the hurricane and surrounding regions of the Atlantic
and Pacific oceans. Here, we demonstrate that the inclusion of these
unprecedented spatio-temporal features extracted from brightness
temperature data, along with the temperature and anatomical cloud properties
of the system, results in an average improvement of 12% in the prediction of severe
hurricanes, using the previous model version as a benchmark. This enhancement
in the prediction accuracy extends up to 3 days in advance, considering both
regions collectively. Although these innovative attributes may be relatively
more costly to generate, it allows us to gain a more refined understanding of
the intricate relationships between different spatial locations and temporal
dynamics, leading to more efficient and effective solutions. This hybrid
machine learning approach also offers adaptability, enabling the exploration of
other suitable hurricane or environmental-related conditions, making it suitable
for potential future applications.
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1 Introduction

The diagnosis of extreme hurricane events is hampered by the need for new ways to
analyze the multiple factors involved in the development of tropical cyclones (TCs), both
directly and indirectly. This challenge becomes particularly significant in the context of
climate change, which may alter the pattern and features of TCs (Reed et al., 2018; Bhatia
et al., 2019; Knutson et al., 2019; IPCC, 2021). Hurricanes are complex and costly
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phenomena that are influenced by a wide range of non-linearly
interrelated physical factors. This complexity poses a significant
obstacle to accurate predictions, particularly in the days leading up
to their maximum development (Asthana et al., 2021; Jiang et al.,
2022).

Present-day models exhibit significant variation in their
complexity and functional forms. For instance, they differ in
their ability to capture the dynamics of atmospheric physical
processes, as seen in the case of dynamical or statistical-
dynamical forecasting techniques. In contrast, when employing
machine learning methods, models must determine tree
structures and make parameter/category assignments (refer to
Chen et al. (2020) for a more extensive discussion on this topic).
However, it is important to note that recent advancements in hybrid
machine learning models have made notable progress. These models
have the capacity to 1) extract essential information associated with
the intensification of tropical storms; 2) categorize and learn
complex nonlinear patterns that change over time; 3) improve
predictions, especially in cases of rapid intensification (RI)– all
while maintaining a low computational cost compared to
traditional methods (Martinez-Amaya et al., 2022; Chen et al.,
2023; Wei et al., 2023). Among these efforts, some focus on
analyzing the structure (temperature and anatomy) of the cloud
system using Geostationary Operational Environmental Satellites
(GOES) imagery, converted to brightness temperature for analysis.
The cloud system strengthens as the storm matures, and it can assist
in identifying the potential for achieving “major hurricane” status
using a Random Forest (RF) classification framework (Martinez-
Amaya et al., 2022). RF effectively classifies and categorizes TCs
patterns into groups that encompass a range of intensities. For
example, it can distinguish between tropical storms (TSs) that do not
reach hurricane status and TSs that intensify into major hurricanes
(MH) with category 3, 4 or 5 strength. This classification framework
employs a majority-voting ensemble for prediction refinement
(Martinez-Amaya et al., 2022). Consequently, the goal of this
classification approach is not to provide specific wind intensities
but rather to offer an informed assessment of whether a TS is likely
to develop into a MH based on key predictors associated with the
cloud system. Considering that the previous analysis of hurricane-
related features by Martinez-Amaya et al. (2022) was conducted
using a simplified RF model that did not account for the cumulative
knowledge of these features over time, nor the spatial information
surrounding and within the cloud structure, our present study
establishes a more robust prediction model. This updated model
incorporates new input variables that capture spatio-temporal
changes. Specifically, we investigate the time evolution of TC
structural parameters across various temporal intervals and
incorporate high-level spatial features extracted using a
Convolutional Neural Network (CNN) model. CNNs are a type
of artificial neural network widely used for recognizing patterns in
images, and their applicability to tropical cyclones has been proven
(Maskey et al., 2020; Lee et al., 2019; Carmo et al., 2021).

To the best of our knowledge, a joint CNN-RF model for TCs
has not been attempted in previous reported studies on TCs. The
innovative hybrid approach we propose, combining the power of
CNN with RF, provides a solid foundation for the ongoing
exploration of TC prediction. By incorporating spatio-temporal
properties into the RF system, the model is able to recognize

crucial indicators associated with the development and
intensification of TCs, enhancing the prediction performance of
MH events. This integration allows for a more comprehensive
understanding of the complex relationships between TC
characteristics and the occurrence of MH events. The highly
adjustable nature of the model components suggests that further
advancements can be achieved by incorporating new characteristics
or factors that might contribute to forecasting the TC behavior.

2 Methodology

We start with two datasets, one for each group of hurricanes, TS
and MH, according to a range of intensity values: a) the TS dataset is
the collection of tropical storms with wind speeds between 63 and
118 km/h; b) the MH dataset includes extreme events where winds
exceed 178 km/h. The location and intensity information of the TCs
were obtained from the International Best Track Archive for Climate
Stewardship (IBTrACS) at 3-hourly resolution (Knapp et al., 2010),
interpolated to 15- minutes time resolution (which is the GOES
resolution). For consistency with the previous study, the same
number of events was considered (from 1995 to 2019), although
data augmentation was also tested in order to improve the system’s
performance (please refer to the table in Figure 4 for the sample
size). The areas of study encompass the Atlantic ([−110° 0° E] [5° 50°

N]) and northeast (NE) Pacific ([−180° −75° E] [5° 50° N]) basins,
which represent the typical formation regions. Predictions
generated by our CNN-RF model (discussed in the subsequent
sections) are given for several different forecast (or lead-) times
(from 6 to 54-h). The lead-times define the specific time
considered for prediction (made at regular 6-h intervals)
leading up to the maximum development of the event. To
provide an example, if we consider a 18-h lead-time, the MH
prediction relies on the TC attributes gathered (from GOES
images) 18 h prior to the identified peak (unless otherwise
specified). These lead-times allow for monitoring and analysis
of the phenomenon’s progression and behavior leading up to its
peak (Martinez-Amaya et al., 2022). All images were previously
converted to brightness temperature (Yang et al., 2017; NOAA,
2019).

2.1 Prominent time evolution features

To uncover the rapidly evolving features, the most relevant
cloud structural parameters (the area, the temperature difference
between the inner core and outer part of the storm cloud, and the
morphology) were repeatedly extracted from the GOES images
every hour following Martinez-Amaya et al. (2022). Furthermore,
here, we explore the space-time evolution of these features over
several periods of time (from 2 to 24 h) prior to each lead-time.
Then, for each period of time, the mean and standard deviation for
each above-listed structural parameter (such as the area, etc.) were
calculated and used as inputs for the model (explained later). In a
different experiment, the same features were extracted but for a
single period of time covering the full range of information, from the
formation of the storm to the lead-time, which provides comparable
results (also discussed and tested).
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2.2 CNN parameters estimation

A 2D CNN algorithm was also developed to extract the high-
level spatial features in brightness temperature data for each lead-
time using a sliding window of 10° x 10° latitude/longitude, centered
on the storm’s location given by IBTrACS (Knapp et al., 2010). For
this, all images were standardized, i.e., resized to 256x256 pixels
using bilinear interpolation and normalized by Z-score feature
distribution (Jiang and Tao, 2022).

Our CNN architecture consists of a set of interconnected
layers (convolutional, pooling and fully-connected) with
multiple configurations and receptive fields of various sizes to
extract features at different local regions (portions of the input
image covered by the CNN) (Luo et al., 2016) (see Figure 1). The
convolutional layer is the primary building block of a CNN,
which captures local information and learns features from the
datasets in filter/kernel size. This hyperparameter, the kernel size,
refers to the size of the matrix that contains the weights, which
are learned using the Adam optimizer (with a learning rate of
0.001) and determines the size of these features locally
(Yamashita et al., 2018; Sun, 2020). The pooling layer is used
to reduce the number of input features and increase
computational efficiency by selecting the maximum of the
window region (max-pooling layer) (Boureau et al., 2010). We
defined a pooling layer of different sizes to capture more detailed
information. The fully connected layer, which connects all the
neurons of a layer with all the neurons of the preceding layer,
finally outputs the information of the last feature map (Maskey
et al., 2020; Kwak et al., 2021). We adjusted the batch size (the
number of training images in one iteration), which was set to 16,
and used batch normalization after each max-pooling layer
(Goodfellow et al., 2017; Devaraj et al., 2021). Standard

regularization terms (a dropout value of 0.65, L2 norm of
0.01 and early stopping after 10 epochs without improvement)
were also applied to optimize the algorithm and prevent
overfitting (Kwak et al., 2021; Devaraj et al., 2021; Calton and
Wei, 2022). Besides, we used the Rectified Linear Unit Activation
Function (ReLU), a computationally efficient activation function
that introduces the property of nonlinearity to a deep learning
model and allows the network to focus on the more relevant
features in the data. It was implemented after each convolutional
and fully connected layer (except for the last one) to train the
network faster (Ding et al., 2018; Santosh et al., 2022). A sigmoid
activation function was used in the last (fully connected) layer of
the CNNmodel to predict the classification performance. Finally,
CNN network depths of up to 13 layers were used to examine the
right balance between complexity and accuracy (Kwak et al.,
2021). To select the best CNN architecture configurations, we
performed hyperparameter tuning using Grid Search to identify
the optimal set of parameters that achieve the highest accuracy
(Elgeldawi et al., 2021). We used the (binary cross entropy) loss
function metric produced by the CNN classifier (Kwak et al.,
2021). Note, however, that, as we want to keep the spatial
features, we retain the output of the second-to-last fully
connected layer of the CNN. These features are treated as
another input variable of the RF algorithm to perform the
classification into various categories. RF is preferred over
CNN for binary classification tasks as it is more robust to
overcome undersampling and overfitting issues (Kwak et al.,
2021), which was also tested by us in one experiment (not
included). A schematic overview detailing all architectures can
be found in Figure 1. The CNN and RF models were developed
using the Tensor Flow 2.6.0 and Scikit-Learn 1.2.1 libraries on
Python 3.8.16, respectively.

FIGURE 1
Schematic diagram of the general CNN architecture used to generate the spatial features. The first configuration (receptive field of 24 pixels) has
three convolutional layers made up of (16, 64, 128) filters (with a size of 5x5, 3x3, and 3x3 pixels, respectively) and pooling layers (4x4, 3x3, 2x2, also
respectively) sequentially connected to each other. Following the same layout, the specifics of the second, third, and fourth configurations (with receptive
fields of 32, 128, and 256 pixels) respectively are: four layers with (16, 32, 32, 64) filters (5x5, 5x5, 3x3, 3x3) and pooling layers (2x2, 2x2, 2x2, 2x2); four
layers with (16, 32, 64, 128) filters (5x5, 5x5, 3x3, 3x3) and pooling layers (4x4, 4x4, 4x4, 2x2); four layers with (16, 32, 64, 128) filters (5x5, 5x5, 3x3, 3x3) and
pooling layers (4x4, 4x4, 4x4, 4x4). All convolutional layers are followed by a ReLU activation function. The fully connected layers are the same for all
architectures with multiple (128, 64, 32) neurons with also a ReLU activation function. There is an additional (fully connected) layer to identify the best
CNN architecture (via internal CNN classification accuracy). However, once the best architecture is chosen, this last fully connected layer is removed, and
then the output of the remaining fully connected layer (with 32 neurons) is kept as a feature to feed the RF classification algorithm (a more sophisticated
classification strategy). Therefore, CNN is not used as a classifier per se, but to extract high-level features.
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2.3 Design of the hybrid CNN-RF model

Once the most important spatial and temporal hurricane-related
characteristics were determined for each lead-time, the events were
classified based on these features according to two main hurricane
categories (TS versusMH) using a RF algorithm to predict whether a
storm will intensify to major hurricane status (as in Martinez-
Amaya et al., 2022). Like in the previous study, several
recommended steps were taken to achieve better results
(Martinez-Amaya et al., 2022): 1) samples from the majority
class were randomly removed to build a balanced dataset; 2) an
80/20 train/test split was applied on the dataset; 3) a 5-fold cross-
validation process was conducted; 4) the RF was constructed with a
maximum of 100 trees. The RF algorithm tends to reach saturation
typically after using 100 trees (Martinez-Amaya et al., 2022). Please

also note that by employing random undersampling, we strike a
balance between capturing rare events and avoiding
misclassification problems caused by imbalanced datasets. This
approach helps to improve the model’s ability to correctly
classify instances from both the majority and minority classes,
leading to more accurate predictions overall (Chawla, 2003; Oh
et al., 2022). Furthermore, here, we implemented a data
augmentation strategy, including rotations (90°, 180°, 270°) and
flips (horizontally and vertically) to generate new samples
(Pradhan et al., 2017; Jiang and Tao, 2022). In this case, we ran
one additional experiment with 20% of the training dataset that
was set aside for additional validation purposes. Note that the
models are either way trained and internally tested against data in
the classification task (with the portion of the dataset held for
testing).

FIGURE 2
Metrics of our predictivemodels for the different proposed approaches, which include information on the: 1) TC structural parameters for each lead-
time (our former study (Martinez-Amaya et al., 2022), shown in dots); 2) temporal evolution of the TC structural parameters for a time window of several
hours prior to a given lead-time (lt), from 2 to 24-h (ti), in combination with the CNN features obtained from a receptive field of 256 pixels (that draws a
solid line); 3) as in 2) but considering the time-average (of the temporal evolution of the TC structural parameters) over the entire time range, from
when the TC forms (origin) to a given lead-time (lt, in circles). The last two approaches also incorporate the standard deviation from the 5-fold cross-
validation models (see Section 2.4). Confidence intervals correspond to one standard deviation (represented with a shaded area in the case of the second
approach and depicted in bars for the third one). The predictive ability of our models was tested for lead-times between 6 and 54-h every 6 h (from left to
right).
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2.4 Model evaluation

As in Martinez-Amaya et al. (2022), both Cohen’s Kappa k) and
the precision (pMH) were computed to evaluate the performance of
the model on all experiments (Landis and Koch, 1977; Wei and
Yang, 2021). The pMH of our classification represents the probability
that an event predicted by the algorithm as a major hurricane did
actually occur. The k measures the reliability of the classification
model in predicting the two classes. We report the mean and
standard deviation of the accuracy (pMH and k) across all folds.
For the RI events, the evaluation was done beyond the study period
(to October 2022) using the hit ratio (HR) metric (Martinez-Amaya
et al., 2022). The HR indicates the number of times that a correct
prediction was made (out of the total number of predictions) with
our random forest classifier.

3 Results and discussion

3.1 Assessment of the spatio-temporal
CNN-RF predictions

In this section, the potential of a hybrid CNN-RF approach in the
context of TC is assessed. The approach integrates the automatic feature
extraction capability of CNNand also accounts for the temporal variations
in key hurricane cloud parameters, for all the lead-times considered.

Our results show that when considering information from 2 to
24-h time period (prior to the lead-time) (see Section 2.1), the pMH

k) ranges between 72% and 90% (0.45 and 0.70). By analyzing a
longer period of time, from the early stage of the cyclone, predictions
showcased similar accuracy values than that of 24-h. It can therefore
be argued that it is not necessary to consider the information beyond
24-h to have reasonably accurate results.

Adding the final spatial features produced by the CNN method
into the RF classification process (Sections 2.2 and 2.3) most often
helps the overall skill of the model, yet it is sensitive to the receptive

field and depth in the CNN network architecture. The best CNN
architecture was achieved by setting the number and type of layers as
shown Figure 1. Having a smaller receptive field (of 24 or 32 pixels),
makes the localization of distinctive features difficult. In contrast,
large-scale complex features can be extracted with a larger receptive
field (128 or 256 pixels), yielding to better results as evidenced by
higher pMH (and k) values (see Figure 2 for a receptive field size of
256 pixels; Supplementary Figures S1–S3 for the remaining
architectures). A receptive field with a size of 256 pixels offers the
optimal outcome in test statistics (pMH =75–91% and k = 0.50–0.80 for
a moving temporal window that spans back from 2- to 24-h before a
given lead-time, or pMH = 77–86% and k = 0.47–0.72 for the entire
duration of the event from when the TC forms to the lead-time) (see
Figure 2). Either way, as expected, results are less consistent for lead-
times that are far apart or too close to the maximum intensity of the
cyclone due to the difficulties in sampling and in capturing contrasting
patterns (Martinez-Amaya et al., 2022).

Considering the above limitations, an independent test was
adopted to analyze the effect of data augmentation for the best
architecture (this is the case of a receptive field of dimension 256 x
256 pixels), it made a positive impact on the performance that
increased to 3% (pMH) across all lead-times and time intervals.
Splitting the data into training and validation test, however, did not
seem to improve the results.

3.2 Comparison with the former RF-based
model

Here, we compare the performance of the Martinez-Amaya
et al. (2022) model and the different proposed predictive
models based on the use of spatio-temporal features derived
from brightness temperature data associated with TC
intensification.

By only adding the temporal information of up to 24-h (or the
entire period of time involved) prior to each lead-time, we obtain a

FIGURE 3
Model PMH improvement (in %) with respect to the reference method (Martinez-Amaya et al., 2022) for each lead-time and receptive field size (in
pixels, px) with both regions combined. The new version of the model constructed using a RF approach, which contemplates the temporal variations of
the TC structural parameters (over the entire period of each event in this case) and the CNN spatial features nearby and within the cloud system, always
provides the best results up to 48-h (or 54-h using a receptive field of 256 pixels).
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performance boost of 8.5% (7.5%) in terms of pMH. The accumulated
temporal integration is, hence, fundamental to improve the accuracy
in predicting MH. In addition, integrating the high-level spatial
features (extracted from CNN using an effective architecture such as
with a receptive field of 256 pixels) on the RF classification scheme,
the improvement in pMH can reach 14%, depending on the lead-time
(see Figure 3). Generally, including the complex spatial patterns
(around and within the cloud region) learned by the CNNmethod is
advantageous. However, for smaller sample sizes and close to the
maximum development (such as with shorter lead-times), when the
TC exhibits less identifiable spatial attributes, the model
enhancement is questionable. Therefore, data augmentation
seems crucial to adequately train the CNN model. This
procedure allows for an increase in the short lead-time and the
overall (all lead-times) classification prediction accuracy by up to 6%
and 20%, respectively (see Figure 4). More importantly, the
forecasting range beyond 36-h also improved by 10%. It is
pivotal to make accurate forecasts several days in advance.
Analysis with the k statistic led to the same conclusions (not shown).

As a final remark, we note that even if the computational
training cost scales up with the CNN-RF approach, once the
model is trained and the new data processed, the time for each
prediction is almost instantaneous (0.5 s).

3.3 Individual cases: Forecasting TC rapid
intensification

Our best CNN-RF model configuration (see experiment three)
in Figure 4) was tested for four relatively recent RI cases, two for each
region, which were not included in the model training: category
4 Ida (2021) and category 4 Sam (2021) for the N AO, and category
4 Oren (2022) and category 4 Roslyn (2022) for the NE PO. Ida

underwent two periods of RI in just over a few hours, each with a
different level of complexity. Sam was one of the most long-lived
storms as it remained in category 4 status for more than 7 days. Oren
exhibited a 24-h period of rapid intensification with a well-defined
eye-core region and surrounding rings at the time of peak intensity
(213 km/h). Roslyn rapidly intensified to a category 4 hurricane
within 18 h, carrying sustained winds of 215 km/h. In all cases we
always observed a HR higher than 60% for all lead-times. In
particular, results for 12–18-h and 36–54-h lead-times showed
better HR of at least 80% on average. Intermediate values are
found for 24–30-h lead-times. By comparison, the Martinez-
Amaya et al. (2022) model sometimes failed to outperform the
classification results in the studied cases at different lead-times.
Detailed results are given in the tables included in Supplementary
Figure S4.

4 Conclusion

Our advanced parameter extraction and classification of the
storm cloud system demonstrates that the patterns at multiple
spatial and temporal scales displayed improved performance in
predicting major hurricanes when compared to the Martinez-
Amaya et al. (2022) model. The final improvement (relative to
this previous model version) is 12% with data augmentation applied.
Our model also enables us to make more accurate and consistent
predictions of specific extreme cases of RI in recent years up to 54-h
in anticipation. This advancement can have significant practical
implications in terms of early warning systems. Yet, it is important
to consider that the performance of the proposed approachmay vary
when applied to different regions or different types of storms for
coastal communities prone to hurricanes. As the climate continues
to change, future research could also explore the generalizability and

FIGURE 4
Accuracy comparison of all experiments, from the simpler (left) to the more sophisticated (right) test, with a receptive field size of 256 pixels: 1) RF as
inMartinez-Amaya et al. (2022); 2) spatio-temporal CNN-RF, where the temporal evolution here is over the entire period of each event; 3) as in 2) but with
data augmentation and 4) an additional validation test was performed. DA and VT stand for data augmentation and validation tests, respectively. The
following numbers represent the cases that have been excluded from the dataset after applying random undersampling (before DA), aiming to
achieve a balanced distribution between the classes, for each lead-time, ranging from 6 to 54-h: 125 T, 95 T, 79 T, 52 T, 24 T, 2 T, 5 MH, 25 MH, and
50 MH. The number of samples (# Samples) refers to the total count of events considered for the analysis with an equal representation of TSs and MHs.
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performance of the model under different climate scenarios. In any
case, the model’s ability tomake predictions will be influenced by the
availability of the training dataset that applies to different situations.
As a whole, our cost-effective and scalable technique suggests a
promising future impact on the weather forecasting paradigm
through the investigation of further relevant indicators and
diverse contexts for enhancing hurricane prediction, thus
mitigating the impact of these destructive storms. However,
expanding the range of input data may come at a higher cost.
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