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Since the discovery of the Carboniferous gas reservoirs in East Sichuan in 1977,
after more than 40 years of development, most of the gas reservoirs have entered
the middle and late stages of development. The gas reservoir is characterized by
strong heterogeneity, large difference in permeability, and serious impact of water
invasion in some blocks. Therefore, how to make a correct decision on gas field
development and deployment is of vital importance. Combined with system
clustering, BP neural network, correlation analysis and other methods, this
paper first analyzes and calculates the static indicators of the Carboniferous
gas reservoirs, and then divides the gas reservoirs into four categories using
ward clustering method according to the calculated weight value, and
determines the characteristics of each type of gas reservoirs using correlation
coefficient analysis method. Finally, the recovery prediction model of each type of
gas reservoir is established according to the BP neural network. The results
indicate that: (1) The recovery rate prediction model can predict the trend of
cumulative gas production changes, thereby obtaining the space for improving
recovery rate, and the accuracy of the prediction results is high, which can be used
as a reference for gas field planning. (2) The sub-active gas reservoirs with strong
heterogeneous water bodies and the inactive gas reservoirs with low permeability
water bodies have a certain space for enhanced oil recovery.
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1 Introduction

With the development of society and economy, China’s demand for natural gas is
increasing. At the same time, the pressure of energy consumption control and environmental
protection is also increasing. In order to alleviate these problems, an efficient and reasonable
gas field development policy is crucial (Zhang. et al., 2022). The results of national oil and gas
resources evaluation during the 13th Five-Year Plan show that the natural gas resources in
Sichuan Basin are the first in China, and the discovery rate of natural gas resources is only
15%, which is still in the early andmiddle stages of exploration. Therefore, Sichuan Basin has
great potential for natural gas development and is the primary target of natural gas
exploration planning at present (Zhang, 2022). The Carboniferous strata are widely
distributed in the east of Sichuan, and many high-yield gas fields have been found so
far, which become the main production reservoir in the east of Sichuan. However, the
carboniferous gas reservoir in the east of Sichuan is also one of the most complicated gas
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reservoirs in China. It is characterized by complex structure, deep
burial, multiple formation pressure systems, strong heterogeneity,
large permeability difference, and severe water invasion in some
blocks (Ailin et al., 2017; Hu. et al., 2020). After more than 40 years
of development since 1977, most of the Carboniferous gas reservoirs
in eastern Sichuan have entered the middle and late stage of
exploitation, so how to make the right decision on gas field
development and deployment has a crucial role.

In order to better complete the analysis of gas reservoir
development indicators, and play a guiding role in gas field
development and deployment decision-making, big data analysis
and neural network prediction methods should be fully applied. Due
to the different controlling factors of recovery efficiency in different
types of carboniferous gas reservoirs, it is necessary to quantitatively
characterize the influencing factors, classify the gas reservoirs
according to the influencing factors, and determine the main
characteristics of each type of gas reservoir. In addition, the
Sichuan Basin has a large number of gas reservoirs with various
types and a long history of development. The existing recovery
efficiency evaluation methods are mostly based on experience,
analogy and formula, which can not well meet the needs of gas
field development planning. Therefore, it is necessary to carry out
the research of gas reservoir recovery efficiency prediction model
based on big data, so as to realize the recovery efficiency prediction
of gas reservoirs in different life cycles (Liu. et al., 2021; Luo. et al.,
2022; Makhotin. et al., 2022).

At present, there are qualitative and quantitative analysis
methods for the quantitative representation of influencing factors.
In order to display the strength of influencing factors more
accurately, quantitative mathematical representation methods,
such as risk regression method and weight calculation method,
are needed. P. Antao (Antão et al., 2023) combined the Bayesian
algorithm and the least square method to evaluate the impact of six
risk factors such as length and type on collision probability
according to the historical data of collision accidents worldwide.

The results show that the risk factors that have a greater impact on
ship collision are type and geographical region. Changping Li (Li.
et al., 2021) used the Extreme learning machine (a single hidden
layer feedforward neural network algorithm) to analyze the weight
of six influential factors such as peak voltage and electrode spacing
on the probability of electrical breakdown. The correlation and
contribution of each influencing factor to the electric breakdown
probability are obtained, which provides guidance and basis for the
design of electrode drill bit and the selection of drilling process
parameters in different strata. With reference to these research
methods, it is advisable to use neural network for weight
calculation. The multi-layer perceptron neural network has high
precision and is more sensitive to weight calculation (Gurgel et al.,
2022; Luo. et al., 2023), so it is suitable for quantitative
characterization of the influencing factors of recovery efficiency.

At present, there are many methods about clustering analysis,
such as systematic clustering method, hierarchical clustering
method, fuzzy clustering method and so on (Li. et al., 2022;
Wang et al., 2022). Among them, the system clustering method
further calculates the relationship between various factors, can be
more efficient and accurate classification of objective elements,
therefore, the system clustering method is suitable for gas
reservoir classification, its core algorithm is Ward method. Adam
Lurka (Adam, 2021) usedWardminimum variance method to make
a systematic cluster analysis of mining induced earthquakes. Cluster
analysis of mining seismic activity provides a new method for
determining focal groups and high stress zones in the rock mass
in the mine, so as to determine earthquake and rockburst hazards.
Yu Ogasawara (Yu and Masamichi, 2021) proposed two clustering
methods based on Ward method, using interval value dissimilarity
for interval value data. The results show that the proposed clustering
method can intuitively provide reasonable and consistent results for
the sample data, and the results of the clustering method using
interval value dissimilarity can be fully understood through the
arrow tree diagram. Brooke E. Husic (Husic and Pande, 2017)

FIGURE 1
Flow chart of gas reservoir clustering and recovery efficiency model application.
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FIGURE 2
Comparison of recovery efficiency under different geological conditions.

FIGURE 3
Comparison of recovery efficiency under different development conditions.
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proposed a clustering method using Ward minimum variance
objective function to predict new data points, and combined
Ward method with six other clustering algorithms to generate
cross-validation scores for MSM constructed from protein-folding
datasets. The Ward method minimizes the sum of square distances
and shows that there is a correspondence between the objective
function based on variance or mean value and the optimal division
of protein conformational space.

At present, it is common to use neural network for prediction
research. The main methods of neural network model prediction
include feedforward neural network, feedback neural network and
AD hoc network (Shoaib. et al., 2018; Lan and Zhang., 2019; Qu.
et al., 2020). Cristiano Hora Fontes (Hora Fontes and Embiruçu,
2021) proposed a new weight initialization method combined with
construction algorithm to construct a feedforward neural network
for multi-class classification. Compared with the traditional random
weight initialization method, this method can be widely used in the

synthesis of multi-class classification problem reference and real
data sets. Marta Kolasa (Marta et al., 2018) implemented an effective
initialization method for neuron weights in AD organized networks
on hardware, and found that self-organized maps can be trained
without initialization, which reduces the complexity of applying AD
organized neural networks. Haitao Li (Li, 2019) applied BP neural
network optimized based on firefly swarm algorithm to predict
network traffic, and achieved good prediction effect with high
prediction accuracy, and opened up a good application prospect
in this field. Dachao Yuan (Yuan. et al., 2014) used BP neural
network model and RBF neural network model built by Matlab to
predict coal mine gas emission data, and the results showed that BP
neural network had higher prediction accuracy. For the settlement
problem of highway soft foundation, Yi Xue (Yi et al., 2011) applied
BP neural network and three-point method to predict soft
foundation settlement. The results show that BP neural network
can effectively avoid the human error in the three-point method, and
has higher prediction accuracy, with smaller settlement error. BP
neural network has the advantages of strong adaptability, high
precision and strong fault tolerance, which is suitable for the
research of gas reservoir recovery efficiency prediction.

In this paper, geological factors are screened for carboniferous
gas reservoirs in eastern Sichuan, and static indexes affecting
recovery are determined. Then, the weight of static indexes of
each gas reservoir is calculated by multi-layer sensor, and the
preliminary analysis of gas reservoirs is carried out. Then
combined with the weight value of static index, Ward clustering
method was used for cluster analysis of carboniferous gas reservoirs,
and the correlation coefficient was calculated to obtain the
characteristics of each type of gas reservoirs, which served as the
basis for subsequent modeling. Finally, the recovery efficiency
training model of each kind of gas reservoir is established based
on BP neural network, and the boundary conditions are set. The
recovery efficiency prediction model is established by combining the
actual data and the weight obtained by training, so as to predict the
change trend of future recovery efficiency and the change of recovery

FIGURE 4
Structure diagram of multi-layer perceptron.

FIGURE 5
Analysis diagram of calculation results.
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efficiency after changing the dynamic parameters. At the same time,
the sensitivity analysis of dynamic parameters can be carried out.
Determine the optimal results of dynamic parameters of each type of
gas reservoir. Figure 1 is a flow chart of the research work.

2 Quantitative characterization of
influencing factors

2.1 Determination of influencing factors and
quantitative methods

2.2.1 Determination of influencing factors of
recovery efficiency

Geological factors and development policy factors affect gas
reservoir recovery. Among them, geological factors include reservoir
physical property, heterogeneity, gas-water relationship, water
energy and so on. Development policy factors include production
rate, well pattern density, well type, and potential exploitation
measures.

Figure 2 shows the comparative results of recovery efficiency
under different geological conditions. It can be seen from the figure
that the recovery efficiency of gas reservoirs with different reservoir
physical properties is significantly different, and the recovery
efficiency of medium-high permeability gas reservoirs is much
higher than that of low-permeability gas reservoirs. The
heterogeneity of gas reservoir is characterized by coefficient of
variation, and the recovery efficiency of gas reservoir with small
coefficient of variation is higher. For the gas-water relationship, the
average recovery of gas reservoirs surrounded by water and with water
at both ends of the structure is lower than that of gas reservoirs with
water at one end of the structure or without water. Gas reservoirs with
high water energy (gas-water volume ratio of 50 or less) generally have
lower average recovery than other gas reservoirs.

Figure 3 shows the comparison results of recovery efficiency
under different development conditions. It can be seen from the

figure that the higher the production rate, the lower the recovery
efficiency of gas reservoirs, and the average recovery efficiency of gas
reservoirs with production rate greater than 6% is generally lower
than 50%. The recovery efficiency of gas reservoirs with different
well pattern densities varies greatly. The average recovery efficiency
of gas reservoirs with well pattern densities greater than or equal to
0.6 Wells/km2 exceeds 70%. In addition, by comparing the recovery
efficiency under different technological measures and potential
measures, it can be seen that the higher the proportion of
process well, the greater the recovery efficiency of gas reservoir;
Developing gas production technology and pressurized gas
transmission technology can improve gas reservoir recovery.

Among these influencing factors, the index of correlation is
selected as the characterization of the influencing factors of recovery
efficiency. Among them, geological factors do not change with time,
which is a static index, while development policy factors change with
time, which is a dynamic index. After screening, there are 10 static
indexes, which are permeability, porosity, effective fracture density,
formation coefficient, energy storage coefficient, coefficient of
variation, transverse distance between gas reservoir and gas-water
interface (referred to as transverse distance), longitudinal distance
between gas reservoir and gas-water interface (referred to as
longitudinal distance), gas-water area ratio (referred to as area
ratio) and gas-water volume ratio (referred to as volume ratio).
There are five dynamic indicators, which are production rate, well
pattern density, water gas ratio, wellhead oil pressure and process
well ratio.

2.2.2 Research on quantitative characterization
methods of influencing factors

The quantitative characterization methods of influencing factors
include Pearson correlation coefficient method and neural network
weight calculation method.

Correlation coefficient method mainly studies the degree of
correlation between two variables, and the calculation formula is
shown in Eq. 1 (Sun. et al., 2023).

r � n∑n
i�1xiyi −∑n

i�1xi∑n
i�1yi����������������

n∑n
i�1x

2
i − ∑n

i�1xi( )2√ ����������������
n∑n

i�1y
2
i − ∑n

i�1yi( )2√ (1)

In the formula, r is the correlation coefficient, n is the number
of data points, and xi、 yi is the coordinate value of each point.
When r > 0.7, the correlation was strong; when 0.4 < r < 0.7, the
correlation was moderate; when 0.2 < r < 0.4, the correlation was
weak; when r < 0.2, no correlation was considered. Therefore, the
correlation value is below 0.2, and the correlation between
variables is considered to be extremely low, so it is not
considered. Through the correlation coefficient method, the
correlation strength between each factor and recovery efficiency
can be obtained, so as to determine the influence characteristics of
a single factor on recovery efficiency.

The core idea of neural network weight method is: when
multiple factors have coupling influence on a variable, multi-
layer perceptron is used to calculate the weight value of each
factor. The greater the weight value, the greater the influence of
the factor. The structure of the multi-layer perceptron is shown in
Figure 4. It includes input layer, hidden layer and output layer, and
the layers are connected by weights. The hidden layer contains two

FIGURE 6
Weight value of FJW static index.
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activation functions: sigmoid function and tanh function. The
calculation formula is shown in Eqs. 2, 3.

s x( ) � 1
1 + e−x

(2)

tanh x( ) � sinh x( )
cosh x( ) �

ex − e−x

ex + e−x
(3)

2.2 Weight analysis of influencing factors of
gas reservoir

Before classifying Carboniferous gas reservoirs, the weights of
static indicators of each gas reservoir should be calculated, and the
gas reservoirs should be classified according to geological factors.
Therefore, 10 static indicators are used as the input layer and the

output layer is the recovery factor of the gas reservoir, which is
replaced by the cumulative gas production.

SPSS software was used for neural network calculation to obtain
the weight value of the influencing factors and the residual value of
the calculation results. Specific ideas are as follows: Firstly, all static
parameters and historical data of cumulative gas production are
input, and then each parameter is set in the variable view. Then, the
multi-layer perceptron of the neural network is selected for weight
calculation, in which the cumulative gas production is the output
end and the other 10 static indicators are the input end. Finally, the
automatic adjustment hidden layer is selected in the architecture,
and the standardized residual error of the sample points is compared
after calculation. According to the t-test in the residual test, when the
standardized residual is [-2, 2], the error is small and there is no
outlier (Mohammed and Muhammad, 2021; Muhammad et al.,
2021). As can be seen from Figure 5A and Figure 4B, the error

FIGURE 7
Weight calculation results of some gas reservoirs.
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of calculation results is small, and the predicted value and actual
value of neural network have a high degree of fitting.

Figure 5 is the neural network calculation result diagram of FJW
gas reservoir. After calculation, the residual diagram (left figure) and
the result fitting diagram (right figure) are analyzed, and it can be
seen that the residual value is small and the degree of fitting is high,
indicating that the results under the calculation condition are
relatively accurate. Therefore, the calculation result is selected as
the static index weight of FJW, and the weight value of each index is
shown in Figure 6.

The larger the weight value, the higher the degree of influence of
the factors. Based on the height of the weight value, the main

influencing factors of the gas reservoir are determined, thereby
obtaining the main characteristics of the gas reservoir and
establishing a foundation for subsequent gas reservoir
classification. As shown in Figure 6, the main influencing factors
of FJW are permeability, formation coefficient, and gas-water
relationship, indicating that the water body of FJW is active. In
addition, different colors in the figure represent the strength of the
factors, with red indicating the factor with the greatest impact,
yellow indicating the factor with the greater impact, and blue
indicating the factor with the lesser impact.

According to the above calculation process, static index weights
were calculated for 40 Carboniferous gas reservoirs, among which

FIGURE 8
Gas reservoir classification results.
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several representative calculation results were selected, as shown in
Figure 7.

Figure 7 shows the weight calculation results for some gas
reservoirs. The weight values have been normalized, and the
sum of all weights equals one. On the one hand, a larger weight
value indicates a greater degree of impact, and on the other
hand, the main impact indicators are determined based on the
relative size of the weight. Select the three to five factors with the
highest weight for each gas reservoir as the main influencing
factors for the gas reservoir. Below, based on the calculation
results, the main factors of the four gas reservoirs will be
explained separately.

For BQ Carboniferous system, the indicators that have the
greatest influence include formation coefficient, permeability
and effective fracture density, indicating that the main
influencing factor of this gas reservoir is reservoir physical
property, which belongs to low seepage body inactive gas
reservoir.

For GDP Carboniferous system, the most influential indicators
include: gas-water area ratio, lateral distance, gas-water volume
ratio, indicating that the gas reservoir is mainly affected by the
occurrence state of gas and water, which belongs to the medium-
high water seepage volume ~ inactive gas reservoir.

For MPLW Carboniferous system, the most influential
indicators include: coefficient of variation, effective fracture
density, permeability, gas-water volume ratio, indicating that the
main influencing factors of this gas reservoir are reservoir physical

property and heterogeneity, belonging to the sub-active gas reservoir
with heterogeneous water.

For GYQ Carboniferous system, the most influential indicators
include: lateral distance, gas-water volume ratio, gas-water area
ratio, indicating that the main influencing factors of this gas
reservoir are water energy and gas-water occurrence state, which
belongs to active water gas reservoir.

According to the strength of influencing factors of different gas
reservoirs, the policy of enhancing oil recovery can be put forward
reasonably. For example, in medium-strong water flooding and
medium-high permeability gas reservoirs, the main strategy to
improve oil recovery is to control drainage and production as a
whole, and the most relevant indicators are the corresponding
average wellhead oil pressure, drainage well/production well,
measure well ratio, etc. The main strategy to improve oil
recovery in medium-strong water drive and heterogeneous gas
reservoirs is to evaluate multi-round infilling and drainage gas
production. The most relevant indicators are the corresponding
total number ofWells, well pattern density, proportion of horizontal
Wells, number of producing Wells and other related indicators. The
main measures to improve oil recovery in weak water drive and
medium-high permeability gas reservoirs are rational production
allocation and pressurized production, and the highest correlation
indexes are annual gas production, production rate and average
wellhead oil pressure. The main strategy to improve oil recovery in
weak water drive and heterogeneous low permeability gas reservoirs
is to evaluate multiple rounds of infilling, and the most relevant
indexes are the corresponding well pattern density, effective fracture
density, porosity and other related indexes.

This is because the main EOR strategies are different for
different gas reservoirs. The main countermeasures of medium-
strong water drive and medium-high permeability gas reservoirs are
drainage and production control as a whole. The main
countermeasures of medium-strong water drive and
heterogeneous gas reservoirs are gas recovery through evaluation
of multi-round filling and drainage. The main countermeasures of
weak water drive and medium-high permeability gas reservoirs are
rational production allocation and pressurized production. The
main countermeasure of weak water drive and heterogeneous low
permeability gas reservoir is to evaluate multiple rounds of infilling.

Different recovery enhancement strategies lead to different
levels of sensitivity of the cumulative gas production of gas
reservoirs to each index, which is reflected in the algorithm, that
is, the speed of updating and iteration of the weight value is different,
and finally leads to the difference in the weight of each index of
different types of gas reservoirs. Because each gas reservoir has
different characteristics and each index has different influence on
the recovery factor, it is necessary to classify the gas reservoir
according to the weight of static index, and then determine the

TABLE 1 Table of correlation coefficients for the first type of gas reservoir.

Static index Permeability Coefficient of variation Porosity Effective seam density Longitudinal distance

Correlation coefficient 0.712 0.247 0.804 0.731 0.407

Static index Formation coefficient Energy storage coefficient Air-water area ratio Gas-water volume ratio Transverse distance

Correlation coefficient 0.765 0.298 0.541 0.613 0.501

FIGURE 9
Static index weight diagram of the first type gas reservoir.
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characteristics of each kind of gas reservoir, and then carry out the
prediction research of gas reservoir recovery factor.

3 Cluster analysis of gas reservoirs

3.1 Ward clustering method and correlation
analysis

Wardmethod is the sum of squares of deviationmethod. The idea
is that the sum of squares of class deviations is smaller and the sum of
squares of deviations between classes is larger. The Ward method
always combines classes in such a way that the increment of the sum
of the squares within the class caused by the union class is minimized.
TheWardmethod finally grouped the variables with smaller distances
into one class, and the calculated distance adopted was Euclidean
distance. The calculation formula was shown in Eq. (4).

dij � ∑m

k�1 Xki −Xkj( )2( ) 1
2 (4)

After the weight calculation of static indicators is completed,
40 gas reservoirs of the Carboniferous system are numbered according
to the weight values obtained. Then, ward clusteringmethod is used to
classify gas reservoirs. Finally, clustering diagram is obtained
according to the classification results, as shown in Figure 8.

Figure 8 shows the classification results of gas reservoirs. The
ward clustering method is used to calculate the distance of gas
reservoir features based on weight values. The closer the
distance is, the closer the position in the graph is. The gas
reservoirs are numbered from 1 to 40, and the specific
classification situation is determined based on the
numbering. From right to left, based on the numbers on the
right, 2 and 38 can be considered the same type. They have some
differences from 20 to 25, but compared to 1 and 30, 2, 38, 20,
and 25 can be considered the same type. Finally, based on the
classification diagram, gas reservoirs are divided into four
categories according to static indicators. The characteristics
of each type of gas reservoir are determined by the correlation

TABLE 2 Table of correlation coefficients for the second type of gas reservoir.

Static index Permeability Coefficient of variation Porosity Effective seam density Longitudinal distance

Correlation coefficient 0.301 0.384 0.249 0.213 0.377

Static index Formation coefficient Energy storage coefficient Air-water area ratio Gas-water volume ratio Transverse distance

Correlation coefficient 0.209 0.312 0.827 0.691 0.587

TABLE 3 Table of correlation coefficients for the third type of gas reservoir.

Static index Permeability Coefficient of variation Porosity Effective seam density Longitudinal distance

Correlation coefficient 0.714 0.717 0.327 0.805 0.361

Static index Formation coefficient Energy storage coefficient Air-water area ratio Gas-water volume ratio Transverse distance

Correlation coefficient 0.803 0.244 0.389 0.592 0.379

FIGURE 10
Static index weight diagram of the second type gas reservoir.

FIGURE 11
Static index weight diagram of the third type gas reservoir.
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coefficient method, and the correlation analysis results are
shown below.

The correlation coefficients of the first gas reservoir are shown
below.

Table 1 shows the correlation coefficients (r) of the first type of
gas reservoir. According to 2.2.2, when r>0.7, it is a strong

correlation, when 0.4<r<0.7, it is a moderate correlation, and
when 0.2<r<0.4, it is a weak correlation. When determining the
characteristics of gas reservoirs, only strong and medium
correlations are considered. Based on the calculated correlation
coefficients, the relevant indicators of each type of gas reservoir
are determined to determine the characteristics of the gas
reservoir.

According to the data in Table 1, in the first type of gas reservoir,
the strong correlation indexes of the cumulative gas production are
permeability, porosity, effective fracture density and formation
coefficient. The medium correlation indexes are: area ratio of
gas-water zone, volume ratio of gas-water zone, longitudinal
distance and transverse distance. It can be inferred that the main
influencing factors of this kind of gas reservoir are reservoir physical
properties, and the secondary influencing factors are the occurrence
state of gas and water and water energy.

Figure 9 shows the static index weight of the first class gas
reservoir. It can also be seen from the figure that the largest
proportion of weight is permeability, effective fracture density
and formation coefficient, which also correspond to the main
influencing factors of gas reservoir - reservoir physical property.

The correlation coefficients of the second gas reservoir are
shown below.

From the data in Table 2, it can be seen that in the second type of
gas reservoir, the strong correlation indexes of cumulative gas
production are: gas-water area ratio; Medium correlation indexes
are: gas - water volume ratio, lateral distance. It can be inferred that
the main influencing factor of this kind of gas reservoir is the

TABLE 4 Table of correlation coefficients for the fourth type of gas reservoir.

Static index Permeability Coefficient of variation Porosity Effective seam density Longitudinal distance

Correlation coefficient 0.489 0.522 0.311 0.266 0.377

Static index Formation coefficient Energy storage coefficient Air-water area ratio Gas-water volume ratio Transverse distance

Correlation coefficient 0.255 0.333 0.816 0.792 0.655

FIGURE 12
Static index weight diagram of the fourth type gas reservoir.

TABLE 5 Gas reservoir classification results table.

Type Main influencing
factors

Secondary influencing
factors

Strong relevant
indicators

Medium related
indicators

Gas reservoir characteristics

1 Reservoir physical
properties

Air-water endowment state Permeability, porosity Gas-water zone volume
ratio

Low permeability water is not active

Energy of water body Effective seam density,
stratigraphic coefficient

Gas to water area ratio

2 Gas-water endowment
state

water energy Air-water zone area ratio Horizontal distance Medium-high permeability water body
is sub-active to inactive

Air-water volume ratio

3 Reservoir physical
properties

water energy Stratigraphic coefficient,
permeability

Air-water volume ratio Strongly heterogeneous water is sub-
active

Effective seam density,
coefficient of variation

4 Energy of water body Reservoir physical properties
Coefficient of variation

Gas-water zone volume ratio Transverse distance,
permeability

Active water bodies

Air-water endowment
state

Gas to water area ratio Coefficient of variation
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occurrence state of gas and water, and the secondary influencing
factor is water energy.

Figure 10 shows the static index weight of the second type of gas
reservoir. It can also be seen from the figure that the largest
proportion of weight is the horizontal distance, the area ratio of
gas-water zone and the volume ratio of gas-water zone, which also
correspond to the occurrence state of gas and water, the main
influencing factor of gas reservoir.

The correlation coefficients of the third type of gas reservoir are
shown below.

According to the data in Table 3, in the third type of gas
reservoir, the strong correlation indexes of the cumulative gas
production include formation coefficient, permeability, effective
fracture density, and coefficient of variation. The medium
correlation index is: gas-water zone volume ratio. It can be
inferred that the main influencing factors of this kind of gas
reservoir are reservoir physical property and heterogeneity, and
the secondary influencing factors are water energy.

Figure 11 shows the static index weights of the third type gas
reservoir. It can also be seen from the figure that the largest

proportion of weights are permeability, coefficient of variation
and effective fracture density, which also correspond to the main
influencing factors of gas reservoir - reservoir physical property and
coefficient of variation.

The correlation coefficient table of the fourth type gas reservoir
is shown below.

According to the data in Table 4, in the fourth type of gas
reservoir, the strong correlation indexes of cumulative
gas production are: gas-water area ratio and gas-water volume
ratio; Intermediate correlation indexes are: lateral distance,
permeability, coefficient of variation. It can be inferred that the
main influencing factor of this kind of gas reservoir is the occurrence
state of water body energy and gas water, and the secondary
influencing factor is reservoir physical property.

Figure 12 shows the static index weight of the fourth type
gas reservoir. It can also be seen from the figure that the largest
proportion of weight is horizontal distance, area ratio of gas-water
zone and volume ratio of gas-water zone, which also correspond to
the main influencing factors of gas reservoir water energy and gas-
water occurrence state.

FIGURE 13
BJC model result.

TABLE 6 Gas reservoir recovery prediction results validation.

Gas
pool

Type Currently
cumulative gas
production

Training tired gas
production (Model)

Error
(%)

The final cumulative
gas production

Prediction of cumulative
gas production (Model)

Error
(%)

BJC Type1 3.84 3.77 1.8 4.53 4.32 4.6

SGP Type1 50.82 52.73 3.8 55.93 58.79 5.1

WSC Type2 61.69 62.95 2.0 61.9 62.77 3.0

WBT Type3 207.5 210.34 1.4 265.71 268.59 1.1

CYS Type4 8.66 9.12 5.3 8.66 9.12 5.3
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3.2 Analysis of gas reservoir clustering
results

The classification of gas reservoirs based on the degree of
influence factors is formed by quantifying the static index
weights of gas reservoirs, combined with ward clustering method.
Pearson’s coefficient was used to discern the major influences (r >
0.7) and minor influences (r between 0.4 and 0.7) for different types
of gas reservoirs. Table 5 shows the statistical table of gas reservoir
classification and evaluation based on the degree of influence of
factors.

According to the correlation coefficient calculation results in 3.1,
the main and secondary influencing factors of each type of gas
reservoir are obtained, as shown in Table 5. Among them, the gas-
water relationship mainly represents the activity of the water body.
The larger the volume and area ratio of the gas-water zone, the more
active the water body is. The formation coefficient, permeability, and
other factors are mainly proportional to the heterogeneity of the gas
reservoir. Finally, the characteristics of each type of gas reservoir are
determined based on the nature of the water body and the
heterogeneity of the gas reservoir. The results of gas reservoir
classification are as follows.

The first category of gas reservoirs belongs to low permeability
water body inactive gas reservoirs, including: BQ, FXC, ZJC, SCP,
LYP, PX, BJC, WSK, GX, LB, XHK, TS, TMC, SGP, WLH, FJW,
WQJ, TZP.

The static index range is as follows. Reservoir physical
properties: permeability 0.1~1 mD, porosity 3–5%, effective
fracture density 2–5/m, formation coefficient 1–30, energy
storage coefficient 0.5–1; heterogeneity: coefficient of variation
1–5; gas-water relationship: vertical distance 20–100 m,
horizontal distance 100–200 m, gas-water area ratio 0.3–1; water
energy: gas water area volume ratio of 100–200. Main influencing

factors: reservoir physical properties. Main influencing factors:
reservoir physical properties. Secondary influencing factors: gas
water occurrence state, water energy.

The second type of gas reservoir belongs to the sub-inactive gas
reservoir with medium and high permeability, including GDP,
WSC, SMZ, XGS, FCZ and ZGW.

The static index range is as follows. Reservoir physical
properties: permeability 5–30 mD, porosity 5–7%, effective
fracture density 10–15/m, formation coefficient 100–500,
energy storage coefficient 0.5–2; heterogeneity: coefficient of
variation 1–2; gas-water relationship: longitudinal distance
50–250 m, transverse distance 200–600 m, gas-water area
ratio 1–4; water energy: gas-water volume ratio 200–1,000.
Main influencing factors: gas water occurrence state.
Secondary influencing factors: water energy.

The third type of gas reservoir belongs to the heterogeneous
water sub-active gas reservoir, including LT, MPLW, MYB, XJG,
HJB, DPY, TSB, SPC and WBT.

The static index range is as follows. Reservoir physical
properties: permeability 1–10 mD, porosity 5–8%, effective
fracture density 5–10/m, formation coefficient 30–150, energy
storage coefficient 0.5–2; heterogeneity: coefficient of variation
1–10; gas-water relationship: longitudinal distance 10–50 m,
transverse distance 100–200 m, gas-water area ratio 0.05–0.3;
water energy: gas water area volume ratio 5–100. The main
influencing factors: reservoir physical properties, heterogeneity.
Secondary influencing factors: water energy.

The fourth type of gas reservoir belongs to the water active gas
reservoir, including: GYQ, GFC, SJB, YHZ, WLS, CYS.

The static index range is as follows. Reservoir physical
properties: permeability 5–30 mD, porosity 5–6%, effective
fracture density 10–15/m, formation coefficient 50–300, energy
storage coefficient 2–5; heterogeneity: coefficient of variation

FIGURE 14
FJW model result.
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1–10; gas-water relationship: longitudinal distance 5–10 m,
transverse distance 100–200 m, gas-water area ratio 0.1–0.5;
water energy: gas water area volume ratio of 30–100. Main
influencing factors: water energy, gas and water occurrence state.
Secondary influencing factors: reservoir physical properties,
coefficient of variation.

After completing the clustering of gas reservoirs and obtaining
the characteristics of each type of gas reservoirs, combined with the
static index weight value, the recovery prediction model of each type
of gas reservoirs is established, and the training and prediction are
completed to test the prediction results. After determining the
accuracy of the model, the model is used to predict the
cumulative gas production trend of each gas reservoir and
explore the maximum value of gas reservoir recovery. At the
same time, the sensitivity analysis of dynamic indexes of different
types of gas reservoirs can be carried out to clarify the variation law
of gas reservoir recovery under different mining conditions, which
can be used to guide the development of gas reservoirs.

4 Establishment and application of
recovery prediction model

4.1 Theoretical basis of recovery prediction
model

The prediction model of gas reservoir recovery includes two
parts: training model and prediction model.

1) Establishment of training model:

Step 1: Import input x (dynamic and static parameters), give output
t (cumulative gas production), and start training. The transfer
function from the input layer to the hidden layer is:

yj � f ∑n

j�0WijXj( ) (5)

Where x is the input information, y is the calculation result of the
hidden layer, and wij is the weight value from the input layer to the
hidden layer.

Remarks: ① The weights of 10 static parameters are calculated
according to the previous calculation, and remain unchanged. The
weights of dynamic parameters are calculated according to the hidden
layer. ② When the dynamic parameters are input, the time series is
added to make the cumulative gas production increase with time.

The transfer function from the hidden layer to the output
layer is:

zk � g ∑h

j�0Wjkyj( ) (6)

Where z is the output result and wjk is the weight value from the
hidden layer to the output layer.

Step 2: Calculate the error and adjust the weight value.
t is the initial given output, that is, the actual value of cumulative

gas production, and z is the model output result. The error between
the network output and the target output is:

ε � 1
2
∑m

k�1 tk − zk( )2 (7)

When the error is greater than the set value (5% of the
cumulative gas production), the weight value is adjusted to
reduce ε. Set a step η, and adjust η units along the negative
gradient direction each time, that is, the adjustment of each
weight value is:

Δwpq � −η zε

zwpq
(8)

η is called learning rate.

Step 3: Complete the iterative calculation and establish the training
model.

Adjust the weight to make the error less than the set value,
complete the training and output the results. The process of weight
adjustment is called iteration. The complete iterative process is as
follows: The iterative formula of weight adjustment is:

zε

zwij
�

1
2∑m

k�1 tk − zk( )2
zwij

�
1
2∑m

k�1 tk − zk( )2
zyj

zyj

zuj

zuj

zwij
(9)

Here, uj is the input of the jth neuron in the hidden layer:

uj � ∑n

i�0wijxi (10)

The jth neuron of the hidden layer is connected to each neuron
of the output layer, that is, zε/z yj involves all weights wij, so

zε

zyj
� ∑m

k�0
z tk − zk( )2

zzk

zzk
zuk

zuk

zyj
� −∑m

k�0 tk − zk( )f′ uk( )wjk (11)

zε

zwij
�

1
2∑m

k�1 tk − zk( )2
zwij

� −∑m

k�0 tk − zk( )f′ uk( )wjk[ ]f′ uj( )xi

� −δjxi

(12)
wij t + 1( ) � wij t( ) + ηδjxi (13)

Finally, the weight is adjusted according to the simplified Eq. 13
until the end of training, and the gas reservoir recovery training
model is obtained.

1) Establishment of prediction model:

According to the established training model, the recovery rate
prediction is studied.

In order to accurately predict recovery (cumulative gas
production), constraints need to be considered:

Data boundary conditions: the upper limit of cumulative gas
production, abandoned production (1000 m3) and the lower limit of
minimum pressure (0.2 MPa) are controlled by dynamic reserves.

2) Mapping conditions: Input the final time node of the prediction,
take the month as the step size, automatically calculate the result
of each step from the end of the fitting section to the input time
node, and form the prediction curve.

The prediction module follows the following steps. Input data
normalization: Because the range of some input data of the neural
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network may be particularly large, the neural network converges
slowly and the training time is long. Therefore, the data need to be
preprocessed before training the neural network. An important
preprocessing method is normalization. It is to map the data to
[0, 1] or [−1, 1] interval or smaller interval. A simple and fast
normalization algorithm is linear transformation algorithm. The
formula is as follows:

y � x −min

max −min
(14)

In the formula: y is the normalized output vector; x is the input
vector; min is the minimum value of x; max is the maximum
value of x.

Loading neural network: Let the input mode of the network is
x � (x1, x2, . . . , xn)T, the hidden layer has h neurons, the output of
the hidden layer is y � (y1, y2, . . . , yn)T, the output layer has m

neurons, their output is z � (z1, z2, . . . , zn)T, the transfer function
between the hidden layer and the output layer is f, and the transfer
function of the output layer is g. Thus:

yj � f ∑n
i�1
wijxi − θ⎛⎝ ⎞⎠ � f ∑n

i�0
wijxi

⎛⎝ ⎞⎠ (15)

Where yj is the output of the jth neuron in the hidden
layer, w0j � θ, x0 � −1.

zk � g ∑m
j�0
wjkyj

⎛⎝ ⎞⎠ (16)

The transfer function above is the activation function, which is
de-linearized. The calculation of the neural network nodes is the
weighted sum, plus the bias term:

FIGURE 15
Sensitivity analysis of dynamic indicators for the first type of gas reservoir.
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yi � ∑n
i�1
xiwi + b (17)

This is a linear model, the calculation results will be passed to the
next node or the same linear model. Only through linear
transformation, all the hidden layer nodes have no meaning of
existence. The reason is as follows: Suppose that the weight matrix of
each layer is represented by W(i). Then there exists a W’ such that:
W′ � W(1)W(2) . . .W(i)。Then, the n-layer hidden layer can all
become a hidden layer, and the number of hidden layers has no
meaning. Therefore, the activation function is used to linearize it,
and the formula of the activation function is shown in Eqs. 3, 4 in
2.2.2. In all cases, W′ � W(1)W(2) . . .W(i) is no longer valid, and
each hidden layer has its own meaning.

In the previous training module, we have calculated the weights
and biases between the input layer and the hidden layer, and the
weights and biases between the hidden layer and the output layer.
The output layer output matrix can be obtained by substituting the

prediction data calculation (the weight w required in the formula has
been obtained in the training module).

Finally, there is the denormalization of the output data. The
output matrix obtained by the previous algorithm is a normalized
matrix, which needs to be denormalized to obtain the output layer
prediction data we need. The formula is as follows:

y � x · max −min( ) +min (18)
In the formula: y is the output vector after denormalization; x is

the input vector; min is the maximum value of x; max is the
maximum value of x.

4.2 Establishment of recovery prediction
model

The principle of the recovery rate prediction model is described
in 4.1, and the establishment process of the prediction model is

FIGURE 16
Sensitivity analysis of dynamic indicators for the second type of gas reservoir.
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detailed below. Firstly, all historical data of the gas reservoir,
including geological factors, development factors, and cumulative
gas production, are substituted, and the cumulative gas production is
set as output and trained using a BP neural network. After repeated
weight iteration calculations, a training model with the required
error will be established, and the first step of modeling is completed.
Then, based on the actual situation, set the boundary conditions of
the model, such as the limit range of wellhead oil pressure and
production rate, the time for gas reservoir development, etc., and
combine the training model and formula (18) to establish a recovery
rate prediction model. Below is a detailed explanation using BJC gas
reservoir as an example in the first type of gas reservoir.

In the first step, the weight value of the static index is used as a
fixed value to participate in the calculation, and the historical data is
trained. After the calculation, the weight value of the dynamic index
will be returned. Because the neural network calculation process is

built-in calculation of the computer, only the calculation results can
be derived, so the calculation of the software is taken as an example
to illustrate. The number of training times is the number of weight
adjustment times when the set training module performs error
analysis. A total of 200 different training models are obtained by
adjusting the weight 200 times, and then the training model with the
smallest difference from the actual value of the historical data is
selected as the final output. Among them, the activation function
selects tanh because it is relatively stable. Similarly, it is also possible
to select the sigmoid function and get different training models.

Figure 13A is the fitting diagram of the output results and
historical data of the training model. The higher the fitting degree,
the closer the training model is to the real value, the higher the
accuracy, and the greater the reliability of the prediction. In the
process of calculation, the weight value of static parameters is
obtained by the previous calculation, fixed and directly involved

FIGURE 17
Sensitivity analysis of dynamic indicators for the third type of gas reservoir.
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in the calculation; the weight values of the dynamic parameters are
calculated by the hidden layer and are constantly changing with the
calculation. These weight values are also directly involved in the
calculation of the neural network. After the training model is
established, the weight values are all determined. When the new
data is input for prediction, the weight values of the training model
are calculated.

Then the prediction model. When predicting, it is necessary to
input the actual value of dynamic parameters and the final time node
of prediction. For example, the dynamic parameters remain
unchanged and are predicted to December 2040, as shown in
Figure 13B.

In the calculation, the cumulative gas production prediction
value of each node is calculated with the monthly step, and the curve
is connected to view the change trend of cumulative gas production.
In addition, the calculation is in accordance with the order of time
series, from front to back in order to predict, so that the cumulative
gas production to maintain a monotonically increasing trend. The
specific calculation formula is as described in the prediction section
of 4.1. At each time node, these formulas are calculated in the hidden
layer according to these formulas, and the weight value is

determined in the training model. Finally, the prediction results
are all output and form a graph, which is the cumulative gas
production prediction result.

4.3 Verification and application of recovery
prediction model

The recovery factor prediction model established is mainly
applied by software, and the accuracy of the model is verified
with examples. The verification results of some Carboniferous gas
reservoirs are as follows. It can be seen from Table 6. 1) On the
whole, the error between the training results and the prediction
results of the model is low, and the error is only 5.3%, indicating that
the model has high accuracy and strong adaptability. 2) The smaller
the error of the training model, the smaller the error of the
prediction results. Before using the model to predict, we must try
to ensure that the training model has a high degree of fitting and
ensure the accuracy of the prediction.

Finally, the gas reservoir recovery prediction software is
compiled by matlab. The software is composed of three cores:

FIGURE 18
Sensitivity analysis of dynamic indicators for the fourth type of gas reservoir.
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training module, prediction module and sensitivity analysis. It can
realize three functions: history matching of different types of gas
reservoirs, recovery prediction under different mining conditions
and sensitivity analysis.

Taking FJW gas reservoir as an example, the historical data is
first trained and the model is established. Figure 14A is the training
result of historical data. From the diagram, it can be seen that the
training data and the actual data fit well, indicating that the training
effect is good and the accuracy of the model is relatively high.

Figure 14B is the prediction curve of cumulative gas production.
The black curve in the figure is the historical yield; the red curve is
the prediction curve of cumulative gas production when the current
mining conditions remain unchanged (the proportion of process
wells is 0.375). The blue curve is the prediction curve of cumulative
gas production when the mining conditions are changed (other
conditions remain unchanged, the proportion of process wells
increases to 0.5).

As shown in the figure, the cumulative gas production will
maintain the existing growth rate for growth, and the growth curve
will gradually become gentle at a certain time in the future, and reach
the maximum cumulative gas production. If the current mining
conditions are maintained, the cumulative gas production will
increase from 17.91×108 m3 to 28.54×108 m3, and then reach the
maximum value and stop production. If the mining conditions are
changed, the proportion of process wells will increase from 0.375 to
0.5, and the final cumulative gas production will increase from
28.54×108 m3 to 29.04×108 m3, thereby increasing recovery.

Finally, the software can also be used to calculate the recovery
rate of different types of gas reservoirs under the change of dynamic
index.

1) The first type of gas reservoir (low permeability water body
inactive gas reservoir) under different development conditions,
the change of cumulative gas production is shown in Figure 15.
The sensitivity analysis of different dynamic indicators is as
follows. Mining speed: The cumulative gas production increases
first and then decreases with the increase of mining speed, and
the optimal range is 2.5–4.5%. Well spacing density: The
cumulative gas production increases first and then slows
down with the increase of well spacing density, and finally
tends to be stable. The optimal range is 0.35–0.5wells/km2.

The proportion of process wells: the cumulative gas
production increases first and then slows down with the
increase of the proportion of process wells, and finally tends
to be stable. The optimal range is 0.5–0.6. The water-gas ratio: the
smaller the water-gas ratio, the greater the cumulative gas
production, and the cumulative gas production decreases
slowly first and then decreases rapidly with the increase of
water-gas ratio. The optimal range is 0–0.05m3/104 m3.

2) The second type of gas reservoir (medium-high permeability
water body inactive gas reservoir) under different development
conditions, the change of cumulative gas production is shown in
Figure 16. The sensitivity analysis of different dynamic indicators
is as follows. Mining speed: The cumulative gas production
increases first and then decreases with the increase of mining
speed, and the optimal range is 3.5–5.5%. Well spacing density:
The cumulative gas production increases first and then slows
down with the increase of well spacing density, and finally tends
to be stable. The optimal range is 0.4–0.5wells/km2. The
proportion of process wells: the cumulative gas production of
gas reservoirs has nothing to do with the implementation of
process wells. The water-gas ratio: the smaller the water-gas ratio,
the greater the cumulative gas production, and the cumulative
gas production decreases slowly first and then decreases rapidly
with the increase of water-gas ratio. The optimal range is
0–0.4m3/104 m3.

3) The change of cumulative gas production of the third type of gas
reservoir (strong heterogeneity water sub-active gas reservoir)
under different development conditions is shown in Figure 17.
The sensitivity analysis of different dynamic indicators is as
follows. Mining speed: The cumulative gas production increases
first and then decreases with the increase of mining speed, and
the optimal range is 2–3.5%. Well spacing density: The
cumulative gas production increases first and then slows
down with the increase of well spacing density, and finally
tends to be stable. The optimal range is 0.45–0.55wells/km2.
The proportion of process wells: the cumulative gas production
increases first and then slows down with the increase of the
proportion of process wells, and finally tends to be stable. The
optimal range is 0.3–0.4. The water-gas ratio: the smaller the
water-gas ratio, the greater the cumulative gas production, and
the cumulative gas production decreases slowly first and then

TABLE 7 Gas reservoir recovery evaluation results table.

Gas reservoir type Mining
speed(%)

Well
spacing
density

Proportion of
process wells

Water air
ratio(m3/
104m3)

Improve
space(%)

Remaining geologic
reserves(108m3)

Evaluation

Low permeability water
body inactive gas reservoir

2.5–4.5 0.35–0.5 0.5–0.6 0–0.05 7.75 379.92 have space

Sub-active to inactive gas
reservoirs with medium-
high permeability water

bodies

3.5–5.5 0.4–0.5 — 0–0.4 0.83 41.56 no space

Strongly heterogeneous
water body sub-active gas

reservoir

2–3.5 0.45–0.55 0.3–0.4 0–0.1 4.23 368.42 have space

Water active gas reservoir 2–4 0.4–0.5 — 0–100 1.51 156.07 no space
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decreases rapidly with the increase of water-gas ratio. The
optimal range is 0–0.1m3/104 m3.

4) The fourth type of gas reservoir (water active gas reservoir) under
different development conditions, the change of cumulative gas
production is shown in Figure 18. The sensitivity analysis of
different dynamic indicators is as follows. Mining speed: The
cumulative gas production increases first and then decreases with
the increase of mining speed, and the optimal range is 2–4%.
Well spacing density: The cumulative gas production increases
first and then slows down with the increase of well spacing
density, and finally tends to be stable. The optimal range is
0.4–0.5wells/km2. The proportion of process wells: the
cumulative gas production of gas reservoirs is not related to
the implementation of process wells. The water-gas ratio: the
smaller the water-gas ratio, the greater the cumulative gas
production, and the cumulative gas production decreases
slowly at first and then decreases rapidly with the increase of
water-gas ratio. The optimal range is 0–100m3/104 m3. The
water-gas ratio of this kind of gas reservoir is large, indicating
that the influence of water invasion is serious, so the overall water
control of gas reservoir is necessary.

Finally, according to the model and the change law of
cumulative gas production, the optimal solution of dynamic
index is input into four types of gas reservoirs for calculation,
and the recovery rate of four types of gas reservoirs can be
improved, as shown in Table 7. Then, we combine the remaining
geological reserves to evaluate, evaluation criteria: the remaining
geological reserves >200×108 m3, the average recovery space >3% of
the gas reservoir type evaluation for space. The evaluation results
show that the sub-active gas reservoirs with strong heterogeneous
water bodies and the inactive gas reservoirs with low permeability
water bodies also have a certain space for enhanced oil recovery.
This conclusion provides a reference for the next work deployment
of enhanced oil recovery and the optimization of gas reservoirs with
potential.

5 Conclusion

1) The geological environment of Carboniferous gas Sichuan is
complex, and there are many factors affecting oil recovery.
Different types of Carboniferous gas reservoirs have different
main controlling factors. In view of this feature, this paper uses
multi-layer perceptron to calculate the weight value of the static
index of the gas reservoir. Based on this, the ward method is used
to cluster the gas reservoir, and the characteristics of each type of
gas reservoir are obtained. Then the recovery factor prediction
model is established. After example verification, the accuracy of
the model is guaranteed. Finally, using the established recovery
model, the maximum recovery rate of each gas reservoir under
different conditions can be predicted. At the same time, the
sensitivity analysis of the dynamic index is carried out, and the
space for improving the recovery rate of different types of gas
reservoirs under the optimal conditions is clarified. The results
show that the sub-active gas reservoir with strong heterogeneous
water body and the inactive gas reservoir with low permeability
water body also have a certain space for enhanced oil recovery.

This conclusion plays an important role in making correct gas
field development and deployment decisions.

2) Starting from the main controlling factors of recovery factor, this
paper studies the influence degree of geological factors on
recovery factor of each gas reservoir, completes the cluster
analysis of gas reservoir, and finally establishes models for gas
reservoirs with different characteristics. This research model
provides a new idea for the study of gas reservoir recovery.
Especially for gas reservoirs with complex geological structure,
strong heterogeneity and large permeability difference, the
influencing factors of recovery are complex. In the case of
multi-factor coupling, it is difficult to determine the
classification and main controlling factors of gas reservoirs.
Therefore, the combination of neural network and system
clustering can effectively solve these problems. At the same
time, the established recovery prediction model is suitable for
the Carboniferous gas reservoirs in eastern Sichuan, which can
realize the recovery prediction and recovery optimization
prediction under different mining conditions, and has a
guiding role in the subsequent development of gas reservoirs.
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