
Chlorite geochemical vectoring of
ore bodies: a natural kind
clustering approach

Nicole Freij1, Daniel David Gregory1*, Shuang Zhang2 and
Shaunna M. Morrison3

1Department of Earth Sciences, University of Toronto, Toronto, ON, Canada, 2Department of
Oceanography, Texas A&M University, College Station, TX, United States, 3Earth and Planets Laboratory,
Carnegie Institution for Science (CIS), Washington, CA, United States

Chlorite has long been considered a mineral group likely to have different trace
element chemistry with proximity to mineralization, and therefore can be used to
vector towards ore bodies. However, due to their geochemical complexity, it has
proven challenging to develop a simple vectoring method based on the variation
in abundance of one or a few chemical elements or isotopes. Machine learning,
specifically cluster analysis, provides a potential mathematical tool for
characterizing multidimensional geochemical correlations with proximity to
mineralization. In this contribution we conducted a cluster analysis on
23 elements from 1,679 distinct chlorite sample analyses. The combination of
this clustering technique with classification by proximity to the ore body, 1)
explores and characterizes the nature of chlorite composition and proximity to
ore bodies and 2) tests the efficacy of clustering-classification methods to predict
whether a chlorite sample is near to an ore body. We found that chlorite chemistry
is more strongly controlled by deposit type than proximity to mineralization and
that cluster analysis of chlorite trace element content is likely not a viable way to
develop vectors towards porphyry mineralization.
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Introduction

Porphyry style mineral deposits are an important source of many different types of
metals, especially Cu and Au. They typically have distinctive alteration halos that are
caused by hydrothermal fluids that are sourced from the causative intrusion and react
with the host rocks (Sillitoe, 1973; Sillitoe, 2010). One of these, known as the propylitic
zone, contains abundant chlorite mineralization and can extend several kilometers from
the causative intrusion. Because chlorite chemistry is regulated by temperature
(Wilkinson et al., 2015; Cooke et al., 2020), fluid mobility of elements in solution
(Wilkinson et al., 2020), and species/chemistry of original minerals that are altered to
chlorite (Xiao and Chen, 2020), the abundance and relationship of elements contained
within chlorite can be used to vector towards porphyry deposits. This vectoring analysis
can be used to refine mining targets and thus increase the efficiency of high-cost
exploration procedures like diamond drilling.

Titanium and V concentration is known to be elevated in chlorite formed at higher
temperature near the mineralized part of porphyry systems and has been used as a
geothermometer (Wilkinson et al., 2015; Wilkinson et al., 2020). Thus, generally these
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elements are elevated near the mineralized part of porphyry
systems (Wilkinson et al., 2015). Conversely, Li, As, Co, Sr,
Ca, and Y are all generally low proximal to porphyry systems
because these elements are thought to be relatively mobile in the
part of the propylitic zone proximal to mineralization (Wilkinson
et al., 2020). For these reasons, ratios of elements in chlorite can
be used as a vectoring tool towards mineralization. However, the
original mineral that is altered to chlorite may also affect the end
chlorite chemistry. Two prevalent reactions that lead to the
formation of chlorite in porphyry systems include the
transformation of biotite [K(Mg,Fe2+)3(AlSi3O10)(OH)2] to
chlorite and the conversion of hornblende [(Ca,Na)2-3(Mg,Fe2-
3+,Al)5(Al,Si)8O22(OH,F)2] to chlorite. For the biotite to chlorite
transformation the only elements in the original biotite that are
retained during the transition to chlorite are Fe, Mg, Al, and Ni
whereas Li, Cu, Ni, Zn, Co, Al, and Ga in the end chlorite are
derived from the hydrothermal fluids (Xiao and Chen, 2020).
However, for the hornblende to chlorite reaction only Fe in
chlorite is inherited from the original hornblende and Li, Cu,
Ni, Zn, Co, Al, and Ga, similarly to biotite sourced chlorite, are
inherited from the hydrothermal fluids (Xiao and Chen, 2020).
Additionally, chlorite is a common metamorphic mineral that
forms during green schist facies metamorphism from igneous
and sedimentary rocks, independent of hydrothermal fluids. As
there is not a relationship between this chlorite and hydrothermal
fluids, it is expected that metamorphic chlorite will exhibit
significantly different element concentrations compared to
chlorite formed within the propylitic zone surrounding
porphyry systems. Consequently, these differences in
elemental composition could serve as a basis for
differentiating between the two types of chlorite.

Although chlorite trace element chemistry variation has been
shown to be useful in vectoring towards ore deposits, the
complications that arise from potentially differing precursor
minerals (Xiao and Chen, 2020) and differences in fluid
chemistry and scale of the hydrothermal systems have limited
the use of chlorite chemistry as a vector. This limitation is
especially pronounced when investigating entirely new areas
for porphyry mineralization as in these circumstances there is
no baseline to provide information on local variations in the
chlorite chemistry proxy. One of the limitations of previous
studies investigating the use of chlorite chemistry as a vector
for porphyry mineralization is their reliance on two-dimensional
plots of element concentrations or elemental ratios. Due to the
high dimensionality of elements in chlorite that can vary with
proximity to porphyry mineralization this methodology can miss
certain trends that can be potentially revealed by the high-
dimensional dataset. Unsupervised machine learning
techniques can help avoid these issues by utilizing statistical
programs to simultaneously investigate multiple elements. Here
we test whether k-means and/or hierarchical cluster analysis of
chlorite chemistry can be used as a universal vector for porphyry
mineralization. To do this we combine analyses from five
different sites and determine whether chlorite analyses will be
naturally clustered according to their distance from the porphyry
system. Further, because these are unsupervised algorithms it can
avoid the risk of over fitting the data that can occur with
supervised algorithms, like Random Forests.

Geologic context of chlorite mineralization

Chlorite minerals can form in a variety of different
environments or conditions. They can mineralize through rock
alteration due to high pressure and/or high temperature burial,
converging plates, hydrothermal activity, contact or retrograde
metamorphism (Wang et al., 2022). Chlorite is also associated
with propylitic alteration facies, which is very common in
magmatic hydrothermal ore deposits, such as porphyry systems
(Fulignati, 2020).

Data source

Chlorite is a group comprising 10 mineral species according to
the International Mineralogical Association (rruff.info/ima; date
accessed: July 2023). The chlorite mineral group has the general
chemical formula A5-6T4Z18, where A can incorporate many
elements, including Mg, Fe2+, Al, Fe3+ Mn, and Zn, T is generally
Si and Al, but is also known to contain Fe3+; and Z is O or OH. It is
into these A, T, or Z sites that the elements that can be used to vector
towards porphyry mineralization substitute. Which sites these
elements enter depends on their size and charge.

Chlorite chemistry data was acquired from literature research,
ScienceDirect, and GeoScienceWorld. Analyses went through
extensive filtering to ensure that they can be confidently
considered as chlorite (Freij et al., 2023). After these data were
processed and filtered, 1,679 analyses remained from five papers
studying five distinct areas: porphyry Cu-Au deposits in the
Northparkes District in Australia (Pacey et al., 2020) and the
Batu Hijau district in Indonesia (Wilkinson et al., 2015), Cu-Mo
deposits in the Superior district of Arizona (Cooke et al., 2020) and
El Teniente in Chile (Wilkinson et al., 2020), and a Cu-Mo-W
deposit in Tongshankou, China (Chu et al., 2020).

Geology of deposits from which data was
obtained

The Northparkes district is located in New South Wales,
Australia, and hosts Cu-Au deposits totaling 472 million
tonnes at 0.56% Cu and 0.19 g/t Au (Pacey et al., 2019). The
host rocks consist of volcanic and volcaniclastic rocks with
intercalations of marine sediments locally (Krynen et al., 1990;
Simpson et al., 2005). Mineralization is hosted in comagmatic
intrusive rocks and show magmatic-hydrothermal activity
from the Late Ordovician to earliest Silurian (Lickfold et al.,
2007). Ore minerals include bornite and chalcopyrite (Pacey
et al., 2020).

The Batu Hijau district in Indonesia hosts 1.64 billion tonnes of
ore at 0.44% Cu and 0.35 g/t Au on average (Chu et al., 2020). It
formed at ~ 3.7 Ma. Batu Hijau consists of strongly mineralized
tonalite emplaced into homogeneous intermediate volcanics (Chu
et al., 2020) with quartz vein-hosted bornite and chalcopyrite as the
primary copper ore minerals (Imai and Ohno, 2008).

The Cretaceous to Paleocene Cu-Mo deposit (Cooke et al., 2020)
of the Superior District in Arizona hosts 1.787 billion tonnes at a
grade of 1.53% Cu and 0.039% Mo (Rio Tinto, 2018). Host rocks
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consist of highly reactive dolerites and limestones and permeable
breccias with chalcopyrite being the dominant ore mineral (Cooke
et al., 2020).

El Teniente is located in the Andean Cordillera (Wilkinson et al.,
2020) and hosts approximately 95 million tonnes of fine Cu grading
0.5% and 2.5 million tonnes of Mo (Camus, 2002). The host rock
consists of a late Miocene volcano-plutonic complex which occurs
with a sequence of extrusive and intrusive rocks of basaltic to
rhyolitic composition (Skewes et al., 2002; Cannell et al., 2005)
and was intruded by rocks of diorite to granodiorite (Wilkinson
et al., 2020). Ore minerals include chalcopyrite, pyrite, and
molybdenite (Wilkinson et al., 2020).

Tongshankou is a porphyry-related Cu–Mo–W skarn deposit in
Eastern China and contains 0.55 Mt Cu at 0.86%, 0.01 Mt Mo at
0.10% and 0.12 Mt WO3 at 0.19% (Chu et al., 2020). The deposit
formed near the contact between Lower Triassic carbonate rocks
and the granodiorite porphyry (Chu et al., 2020). Ore minerals are
chalcopyrite, pyrite and molybdenite (Chu et al., 2020).

Data processing

Data was filtered after the methods of Freij et al. (2023), and a
summary of the process is provided here. The first step in
processing the data was to determine whether the data
acquired from literature sources was chemically consistent
with chlorite. This was done by converting the ppm data to wt
% oxide (Al to Al2O3, Ca to CaO, Cr to Cr2O3, Fe to FeO, K to
K2O, Mg to MgO, Mn to MnO, Na to Na2O, Si to SiO2, and Ti to
TiO2). Total wt% (including the wt% of H2O) were then summed
to determine whether the total was between 98.5% and 101.5%. If
they were not, the analysis was rejected. In analyses without
reported H2O, the total wt% was subtracted from 100% and the
difference was assumed to be H2O. In this case if the H2O was not
between 9% and 18% the analysis was discounted as not being
confidently chlorite. Similarly, if neither H2O or SiO2 were
reported then H2O was assumed to be 12% and the sum of
the other cation oxides was subtracted from 88% (100%–12%
water) to estimate the SiO2 abundance. Next, the structural
formula of each analysis was determined using a similar
method to Deer et al. (2013). Any analysis that did not
conform to chlorite’s structural formula, A5–6T4Z18 (where
A = Al, Fe, Mg, Mn; T = Al, Si; Z = OH, O) within
0.5 cations in each site, was rejected.

Some datasets contained both LA-ICP-MS and EMPA data.
Upon converting the LA-ICP-MS data from ppm to wt% oxide for
the chlorite test, the conversions sometimes differed from the
corresponding values given in the EMPA data, and the analyses
from LA-ICP-MS analyses had failed the chlorite test (above). In this
case, the LA-ICP-MS data was corrected using a conversion factor.
The conversion factor was determined for each analysis and defined
as the ratio between the total wt% from the EMPA data and the total
wt% from the converted LA-ICP-MS data for each analysis. Any
analysis that had a ratio less than 0.8 or contained too little data to
calculate an accurate ratio were discarded. The element
concentrations for each analysis were then multiplied by this
factor and in many cases successfully passed the chlorite test.
Additionally, not all analyses had wt% oxide data as the LA-ICP-

MS analyses differed in location to the EMPA analyses. Some of
these analyses were still accepted as chlorite if they had similar spot
IDs to other analyses from the same dataset that passed the chlorite
test. Finally, analyses with irregularly high Ti and P (over
~30,000 ppm and ~5,000 ppm, respectively), were also excluded
as values this high are indicative of micro inclusions of Ti or P
bearing minerals respectively.

The chlorite test confidently classified 2,942 analyses as chlorite
from 3,317 originally compiled analyses. Additionally, not all
analyses had wt% oxide data as the LA-ICPMS analyses differed
in location to the EMPA analyses. Some of these analyses were still
accepted as chlorite if they had similar spot IDs to other analyses
from the same dataset that passed the chlorite test.

After the filtering process, the data was trimmed to prepare for
analysis. Analyses that calculated total elemental concentration from
multiple different isotopes of the same element were merged by
taking the average. In the case of analyses with missing data, if there
were other analyses from the same dataset with similar spot IDs,
then their reported values were averaged and reported for the
missing data. Any case where the detection limit was not given
for “not detected” (ND) values, the lowest value detected for an
element in a dataset was used as the minimum detection limit. In
some cases, the reported values were given as a range. These cells
were changed to be less than the maximum value given in the range.
Finally, any column with less than 64% number-containing cells
were removed as this achieved a balance between amounts of data
that needed to be excluded and number of data points with values for
most elements, further it retained most of the elements used as a
vectoring tool by previous authors. After this trimming, 23 elements
remained: Al, As, B, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb,
Si, Sn, Sr, Ti, V, Y, and Zn.

Pre-clustering

The data was then prepared for cluster analysis in R which is a
programming language often used for statistical analysis (R Core
Team, 2020). Each row of data that had missing values of the
elements listed above was removed, leaving 1,679 rows for analysis.
The remaining analyses are from deposits in Australia (Pacey et al.,
2020), Indonesia (Wilkinson et al., 2015), China (Chu et al., 2020),
United States (Cooke et al., 2020), and Chile (Wilkinson et al., 2020),
representing a wide spatial coverage. Values below the detection
limit were imputed using a multiplicative lognormal replacement
function from the R package “zCompositions” as this has been
shown to provide more accurate approximations for elemental
values below detection limits (Dmitrijeva et al., 2020).
Distributions of the element concentrations showed that elements
Cr, Pb and Y were uniformly quite low in concentration and had
little variance, thus they were removed from the data for cluster
analysis. No log transformations were performed because most of
the data approximated a normal distribution as shown in Appendix
A.We then standardized the data (subtracted element concentration
by the mean and then divided it by the standard deviation) and
conducted principal component analysis (PCA) on this standardized
dataset. Component 1 and component 2 explained 18.3% and 11.2%
of the variance, respectively. Aluminum and Ca were the biggest
contributors to component 1, whereas Fe and Mg were the biggest
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contributors to component 2. In order to evaluate the dataset for its
tendency to contain meaningful clusters, we calculated the Hopkins
Statistic (Banerjee and Dave, 2004), which assesses the data’s spatial
randomness through computing the distances between nearest
neighbor data points. The calculated Hopkins Statistic was found
to be 0.96, indicating performing cluster analysis on the data is
feasible.

Clustering

Two different clustering algorithms (k-means clustering, and
hierarchical clustering) were used to categorize our scaled
element concentration data into reasonable clusters. K-means
clustering works well with large datasets and is generally more
scalable. It is relatively easy to implement and interpret.
Hierarchical clustering can be computationally intensive and
less efficient for large datasets, but it allows for more detailed
output (i.e., a whole dendrogram) and selection of different
distance measurement methods. For k-means clustering, once
the number of desired clusters (k) is defined, the algorithm first
creates k number of centroids at random locations. Then each
point in the dataset is assigned to the nearest centroid. Once all
the data points are assigned to a centroid and the clusters are
defined, new centroids are determined for each cluster by the
mean of all the points in each cluster. This process is repeated
until none of the clusters change. For hierarchical clustering, data
points that are close to each other are first individually grouped
into their own cluster. Then, similar clusters are merged together
after each iteration until the desired number of clusters is
achieved. For both methods, to obtain the final clustering
results from these algorithms, we need to choose the number
of clusters or components (K). The silhouette (Rousseeuw, 1987)
and elbow method (Thorndike, 1953) were both used to
determine the best number of clusters for k-means and
hierarchical clustering. The silhouette method measures the
average silhouette width which determines how similar a
sample is to its own cluster (cohesion) compared to other

clusters (separation). A high average silhouette width indicates
good clustering (Figure 1). The elbow method utilizes the within-
cluster sum of squares (WSS), which is the sum of distances
between the points and centroid of a cluster, to determine the best
number of clusters. The elbow method calculates the total WSS
for different amounts of clusters. The best number of clusters
should have a small total WSS and should not be significantly
higher than the total WSS when adding another cluster. The bend
or inflection, “elbow,” in the total-within-cluster sum of squares
curve vs. number of clusters usually indicates the optimal number
of clusters (Figure 2). For k-means, the silhouette and elbow
method both showed that the best number of clusters was 2. For
hierarchical clustering, the best number of clusters was not as
clear and thus different values were tested in the clustering
algorithm.

The two clustering algorithms were performed on the scaled
data; for k-means 50 iterations were used. To compare the
clustering results with the environmental/geological properties
of the data themselves, our data were grouped into bins based on
their distance from a hydrothermal center. Different amounts
and ranges of bins were compared with the clustering results to
assess different outcomes. Most of the ranges of the bins were
determined to spread out the distance data somewhat equally.
From the filtered and trimmed 2,942 analyses, the minimum and
maximum distances to the respective deposit center was 5.5 and
19,051 m respectively.

For the k-means algorithm, runs of different ranges of four and
five bins were created. The first run used four bins based on the 25th,
50th and 75th percentiles of the 2,942 distance data points (i.e., d ≤
1,375; 1,375 < d ≤ 1,813; 1,813 < d ≤ 3,682; d > 3,682). Other bins
and ranges were varied to test what natural groupings of data could
be found that also provide useful distances from mineralization
(Table 1).

For hierarchical clustering, runs 1 and 3 were used as well as
some additional runs with new bins. The new bins were created by
splitting the first bin of the percentile-determined bins in different
ways. This is summarized in Table 2. After hierarchical clustering of
the entire data set hierarchical cluster analysis was also performed

FIGURE 1
Silhouette method testing the best number of clusters to set for the k-means algorithm given the chlorite element chemistry data. In this case, the
optimal number of clusters is two.

Frontiers in Earth Science frontiersin.org04

Freij et al. 10.3389/feart.2023.1222291

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1222291


on the data set using only trace elements and major elements that
did not vary based on parent mineral (Co, Cr, Cu, Li, Ni, Pb, Si, Sn,
Sr, Ti, V, Y, and Zn) to test whether by utilizing only these elements
the effects of inheritance of trace elements from the mineral the
chlorite is replacing could be avoided.

Lastly, independent hierarchical cluster analyses were conducted
on data from two different deposits. One used data from the
Northparkes district and one used data from the Batu Hijau
district. Both used all elements and the same methodology
described above.

Results

K-means

The k-means clustering algorithm was performed with k = 2,
resulting in two clusters. The various runs of distinct bins allow for
different views and interpretations of the clustering results.
Figure 3A shows the clustering results compared against the
25th, 50th, and 75th percentile distance bins (run 1). Cluster
1 consists mostly of chlorite further away from the deposit center

FIGURE 2
Plot of the elbowmethod showing the total WSS for different numbers of clusters. Tested with the chlorite element chemistry data for the k-means
clustering algorithm. The plot shows the optimal number of clusters indicated by the “elbow” which occurs at k = 2.

TABLE 1 Runs of bins and their associated ranges tested in the k-means algorithm. The bins of run 1 are defined by the 25th, 50th and 75th percentiles of the
2,942 distance data points. Bins from runs 2–4 were defined arbitrarily to test how differently data separates under different bins.

Run Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

1 d ≤ 1,375 1,375 < d ≤ 1,813 1,813 < d ≤ 3,682 d > 3,682 NA

2 d ≤ 500 500 < d ≤ 1,000 1,000 < d ≤ 1,800 d > 1,800 NA

3 d ≤ 700 700 < d ≤ 1,800 1,800 < d ≤ 3,000 d > 3,000 NA

4 d ≤ 700 700 < d ≤ 1,300 1,300 < d ≤ 1,800 1,800 < d ≤ 5,000 d > 5,000

TABLE 2 Additional runs tested against the hierarchical clustering algorithm. Bin 1 of runs 5–7 is less than or equal to half of the 25th percentile, 12.5th percentile,
and 18th percentile respectively. Bin 2 is between these values and the 50th percentile. Bins 3–5 remain the same as bins 2–4 from run 1.

Run Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

5 d ≤ 687 687 < d ≤ 1,375 1,375 < d ≤ 1,813 1,813 < d ≤ 3,682 d > 3,682

6 d ≤ 525 525 < d ≤ 1,375 1,375< d ≤ 1,813 1,813 < d ≤ 3,682 d > 3,682

7 d ≤ 819 819 < d ≤ 1,375 1,375 < d ≤ 1,813 1,813 < d ≤ 3,682 d > 3,682
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(85% of the analyses in cluster 1 are from >1,813 m from the
deposits), whereas cluster 2 contains more proximal chlorite
(70% of analyses in cluster 2 are from <1,813 m from the
deposits). Albeit some overlap occurs in both clusters, as the two
nearest and furthest bins are not perfectly segregated from each
other, but the results show a general separation between proximal
and distal chlorite. Figure 3B shows the same clustering results
compared against the bins of run 2. The range of these bins are
compressed in comparison to those in Figure 3A (run 1). With a
narrower range of bins, cluster 1 now comprises most of one bin
(85% of chlorite analyses are from greater than 1,800 m away from
the deposit center), whereas cluster 2 contains a significant amount
of each bin. There is more overlap in Figure 3B and not as clear of a
distinction between the proximal and distal bins. Figure 3C
compares the clustering results with the set of bins from run 3,
which are broader than in Figure 3B (run 2) but still narrower than
in Figure 3A (run 1). Similar to Figure 3B, cluster 1 still comprises
mostly samples from the furthest bin, however there are more
analyses from the second most distal bin as well (70% of analyses
in cluster 1 >3,000 m from the deposits and 15% from 1,800 to
3,000 m from the deposit). Cluster 2 contains analyses from all four
bins, similar to the results in Figure 3B. Figure 3D compares the
clustering results binned by run 4, which has a set of five distance
bins. All the figures and binning schemes show a small portion of the
most proximal chlorite grouped in cluster 1, where most of the distal
chlorite reside. For example, 14% of the chlorite in the most
proximal distance bin in Figure 3A is grouped in cluster 1. There
is also some chlorite from the most distal bin grouped with the
nearer bins in cluster 2. Although there exists some overlap in the
clusters among the different bins, overall, there is

somewhat of a distinction between proximal and distal chlorite
in the clusters.

Hierarchical

The hierarchical clustering algorithm was performed using
different k values, because the elbow method and silhouette
method gave no clear indication of an optimal k value.
Because of this 2, 3, and 4 clusters were tested against
different bins. Figure 4 shows scatter plots of trace elements
with results of hierarchical clustering and distance to
mineralization. Figure 5A shows the clustering results
compared against the 25th, 50th, and 75th percentiles distance
bins (run 1). The chlorite data seems to be spread more evenly
among the two clusters in this run using the hierarchical
algorithm. Cluster 1 contains most chlorite from the two most
proximal bins (77% of cluster 1), with some inclusion of chlorite
from the two most distal bins. The two most distal chlorite bins
are grouped mostly within cluster 2 (79% of the analyses
from >1,813 m in cluster 2), with some overlap as well from
the two most proximal bins. Although significant overlap of the
bins is present in run 1, the hierarchical algorithm better
separates proximal chlorite from distal chlorite than from the
k-means algorithm in Figure 3A.

Figure 5B shows run 1 again but split across four clusters (k = 4).
Ideally the four chlorite bins would segregate into their own cluster,
however in these results there is significant contribution from each
group in 2 of the 4 clusters. Cluster 3 consists primarily of the most
proximal chlorite bin, with minor inclusions of the second most

FIGURE 3
Bar graph showing results of the k-means clustering algorithm compared against different distance bins. (A) Comparison of results with quartile
distance bins. (B–D) Comparison of results against narrower distance bins.
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proximal bin. Cluster 1 consists more of the two most proximal
chlorite bins (74% of cluster 1 < 1,813 m), while grouping some of
the distal chlorite in as well. Cluster 2 contains predominantly
chlorite from the two most distal bins (79% of cluster 2 >
1,813 m), with some overlap from the two most proximal bins,
while cluster 4 is almost entirely chlorite from the two most distal
bins. There is clear segregation of the proximal and distal chlorite
across clusters 3 and 4, whereas clusters 1 and 2 contain overlap
across all bins.

Figure 5C shows groupings of the data from hierarchical
clustering with k = 3 of run 3. There is good segregation of
chlorite from the most distal bin in cluster 3, however in cluster
2 there is significant overlap across all bins albeit the majority is
chlorite from the two most distal bins (74% of cluster 2 from
analyses >1,813 m). Cluster 1 also contains most of the chlorite
from the two most proximal bins (75% from <1,813 m), and again,

some overlap is still seen from the groupings of chlorite in the two
most distal bins.

Figure 5D shows the clustering results against run 5 with two
clusters. This shows similar results to Figure 5A, where cluster 1 and
cluster 2 seem to segregate proximal chlorite and distal chlorite
respectively, yet both clusters still contain some minor overlap with
one another.

Figure 5E shows the results of run 6 using 4 clusters. These
results are similar to Figure 5B. Again, there is a cluster containing
solely chlorite from the most proximal bin, and another cluster with
chlorite from the most distal bins, clusters 3 and 4 respectively.
Cluster 1 consists mostly of chlorite from the proximal bins (77% of
the analyses from <1,813 m), yet still grouping a smaller portion of
chlorite from the distal bins. This is seen for cluster 2 as well, but
distal chlorite dominates with less inclusions of proximal chlorite
(79% of analyses from >1,813 m).

FIGURE 4
Results of the hierarchical clustering algorithm. Clusters are given by the color and deposit are given by the shape. (A) Fe vs. Mg, (B) Sr vs. Tl, (C) V vs.
Ni, and (D) Li vs. Zn.
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Figure 5F shows the clustering results compared against bins
from run 7 using 3 clusters. This depicts similar results to Figure 5C.
Cluster 3 segregates solely a portion of chlorite from the two most
distal bins, however chlorite from these bins are still present in
clusters 1 and 2. Cluster 1 is able to mostly differentiate proximal
chlorite from distal (79% of analyses from <1,813 m), but still
incorporates some chlorite from the distal bins. This is seen in
cluster 2 but with distal chlorite dominating (74% of analyses
from >1,813 m). In all, comparing the clustering results across
different algorithms and bins, most results show somewhat of a
segregation between proximal and distal chlorite but cannot fully
differentiate them as the clusters depict a portion of overlap across
all bins.

Additionally, when investigating the deposits individually, there
appears to be bias in the interpretation when only distance to deposit
is investigated in the different clusters. The classifier separates the
deposits based on metal contained within the deposit with the same
or better segregation than distance to the deposit. The analyses from
Cu-Au deposits make up 91% of cluster 1 while the analyses from
Cu-Mo deposits make up 76% of cluster 2 (Table 3).

An additional cluster analysis was conducted using only trace
elements and major elements less dependent on parent mineral (Co,

Cr, Cu, Li, Ni, Pb, Si, Sn, Sr, Ti, V, Y, and Zn). This gave relatively
poor results in that the majority of the analyses were contained
within cluster 1 (80% in cluster 1). While the majority of the analyses
in cluster 2 were from the samples from greater distance to the
deposit (85% of analyses in cluster 2 from >1,810 m from the
deposit), approximately twice as many analyses from these
distances were grouped into cluster 1 (Table 4).

The cluster analysis of the individual deposits (Northparkes and
Batu Hijau districts) was less successful (Figure 6). While they did
generally separate the distal samples preferentially into cluster 2
(100% of analyses in cluster 2 are from >3,681 m at Northparkes and
47% of analyses in cluster 2 from Batu Hijau from >3,681 m)most of
the analyses from both deposits were grouped into cluster 1 (88% of
analyses from Northparkes in cluster 1 and 83% of analyses from
Batu Hijau in cluster 1).

Discussion

The segregation of the chlorite bins depends heavily on how the
bins are assigned; however, in comparing all of the clustering
outcomes across different algorithms and bins, most results show

FIGURE 5
Bar graph showing results of the hierarchical clustering algorithm compared against different distance bins. (A,B) Comparison of results against
quartile distance bins with two and four clusters, respectively. (C–F)Comparison of results against narrower distance bins with varying number of clusters.
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some degree of segregation between proximal and distal chlorite.
Yet, the clustering results are unable to fully differentiate chlorite
proximity to ore body into distinct clusters and there is a portion of
overlap across all distances of chlorite deposition. This may be due in
part to the difficulty in clearly defining how far a given sample is
from a deposit and thereby be the result of biases within chlorite data
collection and recording. Themost optimal results are depicted from
the hierarchical and k-means algorithms with two clusters under the
quartile distance bins as they show the best segregation between
proximal and distal chlorite (Figures 3A, 5A), with the least amount
of overlap. This could have been influenced by the evenly distributed
chlorite data across each bin, or perhaps the distances defined in

each bin represent the bounds of different alteration halos
surrounding the center of the deposits that define a new
geochemical signature of the chlorite. Another important
observation is noted amongst the k-means results from the runs
with the narrower bins (Figures 4B–D); these show a significant
portion of the most proximal chlorite samples grouping with the
cluster dominated by the most distal chlorite bin. Perhaps some of
the distal chlorite has a low-grade metamorphic imprint that results
in a trace element chemistry similar to the proximal hydrothermal
chlorite. Further studies can be dedicated to investigating any
further imprint of metamorphism on the chlorite data using
magnesium-to-iron ratios to differentiate metamorphic chlorite
from hydrothermal chlorite as to avoid as much skewing of the
clustering results as possible (Kamps et al., 2018). We further tested
whether cluster analyses using only trace elements and major
elements less dependent on the primary mineral might be more
effective than cluster analyses that contain major elements such as Fe
and Mg (Table 4). These were unsuccessful as the majority of
analyses were contained within cluster 1, limiting the use of trace
element only cluster analysis as a vectoring tool. This demonstrates
that the major elements, including Fe and Mg, which are inherited
from primary minerals are important components of chlorite
chemistry as a vector towards mineralization.

TABLE 3 Hierarchical clustering results for each deposit and distance to deposit.

Deposit Deposit type Distance (m) Cluster 1 Cluster 2

Superior district Cu-Mo d ≤ 1,375 7 0

1,375 < d < 1,813 0 0

1,813 < d < 3,682 0 0

d > 3682 0 0

El Teniente Cu-Mo d ≤ 1375 27 14

1,375 < d < 1,813 26 61

1,813 < d < 3,682 16 268

d >3,682 4 208

Tongshankou Cu-Mo d ≤ 1,375 0 55

1,375 < d < 1,813 0 0

1,813 < d < 3,682 0 0

d > 3,682 0 0

Total Cu-Mo Cu-Mo 80 606

Batu Hijau Cu-Au d ≤ 1,375 7 26

1,375 < d < 1,813 0 8

1,813 < d < 3,682 6 19

d > 3,682 0 6

Northparkes Cu-Au d ≤ 1,375 324 0

1,375 < d < 1,813 296 18

1,813 < d < 3,682 108 0

d >3682 64 111

Total Cu-Au Cu-Au 805 188

TABLE 4 % of analyses from each distance in each cluster when hierarchical
cluster completed with only trace elements.

Distance (m) Cluster 1 (%) Cluster 2 (%)

d ≤ 1,375 24 1

1,375 < d ≤ 1,813 23 2

1,813 < d ≤ 3,682 17 9

d > 3,682 15 9
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Previous studies have explored the application of chlorite
chemistry as a vector towards an ore deposit center (Chu et al.,
2020; Cooke et al., 2020; Wilkinson et al., 2015 amongst others).
These studies investigated one- and/or two-dimensional trends of
trace element behavior in chlorite for a single deposit. Although
there were substantial trends in certain element variations at
different distances away from the deposit center in these studies,
these were deposit-specific and did not consider trends in chlorite’s
entire trace element composition as a whole. Machine learning
algorithms applied in this study were able to identify similarities
in several trace element concentrations in chlorite at varying
distances away from mineralization. Using multi-dimensional
chlorite chemistry data from different deposits allows for
investigating its use as a vector on a universal level. The results
of the unsupervised learning algorithms show that there exists a
similarity in how trace element concentrations behave within
chlorite from different deposits at varying distances away. Albeit
the results from the clustering do not perfectly segregate the different
chlorite bins, there is still significant segregation between them. The
data shows a good distinction of proximal chlorite from distal
chlorite, suggesting that chlorite chemistry is potentially unique
at different distances away from a deposit center. However, these
results are partially an artifact of differences in the geology of the
deposits. The data set used here is dominated by analyses of chlorite
from Cu-Mo (Superior district, El Teniente, and Tongshankou) and
Cu-Au (Northparkes district and Batu Hijau) porphyry systems. Of
these the data set contains more analyses from El Teniente
(dominated by distal samples) and Northparkes (dominated by
proximal samples). When looked at in detail the the metals
contained in the deposits appear to have a greater control on
which cluster the chlorite analyses are grouped in that 81% of
the analyses from Cu-Au deposits are in cluster 1 and 88% of the
analyses from Cu-Mo deposits are in cluster 2 (Table 3). This
suggested that the development of a universal classifier using
cluster analysis is unlikely to be effective and that independent
classifiers should be developed for each different porphyry type. To
test the efficacy of such a classifiers cluster analysis was performed
on two individual deposits (Batu Hijau and Northparkes). This was
determined to be significantly less effective, and the majority of the
data was grouped into one of the clusters limiting the cluster

analysis’ use as a vectoring tool in such an environment
(Figure 6). This suggests that cluster analysis of chlorite
chemistry is not an effective method to develop a universal
vector towards porphyry mineralization.

Limitations of study

Naturally, conducting studies on compilations of data from a
number of studies has certain limitations. First, the measure of
distance of the samples from the ore deposit is subjective. Because
ore deposits are not of uniform dimensions and what is defined as “ore”
will vary depending on economic factors in addition to physical factors
the measure of the distance to a deposit will vary from place to place.
Further, the direction of the distance from the ore deposit is likely to also
be variable and would affect the amount and source of fluids that
interacted with the rock. For example, 500 m above a porphyry system
will have different fluid conditions to 500 m adjacent to a porphyry
system. Because these details are difficult to resolve when studying a site
in detail, they are even more difficult to correct when compiling data
and are limitations of this study.

Additionally, differences in the collection of the LA-ICPMS data
can also lead to limitations in the data compilations. Different labs may
utilize different instruments, different tuning procedures, different
standard materials, and different internal standards when conducting
data reduction. Changes in each of these could affect the output data
and could result in errors when interrogating the compiled data set.

Conclusion

Unsupervised machine learning algorithms serve as a multi-
dimensional approach in investigating the potential of chlorite
chemistry as a vector towards mineralization. There are significant
groupings of proximal chlorite from distal chlorite that suggests a use
of chlorite’s trace element chemistry as a proxy for vectoring towards a
deposit center. However, the utility of this as an universal vector are
somewhat diminished in that it is only able to separate analyses
from >1,800m from a deposit from those <1,800m from a deposit.
Further, these results are likely more based on metals contained in the

FIGURE 6
Bar graph showing results of the hierarchical clustering algorithm for individual deposits. (A) gives results for samples from the Northparkes district
and (B) gives results for the Batu Hijau district.
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deposits rather than distance to the deposit center, indicating that cluster
analysis of chlorite trace element chemistry is unlikely to be a useful
vector towards porphyry mineralization. Next steps would involve
obtaining a larger database that considers chlorite from more
porphyry and/or hydrothermal deposits to be able to assess whether
there is a clear universal trend in trace element behavior in chlorite.
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