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Editorial on the Research Topic
From preparation to faulting: multidisciplinary investigations on
earthquake processes

1 Aims and content of this research topic

In seismically active areas (e.g., Han et al., 2022), the best way for disaster mitigation is to
enhance the skills of risk evaluation and prediction (Shao et al., 2023). What happens before an
earthquake occurs?Which are the physical processes that take place in the Earth’s crust before the
earthquake nucleates? How can we observe, describe, and model them statistically, numerically,
and physically inmulti-scales from laboratory samples to tectonic earth plates? Those questions are
fundamental but have not been completely solved (Geller, 1997; Pritchard, et al., 2020).

Over the last few decades multidisciplinary studies have attempted to answer these
fundamental questions (e.g., King, 1978; Ma, 1987; Kanamori and Brodsky, 2001). In the
early days, the Institute Physics of the Earth (IPE) model (dry) (Myachkin et al., 1975) and
the Dilatance Diffusion (DD) model (wet) (Scholz et al., 1973) were proposed for earthquake
processes. Like Schrödinger’s cat, an earthquake is unpredictable—according to the IPE
model, yet it can be predictable—according to the DD model (Ma, 1987). Recently, with
advanced techniques, some scientists have discovered the meta-instable stage before failure
to slip (Ma et al., 2012) and assuredly claimed that there are precursors to be used for
earthquake forecasting (Ma, 2016), which envisages new opportunities to study earthquake
precursors (Pritchard, et al., 2020).

An understanding of the governing laws (e.g., King, 1978; Zöller et al., 2010; Shi et al.,
2020; Chen et al., 2022), from long-term tectonic loading (Zhang et al., 2022) and nucleation
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to rapid rupture propagation (Yang et al., 2022), is significant to
earthquake forecasting and demands a comprehension of the stress
state and evolution during the time of geophysical observations
around seismically active areas (Zhao et al., 2020; Zhao et al., 2022).
The evidence from multiscale experiments (Ma and Guo, 2014;
Huang et al., 2019; Huang et al., 2020; Martinelli et al., 2020),
multidisciplinary monitoring system networks (Huang FQ. et al.,
2017; Martinelli et al., 2021), numerical modeling (Barbot et al.,
2012; Huang FQ. et al., 2017; Ben-Zion, 2017), and field
investigations (e.g., King, 1978), are the keys to advance our
understanding of earthquake mechanics.

Earthquakes do not occur everywhere. Fault geometry and the
physical properties of fault zones (namely, seismogenic structure),
geological and tectonic settings (Wang et al., 2014; Dascher-
Cousineau et al., 2020; Gong et al., 2020), as well as crustal
movement and the geodynamic environment, play pivotal roles
in the seismic patterns (e.g., King, 1978; Ikeda, 2009; Luo et al.,
2023). A variety of geophysical and geochemical observations,
ranging from ground-related deformation patterns (GPS, SAR,
etc.) (Bürgmann et al., 2000; Zhao et al., 2020) to pre-earthquake
changes (geochemical, electromagnetic, hydro-geological, geodetic,
or thermodynamic) (Huang F. Q. et al., 2017; Zhou et al., 2020; Chen
et al., 2021; Martinelli et al., 2021; Zhou et al., 2021), recorded by
ground-based (Li et al., 2022) or satellite-based techniques (Li et al.,
2020) may be related to stress variations in the lithosphere (Luo
et al., 2023) prior to an eventual large earthquake (Zhao et al., 2022).
Even though much effort has been invested, the earthquake
“elephant in the room” is still in the process of being understood.

This Research Topic aims to provide state-of-the-art studies
on earthquake processes via multidisciplinary approaches from
geophysical, geochemical, geodetical, and geological routines
which are mostly exchanged at the annual conference of the
China Earthquake Prediction Forum (Huang et al., 2023). Pre-
earthquake observations, methods, and perspectives, can
provide a current view in the knowledge of processes
preceding earthquake occurrence in China, which can be
possibly employed to set up earthquake forecasting
experiments, aimed at their verification Test Site areas,
whether large or small.

2 Overview on published contributions

There are eleven articles collected for this Research Topic,
involving precursors of monitoring networks and earthquake
prediction methods (four articles), stress state of the geodynamic
environment inferred from recent earthquakes (two articles),
seismogenic structure and fault geometry from deep to surface
(four articles) and models for earthquake risk assessment of the
National Test site (one article).

2.1 Precursors of monitoring networks and
earthquake prediction method

Extracting anomalous changes relevant to earthquake
processes from observation systems is the key step to routine
earthquake prediction. Here we have collected one article based

on laboratory work that involves judging rock instability by
enhanced LURR (short-term to imminent before “earthquakes,”
by Zhang et al., The evolution characteristics of rock fracture
instability under cyclic loading on the basis of the enhanced
LURR), and three articles involving the extraction of
anomalous changes before strong earthquakes on the China
Mainland from seismograph observation systems from the
long-term to the short-term stage. Frequency field (Luo et al.,
Pre-quake frequency characteristics of Ms ≥7.0 earthquakes in
mainland China), b-value (Bi et al., Strong aftershocks traffic
light system: A case study of the 8 January 2022 MS6.9 Menyuan
earthquake, Qinghai Province, China) and anomalous quiet or
enhanced processes of small to moderate earthquakes before the
strong earthquakes (Gao et al., Low-intensity anomaly involving
ML≥4 events preceding strong earthquakes in Tibet) are the main
items to be discussed.

2.2 Stress state of the geodynamic
environment inferred from recent
earthquakes

Stress state is significant for the geodynamic environment of
seismic source. The measurement of in situ stress state is quite
difficult. Inference from existing earthquake sequences is an
effective way. The article entitled Seismogenic structures and
spatiotemporal seismicity patterns of the 2022 Ms6.0 Maerkang
earthquake sequence, Sichuan, China (Feng et al.) investigates
the seismogenic structures and mechanics of this sequence by
relocating the earthquake sequence, inverting for the focal
mechanisms, and calculating the rupture directivity of the
Maerkang earthquake sequence. The paper of Eastward
expansion of the Tibetan plateau: Insights from stress drops of
the 2021 Ms 6.4 Yangbi, Yunnan and Ms7.4 Maduo, Qinghai
earthquake sequences in China (He et al.) estimates the stress
drops of the Yangbi and Maduo earthquake sequences for all M ≥
3.0 events from the Lg-wave spectra. The results of the stress
drops of two sequences are very likely linked with patterns of
crustal motion and deformation in the eastern Tibetan Plateau.

2.3 Deep to surface seismogenic structure
and fault geometry

Geometry and movement are the main objectives, which can
be used in prediction models. We collected four articles
investigating the deep to surface seismogenic structure and
fault geometry, which deal with inference from seismic waves
of natural earthquakes, active seismic sources or ambient noise
(Li et al., High resolution upper crustal velocity and seismogenic
structure of the Huoshan “seismic window” in the Dabie orogenic
belt), and from electric resistivity of the mass beneath the earth
surface (Yan et al., Deep electrical structure of the hinterland of
Yunkai magmatic arc in South China and the seismogenic
environment of the 2019 Beiliu earthquake), from relocations
of earthquake sequences observed in a permanent station and
portable dense array (Zeng et al., Investigation of the 2015 Ms5.
8 Alxa Left Banner earthquake sequence: Aftershock evolution
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and seismogenic structure by here), as well as from field
investigations of surface fault trace in detail (Ma et al., Active
faulting of the Nanhe fault and relation to the Anninghe Fault
Zone in late Quaternary, eastern Tibetan plateau).

2.4 Models for earthquake risk assessment
of national test site

The straightforward dedicated models are significant for
earthquake risk assessment (Zhang et al. Statistical evaluation of
earthquake forecast efficiency using earthquake-catalog and fault slip
rate in the Sichuan-Yunnan region, China). The works indicate that
the model-driven and hyper-parameter controlled mode is a
promising approach to implement operational earthquake
forecasting at the National Test site of China.

All the above progress is based on advanced observation
techniques and monitoring systems from ground to space
currently operated in China.

3 Discussion and perspectives

3.1 The physical nature of the empirical
operation routine for earthquake prediction

Since the 1966 Xingtai earthquake, routine prediction
operations have been practiced continuously in China. The
progress was named as a step-by-step strategy from long-
term, medium-term, short-term to imminent relevant
to ≤10 years, 1–3 years, 3 months to 1 year and days to
3 months respectively, which were summed from an
operational process of empirical earthquake prediction
activities (Ma et al., 1989) and tested a posteriori by
experiments of tectonophysics (Ma, 2016). Here in this
volume, the works of Luo et al., Gao et al., Bi et al. provide
practical evidence to support the results from tectonophysics
experiments, the works of Zhang et al. provided new kind of
criteria to judge the meta-instable stage. How to transfer the
empirical operation routine into a physical operation process
may be a prospective road guiding to physical earthquake
predictions in numerical modelling.

3.2 How to use engineering disaster events
to understand the physics of natural
earthquakes calls for further investigation

Stress state and focal mechanisms supply a wide view with
which to understand the nature of the earthquake process. In
practice, events with a depth of within 5 km are generally
considered as events induced by human activities, e.g., mining
exploration and reservoir pounding, and so on. Thus, the
significance of shallow earthquakes, namely, “engineering
disaster events,” is overlooked. No matter how deep the event
occurs, the stress state is the main factor to understand the
physics of rock failure and fault slip in nature (Chen et al., 2022).
Research into the stress state and the geodynamic environment

from shallow to deep is welcome in the future, being useful to
understand the unified nature of earthquakes.

3.3 What controls the precursor patterns for
different earthquake relevant to earthquake
modeling aimed at earthquake prediction?

From a general view, seismogenic structure and stress state
control the earthquake process. Fault geometry and movement
are the main objectives, which can be used in prediction models.
In fact, in the short-term to imminent stage before earthquake
occurrence, the correlation between precursors and the targeted
earthquake is not unique (Ma et al., 1989). What controls the
precursor patterns for different events relevant to earthquake
modeling aimed at earthquake prediction? At the very start of
this Research Topic, the difference between IPE (dry model) and
DD (wet model) models is the fluid involved. Do rock fluids control
the precursor pattern for different earthquakes?More articles related
to this Research Topic are welcome in the future.
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