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The surveillance of geothermal seismicity is typically conducted using seismic
networks, deployed around the power plants and subject to noise conditions in
often highly urbanized areas. In contrast, seismic arrays can be situated at greater
distances and allow monitoring of different power plants from one central location,
less affected by noise interference. However, the effectiveness of arrays to monitor
geothermal reservoirs is notwell investigated and the increaseddistance to the source
coincides with a decreased accuracy of the earthquake localizations. It is therefore
essential to establish robust data processing and to obtain precise estimates of the
location uncertainties. Here, we use time-domain array data processing and solve for
the full 3-D slowness vector using robust linear regression. The approach implements
a Biweight M-estimator, which yields stable parameter estimates and is well suited for
real-time applications. We compare its performance to conventional least squares
regression and frequency wavenumber analysis. Additionally, we implement a
statistical approach based on changepoint analysis to automatically identify P- and
S-wave arrivals within the recorded waveforms. The method can be seen as a
simplification of autoregressive prediction. The estimated onsets facilitate reliable
calculations of epicentral distances. We assess the performance of our methodology
by comparison to network localizations for 77 induced earthquakes from the Landau
and Insheim deep-geothermal reservoirs, situated in Rhineland-Palatinate, Germany.
Our results demonstrate that we can differentiate earthquakes originating from both
reservoirs and successfully localize themajority of events within themagnitude range
of ML -0.2 toML 1.3. The discrepancy between the two localizationmethods ismostly
less than 1 km, which falls within the statistical errors. However, a few localizations
deviate significantly, which can be attributed to poor observations during thewinter of
2021/2022.
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1 Introduction

Geothermal energy plays an important role in the transition of the energy sector
towards sustainable resources. Unfortunately, high-pressure injection of geothermal
fluids is often associated with weak to moderate seismicity (e.g., Cornet et al., 1997;
Cuenot et al., 2008 or Evans et al., 2012). To minimize the seismic hazard, it is crucial
to continuously monitor the injection and production processes and localize
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associated induced seismicity. A reliable and transparent
monitoring also helps to increase the public acceptance of
existing and future geothermal projects.

Induced seismicity usually relates to man-made stress
perturbations of the subsurface, frequently interfering with the
local tectonic stress field, and resulting in earthquake activity
(e.g., Grünthal, 2014). It can occur in the context of mining,
hydrocarbon or shale gas extraction, wastewater disposal, and
geothermal energy production (see, e.g., Suckale, 2010; Grünthal,
2014; Farahbod et al., 2015; Weingarten, et al., 2015). Mechanisms
that drive induced seismicity in geothermal environments include
pore-pressure and temperature increase, volume change due to fluid
withdrawal or injection, and chemical alteration of fracture surfaces
(Majer et al., 2007; Zang et al., 2014). Commercial geothermal
energy production requires a high geothermal gradient and is
therefore often located in active tectonic regions (Brune &
Thatcher, 2002). The size and rate of seismicity is then defined
by the injection volume (and rate), the orientation of the tectonic
stress field relative to the pore pressure increase and the extent of the
deviatoric stress field within the local fault system (Cornet & Julien,
1989; Cornet & Jianmin, 1995; Brune & Thatcher, 2002). Grünthal
(2014) analyzes the annual frequency-magnitude distribution of
induced geothermal seismicity in central Europe in the period
from 2000 to 2011 and compares it to the natural earthquake
activity in the region. The results show that induced geothermal
events with local magnitudes above ML 2.0 are rare if compared to
tectonic earthquakes. However, the intensity of micro-seismicity
(ML < 2.0) is significant, with a b-value of 1.94 (±0.21).

To understand the physical processes during a geothermal
stimulation and to establish a reliable seismic hazard assessment,
the detection and localization of induced geothermal micro-
seismicity has gained more and more relevance (Plenkers et al.,
2013). Unfortunately, the preferred locations of geothermal
reservoirs lie beneath sedimentary basins, which are often densely
populated. This significantly aggravates the detection process due to
seismic wave attenuation and an increased level of seismic
background noise (Wilson et al., 2002; Plenkers et al., 2013).

Conventional short-/long-term triggers (STA/LTA) will
likely fail under complex noise conditions and advanced
detection methods are required (Withers et al., 1998). Plenkers
et al. (2013) apply a template correlation trigger to detect micro-
seismicity related to a stimulation test in the Landau deep-
geothermal reservoir. A similar approach is introduced by
Vasterling et al. (2017), who use the envelope of recorded
seismograms to establish a real-time detector based on
template correlation. Joswig (1990) and Sick et al. (2015) use
(unsupervised) sonogram pattern recognition for event
detection. More recent applications focus on deep-learning
approaches, such as convolutional neural networks, to monitor
induced (micro-) seismicity and to establish automatized seismic
phase picking (e.g., Zhu & Beroza, 2019; Mousavi et al., 2020;
Wang et al., 2020; Johnson et al., 2021; Li et al., 2022). Further
methods to obtain automatized seismic phase arrivals include
autoregressive (AR) prediction (e.g., Takanami & Kitagawa,
1988; Küperkoch et al., 2012), sometimes combined with the
Akaike-Information-Criterion (AR-AIC; Akaike, 1973; Leonard
& Kennett, 1999; Sleeman & van Eck, 1999), higher-order
statistics (e.g., Küpperkoch, 2010) or relative travel-time

determination via multi-channel cross correlation (e.g.,
VanDecar & Crosson, 1990).

In contrast to seismic networks, seismic arrays are located
outside the source region and can be used to measure the back
azimuth and horizontal apparent velocity of an incoming seismic
signal, even without clear phase onsets (Rost & Thomas, 2002).
Seismic arrays have been frequently used for earthquake detection
on a global, regional, and local scale. This includes studies on the
Earth’s (fine-scale) structure, detection of human-induced
seismicity, volcano monitoring (cf. Rost & Thomas, 2002 or
Schweitzer et al., 2012 and references therein), and ocean-bottom
arrays (Krüger et al., 2020). Following its initial purpose of detecting
nuclear explosions (e.g., Douglas et al., 1999), different studies utilize
seismic arrays for seismic risk assessment. Gibbons et al. (2005), for
example, use autoregressive prediction and narrowband f-k analysis
for a case study to monitor mining blasts. Li and Zhan (2018) use a
distributed acoustic sensing array and template matching to detect
induced geothermal seismicity in the Brady field. Further examples
include real-time infrasound monitoring at the Alaska Volcano
Observatory (Coombs et al., 2018) and the real-time array data
processing software RETREAT (Smith & Bean, 2020), developed
with a focus on volcano monitoring and volcanic tremor.

Most standard array processing methods apply beamforming in
the time- (beam power analysis; see King et al., 1975; 1976) or
frequency-wavenumber domain (f-k analysis; see Capon, 1969).
Both approaches perform calculations of the beam power over a
predefined slowness grid in the horizontal (x-y) plane and search for
its maximum. Further established methods are progressive multi-
channel correlation (Cansi, 1995), which evaluates a travel time
closure condition over narrow frequency bands and for varying
combinations of array-station triplets, and incoherent beamforming
(Gibbons et al.2008; Krüger et al., 2020). Del Pezzo & Giudicepietro
(2002) and Szuberla &Olsen (2004) use least squares regression to fit
vectors of observed inter-station delay times to obtain estimates for
the back azimuth and horizontal apparent velocity of seismic and
infrasound signals. The method was adapted by Haney et al. (2018),
De Angelis et al. (2020) and Smith & Bean (2020). It is
computationally efficient (Smith & Bean, 2020), which makes it
suitable for real-time applications. However, least squares regression
is sensitive to outliers in the response and predictor variables.
Therefore, Bishop et al. (2020) adopt different robust estimators,
including L1-norm regression, weighted M-estimation and Least
Trimmed Squares (LTS), and apply them to infrasound data. Their
results show significant improvement for different examples with
limited data quality, especially for the LTS estimator.

Seismic arrays are less frequently used for distance estimation.
For instance, Singh and Rümpker (2020) and Leva et al. (2020) use
manually picked P- and S-wave onsets and a 2-D velocity model to
estimate the epicentral distance of events at the Central Indian Ridge
and volcanic events near Fogo and Brava, Cabo Verde. They further
implement a multi-array analysis, which allows for epicentral
localizations without assumptions about the velocity model (Leva
et al., 2022).

Our study focuses on developing a computationally efficient and
robust solver to determine the slowness vector of seismic phases,
with application to induced geothermal seismicity in the Landau and
Insheim deep-geothermal reservoirs. We use linear regression to fit
observed delay times and, for the first time, implement robust
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regression estimators for seismic array processing. Szuberla & Olsen
(2004) consider a hypothetically multidimensional array
configuration, but practically the method was never applied
outside the horizontal plane. We demonstrate that the inclusion
of inter-station elevation differences into the regression model yields
estimates for the full slowness vector. The regression approaches are
subsequently compared to the widely used frequency-wavenumber
analysis. We further introduce statistical changepoint analysis as a
tool to obtain automatized P- and S-phase arrivals. The approach
minimizes the deviation of individual data points from two
empirical statistical parameters. This corresponds to a
maximization of the likelihood function and can be seen as a
simplification of the autoregressive Akaike-Information-Criterion.
We evaluate our methodology by a comparison to 77 network
localizations from the Landau and Insheim geothermal reservoirs.

2 Study area and array design

The Upper Rhine Graben (URG) is part of the European
Cenozoic rift system and is one of Central Europe’s most active
tectonic regions with a small to moderate seismic risk (Illies, 1972;
Grünthal &Wahlström, 2012). The Landau and Insheim geothermal

reservoirs are located near the western rim of the URG in
southwestern Germany (cf. Figure 1A). The geological setting
includes a crystalline basement, covered by up to 3 km of
Paleozoic, Mesozoic and Tertiary sediments and unconsolidated
Quaternary sequences (Bartz, 1974; Doebl & Olbrecht, 1974). The
region has a geothermal gradient of 150mW/m2 (Hurtig et al. 1992)
and features water-bearing sediment layers between two and 3 km
depth (Dornstadter et al., 1999). The URG is a densely populated
area, and the seismic noise level reaches average values of 10 μm/s
ground velocity at frequencies of 1–40Hz (Ritter & Sudhaus, 2007).

The Landau and Insheim geothermal power plants are located
4 km apart (cf. Figure 1) and are equipped with boreholes of 3,340m
and 3,800m depth, respectively (Vasterling et al., 2017). Both power
plants are enhanced geothermal systems with fluid injections in
different horizons in the transition zone between Mesozoic
sediments and crystalline basement (Evans et al., 2012; Vasterling
et al., 2017). Groos and Ritter (2014) provide an analysis of the
associated seismicity for the years 2006–2013. Küperkoch et al.
(2018) detect and locate more than 600 events in the Insheim
reservoir between 2013 and 2016. In total, more than
2,200 induced micro-events were detected for the period between
2006 and 2016 (Vasterling et al., 2017). Steinberg and Gaebler (2023)
perform re-localizations for events after 2012, using Nonlinloc

FIGURE 1
Overview of the study area in southwestern Germany. (A)Geological setting with the seismic array (blue triangle) located in the Palatinate Forest and
the power plants (PP) Landau (red star) and Insheim (cyan star) located in the Upper Rhine Graben (URG). Stations of the Südpfalz network are distributed
within the URG, surrounding both power plants. They include permanent (black diamonds) and temporary (black crosses) installations, operated by the
LGB-RLP and the BGR. (B) Seismicity associated with the Landau and Insheim power plants for the period from 2007 to 2018. Events for the years
2007–2013 (blue circles) belong to the GERSEIS database (BGR, 2023). Grey circles show automatized localizations for the period from 2013 to 2018
(Steinberg & Gaebler, 2023). The exemplary event (19 November 2021, ML 0.5; LGB-RLP, 2022) shown in Figures 3–7 is indicated by the pink circle (see
pink arrow).
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(Lomax et al., 2000) and a 1-D velocity model (Küperkoch, 2018).
We show their results in Figure 1B.

Since 2013, the seismic activity in both reservoirs is monitored
by the Federal Institute for Geosciences and Natural Resources
(BGR) and the Geological Survey and Mining Authority of
Rhineland-Palatinate (LGB-RLP). In addition to the permanent
network, a temporary network of seismic stations is operational
since 2020 (Südpfalz network). Real-time event detection is
implemented using template correlation (Vasterling et al., 2017);
localizations are performed manually by the LGB-RLP (LGB-RLP,
2022).

The seismic array was installed in June 2021 in the Palatinate
Forest, a small mountain range at the western border of the URG,
which is characterized by Buntsandstein formations (e.g., Haneke &
Weidenfeller, 2010). The distances to the power plants in Landau
and Insheim are 12.5 km and 14 km, respectively (cf. Figure 1A). The
array includes 10 seismic stations; it has an aperture of 1.1 km
(Figure 2) and the maximum distance in elevation between two sites
is 71m. The instrumentation includes nine 120 s broadband and one
10 s short-period seismometer. All stations have continuous real-
time data streaming of all 3 seismic components (vertical, North,
East) at a sampling rate of 200Hz. The average seismic noise level at
frequencies of 5–25 Hz is usually below 0.1 μm/s ground velocity.

3 Methods

The slowness vector s
.

of a seismic phase, traversing an array as
a plane wave, relates the inter-station delay time τij to the position
vector r

.
ij (see, e.g., Schweitzer et al., 2012):

τij � r
.

ij · s. �
−xij

−yij

zij

⎛⎜⎜⎝ ⎞⎟⎟⎠ ·
sx
sy
sz

⎛⎜⎝ ⎞⎟⎠ � −xij · sin θ
vapp,h

− yij · cos θ
vapp,h

+ zij
vapp,z

(1.1)

s
. �

sin θ
vapp,h

cos θ
vapp,h

1
vapp,z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1.2)

Here, the position vector r
.

ij is defined by the spatial distance
between two sites i and j (xij � xi − xj, yij � yi − yj, zij � zi − zj)
and the inverse of the absolute value of the slowness vector equals
the average P- or S-wave velocity of the medium beneath the array
(vc � 1/| s.|). In Eq. 1.2, the slowness vector is written in terms of the
back azimuth angle (BAZ, θ) and the horizontal and vertical
components of vc, referred to as the horizontal and vertical
apparent velocity (vapp,h and vapp,z), respectively.

Most array processing techniques estimate the slowness vector
in the horizontal plane exclusively. This requires an array setup with
marginal differences in elevation. Schweitzer et al. (2012) state that
elevation correction factors should be applied if deviations in time
delay become larger than ¼ of the dominant signal period. These
correction terms involve assumptions about the usually unknown
subsurface velocity beneath the array (vc) and the vertical incidence
angle i � atan (vapp,z/vapp,h).

A common procedure to estimate the wavefront parameters θ
and vapp,h relates to a maximization of the beam power in the
horizontal slowness plane s

.
h � ( s.x, s

.
y). Applying Parseval’s

theorem, the beam energy E(k) is defined as (e.g., Kelly, 1967):

E k
.− k

.

0( ) � 1
2π
∫∞

−∞
S ω( )| |2 1

N
∑N

j�1e
2πi k

.− k
.

0( ) r.j

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2dω (2.1)

where S(ω) is the Fourier transform of the signal at site j, r
.

j the
position vector of site j,N the number of sites in the array and ω the
angular frequency. The vectors k

. � s
.

hω and k
.

0 � s
.

h,0ω are
wavenumber vectors, defined by the unknown horizontal
slowness vector s

.
h,0 of the plane wave and the horizontal beam

steering vector s
.

h. The second squared term of the integrand in
(2.1) defines the array response function:

A k − k0( )| |2 � 1
N
∑N

j�1e
2πi k

.− k
.

0( ) r.j

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2 (2.2)

The array response function characterizes the array pattern in
the wavenumber space at a given frequency. In Figure 2 it is shown
for the array in the Palatinate Forest, for a slowness range
from −0.4 to 0.4 s/km and a frequency of 10 Hz.

Eq. 2.1 can be evaluated over a grid in the horizontal slowness
plane, where the location of the energy maximum provides an
estimate for the back azimuth and horizontal apparent velocity of
the incident plane wave. The method is referred to as frequency-
wavenumber (f-k) analysis.

In our work, we use observed inter-station delay times to
estimate the slowness vector s

.
from Eq. 1.1 using linear

regression (Del Pezzo & Giudicepietro, 2002; Szuberla &
Olsen, 2004 or Olsen & Szuberla, 2005). This requires an

FIGURE 2
Array transfer function and site geometry. The array transfer
function is shown in the horizontal (x-y) plane for a frequency of
10 Hz. The locations of the array sites are superimposed (blue
triangles, top and right coordinate axes). The array has an
aperture of 1.1 km.
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accurate estimation of the delay times and a reliable and robust
regression approach, which is addressed in detail in the following
sections.

3.1 Delay time estimation

We use a normalized cross-correlation function to obtain
estimates for the delay times related to an incoming seismic
wavefront (e.g., Claerbout, 1986; Olsen & Szuberla, 2005). The
normalized cross correlation-function (ρ) for two signals Ai(t0) �
〈Ai,t0−K/2: t0+K/2〉 and Aj(t0) � 〈Aj,t0−K/2: t0+K/2〉 with length K and
centered at the time t0, is defined as dependent on the time shift t
between the signals (e.g., Claerbout, 1986):

ρ t0, t( )Ai,Aj
� E Ai t0( ) − μ Ai t0( )[ ]( ) Aj t0 − t( ) − μ Aj t0( )[ ]( )*[ ]

σ Ai t0( )[ ] σ Aj t0( )[ ]
(3)

with E being the expected value, the asterisk (*) denoting the
complex conjugate, and μ and σ defining the mean and standard
deviation of Ai and Aj, respectively. In practice, Eq. 3 can be solved
either in the time- or in the frequency-domain.

The travel time difference (delay time, τ) of a seismic phase,
recorded at two points of observation, is then given by the
argument of the maximum (argmax) of ρ(t0, t) within a
predefined time shift interval t � 〈t0 − Δt: t0 + Δt〉 of the two
signals. Here, the choice of the maximum time shift Δt should
account for the aperture of the array and the minimum of the
apparent velocity range of interest. In our case we choose
Δt � 0.5 s, which is appropriate for an aperture of 1.1 km and a
minimum vapp,h of 2.2 km/s.

The function ρ(t0, t) can be evaluated for all pairs of array
stations (Ai�1: N and Aj�1: N, with N being the number of sites),
resulting in a cross-correlation matrix C of the seismic signal at the
time t0:

C t0( ) � max ρ t0 , t( )Ai�1: N,Aj�1: N( )[ ] � max ρ t0 , t( )A1 ,A1
( ) . . . max ρ t0 , t( )A1 ,AN

( )
..
.

1 ..
.

max ρ t0 , t( )AN,A1
( ) . . . max ρ t0 , t( )AN,AN

( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

The associated delay time vector τ
.

forms the basis for our
further analysis.

τ
.

t0( ) � argmax ρ t0, t( )Ai�1: N,Aj�1: N;i≠j( )[ ]
�

argmax ρ t0, t( )A1 ,A1
( )
..
.

argmax ρ t0, t( )AN,AN
( ) (4.2)

Eqs. 3, 4 are evaluated in fixed time steps, which results in
continuous functions of the median cross correlation matrix C and
the delay time vector τ

.
(and subsequently back azimuth, and

horizontal apparent velocity), with time t0. In our case, we use a
temporal resolution of 10 samples (0.05 s). The values of the time
dependent cross-correlation matrix further provide useful
parameters for event detection (Smith & Bean, 2020). We suggest
using the median as a robust estimator of the mean of C(t0), which
must exceed a defined threshold (ρ min):

MC t0( ) � median C t0( )Ai≠Aj
( )> ρ min (5)

The choice of ρmin depends on the local noise conditions, the
subsurface characteristics beneath the array sites, and on the size of
the correlation window. In our case, ρ min � 0.4 proves to be a good
trade-off to maintain the sensitivity to earthquakes with small
magnitudes while minimizing the number of false detections. It is
important to note that at this stage, the term event does not imply a
defined source of the signal (e.g., induced/natural earthquake or
correlated seismic noise). This is different to, e.g., Vasterling et al.
(2017), who use a continuous correlation with master events to
detect seismicity in the reservoirs.

Figure 3 demonstrates the principles of the method for an
exemplary event from the Insheim reservoir, recorded on
19 November 2021. It has a local magnitude (ML) of 0.5 and the
network localization involves a theoretical back azimuth angle of 97.5° at
the array (see Figure 3A). The time series (Figure 3B) are band pass
filtered (between 5 Hz and 25 Hz) and a 1.5 s time window is used for
the correlation analysis. Results are shown for six different site
combinations in terms of their normalized cross-correlation
functions (ρ(t0, t)) and the corresponding delay times (see
Figure 3C), for a time window centered at the point of maximum
correlation (argmax(MC)). The plane wavefront traverses the array
from east to west (BAZ 97.5°), resulting in large delay times for station
pairs with significant location differences in east-west direction.

The normalized cross-correlation function in Equation 3
performs well for adequate signal to noise conditions, but outliers
in single observations can significantly bias subsequent calculations.
We therefore recommend using a continuous evaluation of the
median of the cross-correlation matrix (MC) as a robust trigger
function (bottom Figure 3B). This function (usually) takes a
maximum when the correlation window includes the P-wave
onsets but excludes the P-wave coda (cf. Figure 3B, dashed red
and black lines). It remains unaffected by correlated noise between
single station pairs or degraded signal to noise conditions at
individual sites. If a set of observed delay times includes outliers,
the use of robust array processing techniques will be essential (see
section 3.2.1 and supplements).

3.2 Estimating the full 3-D slowness vector
using linear regression

Del Pezzo and Giudicepietro (2002) and Olsen and Szuberla
(2005) use a linear regression model to fit a vector of inter-station
delay times ( τ

.
) and obtain estimates for the horizontal slowness

vector s
.

h. The concept can be extended to account for differences in
elevation:

τ
. �

τ1
..
.

τn

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ � −x. sx − y
.
sy + z

.
sz + ϵ.

�
−x1 −y1 z1
..
. ..

. ..
.

−xn −yn zn

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ ·
sx
sy
sz

⎛⎜⎝ ⎞⎟⎠ +
ϵ1
..
.

ϵn

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ � X s
.+ ϵ. (6)

where n is the number of independent observations in the regression
model, x

.
, y

.
and z

.
are inter-station distance and elevation

Frontiers in Earth Science frontiersin.org05

Hering et al. 10.3389/feart.2023.1217587

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1217587


difference vectors, ϵ. includes the unknown error terms and the
matrix X is the design matrix, defined by the predictor variables. The
full 3-D slowness vector s

.
corresponds to the coefficient (or

parameter) vector of the regression model.
The solution of the regression model is crucial to get accurate

parameter estimates. M-estimators (maximum likelihood-type; Huber,
1981) provide a broad class of extremum estimators and allow for the
inclusion of robust statistics (see section 3.2.1). They are a generalization
of the objective function in L1- (least absolute deviation) and L2-norm
(least squares) regression and estimate the maximum of the likelihood
function for a parameter vector s

.
and a sample distribution χ with

probability density function f(χ) � Ce−σ(χ) (Bishop et al., 2020,
following Rousseeuw & Leroy 1987). The solution is usually
implemented as a minimization of a cost function (Huber, 1981):

ŝ
. � argmin

s
. ∑n

i�1σ ϵi s
.( )( )( ) (7)

Here, σ is a symmetric function of the regression residuals ϵi( s.),
which has a unique zero (Bishop et al., 2020; following Huber, 1973).

In Eq. 6, the sample distribution χ is given by the design matrix X
and the minimization problem can be written as:

ŝ
. � argmin

s
. ∑n

i�1
σ τ i − Xi s

.( )⎛⎝ ⎞⎠ (8)

With Xi and τi being the i th row of X and the i th component of
the delay time vector τ

.
, respectively. The estimated parameter

vector ŝ
.

minimizes the cost function and predicts the slowness
vector of the incident plane wave.

If the errors in ϵ. are normally distributed, the least squares
estimator (σ � |ϵi( s.)|2) recovers the optimum parameter vector
that minimizes the squared residuals. The ordinary least squares
(OLS) formulation assumes a linear relation between response and
predictor variables. It is given as (see, e.g., Lai et al., 1978):

ŝ
. � XTX( )−1XT τ

.
(9)

where T denotes the transpose of a matrix. Eq. 9 has a unique
solution if the matrix X is full rank.

FIGURE 3
Delay time estimation for an exemplary event from the Insheim reservoir (ML 0.5, BAZ to network localization: 97.5°). (A) Station geometry and
orientation of the plane wavefront. The colored sites are used to calculate the cross-correlation functions in C. (B) Waveforms of the vertical (Z)
component from all 10 array sites, displaying the P-wave onsets. The waveforms are band-pass filtered between 5 and 25 Hz. The dashed red lines show
the limits of the 1.5 s correlationwindow used in C. The position is defined by the point ofmaximumcorrelation (dotted black line) determined by the
median of the cross-correlation matrix (MC), which is shown in the bottom. (C) Normalized cross-correlation function for six inter-station pairs (ρAi ,Aj

)
calculated at argmax(MC). The dashed red lines mark the arguments of the maxima of ρAi ,Aj

which give estimates for the delay times (τ i,j). All delay times
are given with reference to the station indicated by the second index (τ7,10, for example, implies that the wavefront reaches ST7 0.095 s after ST10).
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The deviation between observed ( τ
.) and predicted ( τ̂

. � X ŝ
.
)

delay times defines the root mean squared error (RMSE) of the
regression model:

RMSE τ
.( ) � �����������∑n

i�1 τi − τ̂i( )2
n − p

√
(10)

with p being the number of independent predictor variables (here
three). Further, the coefficient variances and covariances are
calculated from the mean squared error (MSE � RMSE( τ.)2) of
the dependent variable and the inverse covariance matrix of the
predictor variables:

Cov ŝ( )� RMSE τ( )2 XTX( )−1 � σ ŝx
2 σ ŝx,y

2 σ ŝx,z
2

σ ŝy,x
2 σ ŝy

2 σ ŝy,z
2

σ ŝz,x
2 σ ŝz,y

2 σ ŝz
2

⎛⎜⎜⎝ ⎞⎟⎟⎠ (11)

The square-root of the diagonal variances are the standard
errors of the regression coefficients (σ ŝx, σ ŝy and σ ŝz). They can be
used to derive confidence intervals (CI; e.g., Wald, 1943):

CI ŝx( )
CI ŝy( )
CI ŝz( )

⎛⎜⎝ ⎞⎟⎠ � t dist 1–
α
2
, n–p( ) · σ ŝx

σ ŝy
σ ŝz

⎛⎝ ⎞⎠ (12)

where t dist(1–α/2,n–p) is the 100(1 – α/2) percentile of the
t-distribution with n – p degrees of freedom. For the 95%
confidence interval (significance level α � 0.05) and 87 degrees of
freedom, t dist takes a value of 1.9913 (see any statistical table for
the t-distribution).

The back azimuth angle θ and the horizontal and vertical
apparent velocity (vapp,h and vapp,z) of the plane wave can be
calculated from the components of the estimated slowness
vector:

θ � atan 2 ŝx, ŝy( ) (13.1)

vapp,h �
�������

1

ŝx
2 + ŝy

2

√
(13.2)

vapp,z � 1
ŝz

(13.3)

We calculate the associated errors using error propagation (see
Szuberla & Olsen, 2004; De Angelis et al., 2020), neglecting the
coefficient co-variances, which are in average ten times smaller than
the variances. This follows the assumption of uncorrelated errors in
the predictor variables.

σθ �
���������������������������

ŝy
ŝx

2 + ŝy
2 σ ŝx( )2

+ − ŝx
ŝx

2 + ŝy
2 σ ŝy( )2

√
(14.1)

σvapp,h �
������������������������������
− ŝx

ŝx
2 + ŝy

2( )3/2 σ ŝx⎛⎜⎝ ⎞⎟⎠2

+ − ŝy

ŝx
2 + ŝy

2( )3/2 σ ŝy⎛⎜⎝ ⎞⎟⎠2
√

(14.2)

σvapp,z � 1

ŝz
2σ ŝz (14.3)

Figure 4 shows regression results for the exemplary event from
the Insheim reservoir, with delay times τ

.
obtained at the point of

maximum correlation (argmax(MC), cf. Figure 3). The regression
model reveals a strong dependence in east-west (x) direction,
whereas the dependence in north-south (y) direction seems
much smaller (see Figure 4A). Figure 4B examines the effect of
the predictor variables x

.
, y
.

and z
.

on the regression result through

partial regression leverage plots (see, e.g., Velleman & Welsch,
1981). It shows that most of the observed delay time (adjusted τ)
is covered by variations in x

.
; the influences from y

.
and z

.
are

comparable. At the same time, the three regression coefficients (ŝx
ŝy, and ŝz) clearly reject the null-hypothesis at a significance level of
0.05 (p < 0.001), which indicates a substantial contribution to the
regression results for all spatial coordinates. However, the standard
errors of the regression coefficients reveal that uncertainties within
the vertical component of the slowness vector (ŝz) are by a factor of
ten larger if compared to the horizontal components (0.065 s/km for
ŝz, 0.005 s/km for ŝx and ŝy). This is a consequence of the much
smaller variance in elevation in comparison to the horizontal inter-
station distances (cf. Eq. 11). The estimated 3-D slowness vector and
the corresponding 95% confidence ellipsoid are visualized in
Figure 4C.

Our results show that the inclusion of elevation differences in
the regressionmodel allows for an estimation of the vertical slowness
component (sz). However, in our case, the maximum difference in
elevation is 71 m, which is less than one-fifteenth of the maximum
horizontal extension. Therefore, the statistical uncertainties of the
results must be evaluated with caution.

3.2.1 Robustness
Outliers in the response and predictor variables can significantly

bias ordinary least squares regression and require careful consideration.
The statistical definition of an outlier refers to observations that deviate
significantly from other members of the underlying data distribution
(e.g., Grubbs, 1969 or Rousseuw, 1984). In case of seismic arrays,
outliers are delay time observations that are inconsistent with the plane
wavemodel (Bishop et al., 2020). They can relate to a low signal to noise
ratio at one or multiple sites, timing errors (clock drift or failure) or
strong subsurface distortion at individual sites.

The effects from outliers on linear regression are well studied
and robust estimators are designed to weaken or eliminate their
influence (e.g., Rousseeuw & Leroy 1987). We tested and compared
the performance of a Biweight M-estimator, implemented via
iteratively reweighted least squares (IRLS), and least trimmed
squares (LTS) regression (see Supplementary Text S1,
Supplementary Figure S1 and Supplementary Figure S2 for
details). The results show that the Biweight M-estimator yields
stable and consistent results for BAZ and apparent velocity, even
for large quantities of outliers (>25%). IRLS proves to be particularly
well suited, as it diminishes effects from outliers by dragging them
towards a normal distribution, whilst the parameter estimates are
still defined by the mean of the data. Here, the algorithm minimizes
the exclusion of data. In this regard it is similar to the limited sensor
pair correlation approach (Gibbons et al., 2018), which improves the
robustness of an f-k analysis by excluding weakly correlated sensor
pairs.

Our implementation of the Biweight M-estimator follows
Beaton and Tukey (1974), Holland and Welsch (1977) and Du
Mouchel and O’Brien (1989). It adds a weighting term (w) to the
error function (σ) in Equation 7 (e.g.; Huber, 1981):

ŝ
. � argmin

s
. ∑n

i�1σ wi s
.( )ϵi s

.( )( )( ) (15)

There is no analytical solution to this equation and we use a
reweighted least squares algorithm (Beaton & Tukey, 1974) to
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iteratively adjust the weighting function. The algorithm starts
from an ordinary least squares regression (w � 1) and
successively reweights observations causing untypically large
residuals. For every iteration and each observation i, weights
(wi) are calculated using the Biweight function (Beaton & Tukey,
1974; Holland & Welsch, 1977):

wi � 1 − ri
2( )2, ri| |< 1

0 , ri| |≥ 1{ (16.1)

with ri being the standardized adjusted residuals, calculated
from the residuals ϵi and the leverage values hi of the
previous iteration:

ri � ϵi
tc · rs · �����1 − hi

√ (16.2)

Here, the leverage values hi are defined as the diagonal
elements of the projection matrix H � X(XTWX)−1XTW ,
where W defines the diagonal weight matrix. The term rs �
1.483MAD is a robust estimate of scale, derived as the
median absolute deviation (MAD) of the residuals from their
median, and with the value 1.483 related to the inverse of the
cumulative distribution function. It makes the estimate unbiased

for a normal distribution (see, e.g., Rousseeuw & Leroy, 1987).
The factor tc is a tuning constant, where smaller values result in
stronger down-weighting of outliers (we chose tc � 3).

The solution of the weighted least squares problem is
defined as:

ŝ
. � XTWX( )−1XTW τ

.
(17)

After each iteration, the loss function from Eq. 15 is evaluated:

l( ŝ.) �∑n

i�1σ(wi( ŝ
.)ϵi( ŝ

.)) �∑n

i�1σ(wi( ŝ
.)(τi − X i ŝ

.)) (18)

The algorithm stops if the solution converges or if the
iteration limit is reached. We chose the loss function σ to be a
type L2-normalization (σ � |wi( ŝ

.)ϵi( ŝ
.)|2), however, it can also

contain a least absolute deviation model (L1-
norm, σ � |wi( ŝ

.)ϵi( ŝ
.)|).

3.3 Comparison of methods

In this section, we compare results from iteratively reweighted least
squares (IRLS) and ordinary least squares (OLS) regression to the

FIGURE 4
Estimation of the full slowness vector using least squares regression. (A) The red circles show the observed delay times for the exemplary event in the
Insheim reservoir (ML 0.5, BAZ to network localization: 97.5°), plotted against the horizontal inter-station distances ( x

.
and y

.
). The plane shows the

regressionmodel for the horizontal coefficients (ŝx and ŝy ), the color indicates themodelled/predicted delay time. (B) Partial regression leverage plots for
the three independent variables ( x

.
, y
.

and z
.
). x

.
contributes most to the model, but the contributions from y

.
and z

.
are statistically significant. (C)

Visualization of the estimated slowness vector in 3-D (left) and in the horizontal plane (right). The 95% confidence ellipsoid shows that uncertainties in the
vertical direction are much larger compared to the horizontal directions.
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widely used frequency-wavenumber (f-k) analysis (Capon, 1969). The
performance and stability of an f-k analysis highly depends on the
applied frequency band (see, e.g., Kværna &Ringdal, 1986 or Kværna &
Doornbos, 1991). Generally, the application of suitable, fixed frequency
bands is supposed to yield superior results in comparison to a wide-
frequency band approach (Gibbons et al., 2005). At the same time, the
width of the adapted frequency bands is crucial and should not be too
small (Kværna & Ringdal, 1986; Gibbons et al., 2010).

We calculate the energy of the array beam according to Eq. 2.1
for a slowness-grid in the range from −0.4 to 0.4 s/km and with a
resolution of 0.01 s/km. The fixed time window length is 1.5 s
(identical to the regression approaches). The data are band-pass
filtered and tapered prior to the transformation in the frequency
domain.

Figure 5 evaluates the performance and stability of the OLS and
IRLS regression methods and compares them to frequency-
wavenumber analysis. Figure 5A shows the time dependent
cross-correlation function for the exemplary event from the
Insheim reservoir (ML 0.5, BAZ network localization: 97.5°).
Figure 5B compares results for back azimuth and horizontal

apparent velocity depending on the shift relative to the point of
maximum correlation. It shows that the results are generally
unreliable for negative time shifts. In this case, the analysis
window does not include enough signal component (cf. Position
of the time window at argmax(MC) in Figure 3B). However, for
positive time shifts, IRLS regression yields reliable and consistent
values, not much influenced by the position of the time window.
OLS regression is stable up to a argmax(MC) + 0.4 s. The f-k
results, on the other hand, are unstable and only partially reliable
(e.g., at argmax(MC) + 0.15 s). Figure 5C examines the frequency
band parameters for the f-k analysis with a correlation window
shifted by 0.15 s from argmax(MC). It shows that the results
heavily rely on the frequency band. In this case, the band between
5 and 11 Hz (8 Hz ± 3 Hz) is preferable (BAZ closest to the network
localization); however, this conclusion cannot be generalized. The
optimal settings can vary significantly depending on the position of
the time window and on the source field and ray paths
characteristics of the signal (Kværna & Doornbos, 1991).
Figure 5D shows the energy grid of the f-k analysis at
argmax(MC) + 0.15 s, derived for optimized frequency settings

FIGURE 5
Comparison of processing methods for the exemplary event (ML 0.5, BAZ to network localization: 97.5°). (A)Median of the cross-correlation matrix
(MC) for all sites (red line) and for the individual sites (grey lines). The black dotted line indicates the point of maximum correlation (argmax(MC)). The
green area encloses the center positions of the 1.5 s correlation windows used in B, while the black dashed line shows the position in C and D. (B) Results
for BAZ (left) and vapp,h (right) in dependence on the shift relative to the point of maximum correlation, for the IRLS and OLS estimators, and the f-k
analysis. The frequency band for the f-k analysis is 5–11 Hz. IRLS results are very stable and consistent. The f-k solutions are only partly reliable (e.g., at
argmax(MC) + 0.15 s) and differ dramatically. (C) Results for BAZ (left) and vapp,h (right) for different center frequencies and bandwidths in the f-k analysis.
The correlationwindow is centered at argmax(MC) + 0.15 s. (D) Energy grid of the f-k analysis (window at argmax(MC) + 0.15 s, frequency band: 5–11Hz).
The maximum is indicated by the blue circle. Results from the IRLS and OLS regressions and the BAZ of the network localization are included for
comparison. (E) Computation time for the IRLS, OLS and f-k analysis, measured on a modern desktop computer (logarithmic timescale). For the
regression approaches, the computation time includes the delay time estimations using inter-station cross correlation functions.
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(8 Hz ± 3 Hz). The energy maximum is close to the results from
IRLS and OLS regression, but there is a nearby secondary maximum,
which indicates an instability of the solution. In comparison to the
network localization, the back azimuth of the f-k analysis is slightly
too small. The deviation most likely relates to the neglection of
elevation differences between the array sites. If the regression
approaches are restricted to the horizontal plane, the resulting
back azimuth is similar to the f-k result.

The computation time is of great relevance regarding real-time
applications. It is compared for all three approaches using a modern
desktop computer (Figure 5E). All methods take less than 0.1 s for
one calculation. However, OLS regression is almost 50 times and
IRLS approximately 4 times faster if compared to an f-k analysis.
Considering that IRLS results are significantly more stable than OLS,
the IRLS algorithm appears to be a good trade-off between
computational efficiency and accuracy, which makes it an
excellent choice for real-time application.

3.4 Distance estimation

The determination of P- and S-wave arrival times is a key task in
localizing earthquakes. Many current approaches apply deep learning
algorithms, which perform very efficient in real-time applications, but
require extensive training data sets (usually 10th of thousands of events,
e.g., Mousavi et al., 2020 or Li et al., 2022). Another well-established
method is the autoregressive Akaike-Information-Criterion (AR-AIC;
e.g., Sleeman and Van Eck, 1999), which uses autoregressive filtering to
estimate the wave onset as a maximization of the likelihood function in
dependence of the division point between two locally stationary signal
segments.

Here, we apply a statistical changepoint approach, which, similar
to the AC-AIC, divides a time series signal into two locally stationary
segments and evaluates a global statistical parameter for each part
(see, e.g., Sen & Srivastava, 1975; Chen & Gupta, 2001 or Shi et al.,
2022). The changepoint is then derived through a minimization of a
loss function, defined by the residuals from the individual samples
with reference to the global parameters.

For decent signal to noise ratios, the onset of a seismic signal
usually involves an increase in the signal’s standard deviation.
Assuming a time series xj,t � 〈xj,1: K〉 at site j and with length
K, a function (CPFj) can be formulated in dependence on the
division point tk:

CPFj tk( ) �∑tk

t�1 xj,t − std 〈xj,1: tk〉( )∣∣∣∣∣ ∣∣∣∣∣ +∑K

t�tk+1 xj,t − std 〈xj,tk+1: K〉( )∣∣∣∣∣ ∣∣∣∣∣
(19)

The signal onset T P,S{ },j is then defined for the point tk that
minimizes (19)

T P,S{ },j � argmin
tk

∑tk

t�1 xj,t − std 〈xj,1: tk〉( )∣∣∣∣∣ ∣∣∣∣∣ +∑K

t�tk+1 xj,t − std 〈xj,tk+1: K〉( )∣∣∣∣∣ ∣∣∣∣∣( )
(20.1)

and simultaneously fulfills

∑tk

t�1 xj,t − std 〈xj,1: tk〉( )∣∣∣∣∣ ∣∣∣∣∣
+∑K

t�tk+1 xj,t − std 〈xj,tk+1: K〉( )∣∣∣∣∣ ∣∣∣∣∣<∑K

t�1 xj,t − std 〈xj,1: K〉( )∣∣∣∣∣ ∣∣∣∣∣
(20.2)

i.e., the introduction of a changepoint must improve the cost
function. We implement the cost function as a least absolute
deviation model (a L1-normalization), which is usually less
sensitive to outliers if compared to least squares. Equation 20.1
can be solved by a penalized likelihood approach (see Yao, 1988 or
Chen and Gupta, 1997) and the application of a suitable information
criterion (here, Bayesian Information Criterion, BIC). The method
can be generalized to search for multiple changepoints using, e.g.,
binary segmentation (Sen & Srivastava, 1975), the segmented
neighborhood approach (Auger and Lawrence, 1989), or the OP
and PELT methods (Jackson et al., 2005; Killik et al., 2012). For a
scenario where the approximate travel time difference between P-
and S-wave is predictable (e.g., when monitoring reservoirs), it is
more efficient to apply two single changepoint searches within
appropriate time windows. In general, the search for a statistical
changepoint can be extended to the spectral domain (e.g., Picard,
1985), which might yield improved results for limited signal to noise
conditions.

Similar to the AR-AIC, the determination of wave onsets using
changepoint analysis depends on an initial estimate of the P-wave
arrival. Here, the maximum of the median of the cross-correlation
function (argmax(MC)) provides a suitable reference point. For
the P-wave arrival we choose a 3.5 s time window, starting at
argmax(MC) − 0.5 s. The window for the S-wave arrival starts
0.5 s after the estimated P-wave arrival and has a length of 5 s.
Equations 20.1 and 20.2 are evaluated for allN array sites, using the
vertical and horizontal components for the P- and S-wave arrivals,
respectively. The individual arrival times are subsequently corrected
for the inter-station delay times, derived from the array analysis, and
a robust estimate for T P,S{ } is calculated as:

T P,S{ } � median 〈T P,S{ },1: N〉( ) (21)
The median absolute deviation of the individual arrival times

from their median is used for error estimation (Hampel, 1986):

δT P,S{ } � 1.483 · median 〈T P,S{ },1: N −median 〈T P,S{ },1: N〉( )〉∣∣∣∣ ∣∣∣∣��
N

√ (22)

where the value 1.483 relates to the inverse of the 0.75th quantile of
the cumulative distribution.

Figures 6A, B show continuous evaluations of CPFj (Eq. 19)
within fixed time windows, for the vertical and East component,
respectively. The minima of the functions yield consistent estimates
for the P- and S-wave arrivals, related to the exemplary event from
the Insheim reservoir.

Assuming a homogeneous velocity distribution, the epicentral
distance d is calculated using a P-wave velocity vP and a fixed vP/vS
ratio (vP/S):

d � TS − TP( ) vP
v P/

S
− 1

( ) (23)

Associated errors are derived using error propagation:

δd �

����������������������������������������������������������������
vP

v P/

S
− 1

δTP( )2

+ vP
v P/

S
− 1

δTS( )2

+ TS − TP( )
v P/

S
− 1

δvP( )2

+ TS − TP( )vP
v P/

S
− 1( )2 δv P/

S
⎛⎝ ⎞⎠2

√√
(24)
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The final localization of an event is defined by the distance d
and the back azimuth angle θ, resulting from the array analysis
(Eq. 13.1). It can be transformed to Cartesian coordinates, with
dx � d sin(θ) and dy � d cos(θ). The corresponding errors are:

δdx �
������������������������
sin θ( ) δd( )2 + d cos θ( ) δθ( )2

√
(25.1)

δdy �
�������������������������
cos θ( ) δd( )2 + −d sin θ( ) δθ( )2

√
(25.2)

Latitude and Longitude are calculated with reference to the
geometrical mean of the array coordinates.

4 Results for the Insheim and Landau
deep-geothermal reservoirs

We compare our results to a data catalogue of 77 induced seismic
events from the Insheim and Landau deep-geothermal reservoirs. The
catalogue was provided by the Geological Survey andMining Authority
of Rhineland-Palatinate (LGB-RLP, 2022). It covers a period from July
2021 toMay 2022 and includes events in the magnitude range fromML

-0.2 to ML 1.3. The events were detected using the Südpfalz network
(LGB-RLP, 2022) and a template correlation detector (Vasterling et al.,
2017). Localizations were performed using Seismic Handler (Stammler,
1993) and an optimized minimum 1-D velocity model (Küperkoch
et al., 2018).

We re-localize all events using the seismic array in the Palatinate
Forest and the methods introduced in section 3. The data from all
10 sites are taken in 20 s windows, starting 5 s ahead of the source
times defined by the data catalogue. The waveforms are bandpass
filtered between 5 and 25 Hz, and the instrument response is
removed. Afterwards, the data are processed in 1.5 s windows
using the IRLS algorithm. They are continuously shifted by
10 samples (0.05 s), which results in a continuous function of the
median cross correlation MC, the back azimuth θ, and the
horizontal apparent velocity vapp,h with time. Results for each
event are obtained for the time window that minimizes the root
mean squared error of the linear regression (argmin(RMSE( τ.)).
Distance estimates are calculated using a constant vP/vS ratio of
1.76 ± 0.03 and constant P-wave velocities (vP) of 5.15 ± 0.2 km/s
and 5.25 ± 0.2 km/s for events from the Landau and Insheim
reservoirs, respectively. The values for vP were determined

FIGURE 6
Determination of statistical changepoints for the P- and S-wave arrivals for the exemplary event from the Insheim reservoir (ML 0.5, BAZ to network
localization: 97.5°). (A) Top: Z component recorded at station ST1 (zero phase filter between 5 and 25 Hz) within the time interval 〈argmax(MC) −
0.5 s : argmax(MC) + 3 s〉 and the corresponding evaluation of CPFST1. The minimum of CPFST1 gives an estimate of the P-wave arrival time at site ST1
(TP,ST1). Bottom: Amplitude of CPF over time for the Z components from all 10 array sites. The minima provide consistent estimates for the P-wave
onsets (TP,ST(1: 10)). The low SNR at site ST4 distorts the minimum ofCPFST4 (short period sensor). The median of TP,ST(1: 10) is not influenced by the outlier.
(B) Top: East component recorded at station ST9 (zero phase filter between 5 and 25 Hz) within the time interval 〈TP + 0.5 s : TP + 3.5 s〉 and the
corresponding evaluation of CPFST9. Bottom: Amplitude of CPF over time for all East components. The minima provide estimates for the S-wave
onsets (TS,ST(1: 10)).
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empirically, by minimizing the deviation from the network
localizations. They are in very good agreement with a Granite
layer (depth: >3 km, vP/vS: 1.76, vP: 5.2 km/s) in the 1-D VSP
velocity model for the Insheim reservoir (see Küperkoch et al., 2018).
The homogeneous velocity models are optimized to localize events
from the two reservoirs and are not adequate for differing source
regions. The results from the array analysis and the corresponding
localizations are summarized in Supplementary Tables S1, S2 in the
supplements.

Figure 7A shows processing results for the exemplary event from
the Insheim reservoir (19 November 2021; ML 0.5). The solutions for
back azimuth and horizontal apparent velocity are very consistent
during the period of increased correlation, which is associated with
the seismic phases traversing the array. The upper plot additionally
shows RMSE( τ.) in dependence of the position of the analysis
window. Figure 7B compares array and network localization. The
distance between both methods is 0.8 km, which is well within the
statistical errors.

Figure 8 compares array and network localizations for the
entire data catalogue (Figure 8A). Most array localizations form
distinct clusters and can be clearly attributed to either the

Insheim or the Landau reservoir (Figure 8B). However, there
are some outliers that do not yield reliable results and are far from
the network localizations (small map in Figure 8B). Figure 8C
gives an overview of the statistics for the array and network
localizations. Here, the BAZ and distance of the network
localizations are given with reference to the position of the
array. The distance estimates resulting from the array analysis
are very consistent and usually within a few hundred meters from
the network localization. The BAZ values, however, reveal a small
and systematic misdirection of +4.1° for the Insheim and – 4.7° for
the Landau events.

To investigate the quality of the array analysis, Figure 9A visualizes
the array localizations, color-coded by the weighted root mean squared
error of the regression analysis (cf. equations 10 and 18). The outlying
localizations clearly correspond to low-quality linear regression models
and involve large standard errors (σdx and σdy). This validates the
error estimation. For a final comparison between network and array
localizations, we correct the systematicmisdirection of the back azimuth
angle derived from the array analysis (Figure 9B). The resulting median
distance between the two methods is 0.9 km, with a median absolute
deviation (MAD) of 0.45 km.

FIGURE 7
Results for the exemplary event in the Insheim Reservoir (ML 0.5). (A) Top: Median of the cross-correlation matrix (MC, red line) and root mean
squared error of the regression results (RMSE(τ), blue line) with time. The black dotted line indicates the point of maximum correlation (argmax(MC)).
Results are taken for the solution that minimizes the error of the regressionmodel (argmin(RMSE), black dashed line). Center & Bottom: Time dependent
back azimuth (BAZ) and horizontal apparent velocity (vapp,h). The solution for both parameters is consistent for the period of increased correlation
(see green area in the plot above); before and after the results are random observations. This is also indicated by the standard errors (colors), which
decrease with increasing correlation. (B) Map plot of the network (cross) and array localization (filled circle). The distance between both localizations is
0.8 km and lies within the 95% confidence interval for both methods.
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5 Discussion

Most of the array localizations show a remarkable agreement
with the network localizations (median deviation <1 km) and
especially the distance estimates are highly consistent. The BAZ
calculations feature a systematic misdirection, which can be
attributed to either an inadequate velocity model (i.e., 2-D/3-D
effects) or local subsurface heterogeneities at the array. The
assumption of a uniform velocity distribution is a simplification,
and the velocity models are designed to localize seismicity from the
two reservoirs. Therefore, the implementation of a more accurate
velocity model could further improve the localization accuracy
within the reservoirs.

Examining the outliers reveals a direct link between low-quality
regression results (i.e., large RMSE) and low signal to noise
conditions (Figure 10A). Most significant outliers occur during
the period between December 2021 and February 2022, which

might relate to an increased level of seismic noise in the
northern hemisphere during winter times (see, e.g., Stutzmann
et al., 2009). On the other hand, the corresponding network
localizations are also located away from the main clusters of the
reservoirs (Figure 10B), either indicating a reduced quality of the
network localizations or a slightly different source region within the
reservoir. The latter might involve differing source field
characteristics, probably hampering an accurate signal
recognition at the location of the array. This scenario is
supported by a re-evaluation of a low-quality localization from
15 December 2021 (ML 0.7), using an adapted bandpass filter
between 25 and 35 Hz (Supplementary Figure S3). The adjusted
frequency band yields a more reliable regression result (though the
errors remain large), which suggests wavefield characteristics that
differ from a typical event from the reservoirs. In such a case,
advanced methods in the spectral domain could yield improved
results. Seydoux et al. (2016), for example, analyze the spatial

FIGURE 8
Comparison between array and network localizations for 77 induced events from the Insheim and Landau deep-geothermal reservoirs. (A) Local
magnitudes (ML) for events in the Insheim (cyan crosses) and Landau (red crosses) reservoirs in the period from July 2021 to May 2022 (data catalogue;
LGB-RLP, 2022). (B)Map view of the array (circles) and network localizations (crosses) close to the power plants. The Landau and Insheim clusters are well
separated. Error bars in the background represent the standard errors for the array localizations (δdx and δdy ). The upper right map shows the
regional setting and reveals outlying localizations. (C) Histogram plots for BAZ (first plot) and distance (third plot) derived for the array localizations,
separately for Insheim (cyan) and Landau (red). The median values are: Insheim: 100.3°, 14.6 km; Landau: 72.8°, 12.7 km. The second and fourth plot show
the deviations between array and network approach. Here, in case of network results, BAZ and distance are calculated with reference to the position of
the array. The distance estimates are very consistent (median deviation below 100 m). The back azimuth calculations, however, reveal a small and
systematic misdirection of +4.1° for the Insheim and – 4.7° for the Landau events.
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coherence of the seismic wavefield by an eigenvalue decomposition
of the covariance matrix. Incoherent noise is then minimized
through a reduction of the signal to components related to the
dominant eigenvalue. The PMCC algorithm (Cansi, 1995) calculates
cross-correlation functions within narrow frequency bands, thus
offering an improved separation between frequency bands with and
without noise. On the downside, those methods are either
computationally more expensive or require manual adjustments
to the signal and noise characteristics.

The statistical errors for the array and network localizations
consistently increase with decreasing localization quality
(Figure 10C). This is a good validation of the error
calculation, which is crucial for the quality assessment during
real-time processing. The standard errors associated with low-
quality array localizations, derived in the winter of 2021/2022, are
exceptionally large and coincide with large errors for the
corresponding network localizations. It is important to note
that the errors from the array analysis are generally smaller
when compared to errors resulting for the network
localizations. This might partly be due to the different
calculation approaches, but more likely it reflects the superior
location characteristics at the array. Here, the seismic noise level
is in average 0.1 μm/s (at 1–25 Hz), which is about 100 times

smaller if compared to the Upper Rhine Graben (10 μm/s at
1–40 Hz; Ritter & Sudhaus, 2007). Further, the network analysis
and associated statistical errors are likely distorted by local 3-D
velocity anomalies. For the array approach, the similarity of the
ray paths between source and receivers involves smaller statistical
errors (provided the data quality at the array sites is good). In this
case, the expected errors have a systematic origin and relate to the
uncertainty of the adapted uniform velocity model.

Figure 10D examines the distribution of the seismicity within
the two reservoirs, separately for array and network localizations. It
shows that the array results cluster more distinctly, especially for the
Landau reservoir. Here, the events focus between injection and
production well. The corresponding network localizations also
mainly occur between injection and production side, but they
scatter more widely. In the case of the Insheim reservoir,
seismicity is concentrated southwest of the injection wells for
both localization methods. Again, the horizontal variation is
smaller for the array localizations. At this point it is difficult to
conclude which results are more accurate. Looking at source-
receiver distances exclusively, the 1-D velocity model used in the
network analysis is not superior to an optimized uniform model.
However, the missing depth dependence in the array approach also
affects the epicentral localization.

FIGURE 9
Performance of the array analysis. (A)Map viewof the array (circles) and network localizations (black crosses). The array localizations are color coded
by the RMSE of the linear regression in the array analysis. The size of the circles scales with the magnitude (ML). Outlying localizations are clearly
associated with high RMSE values and feature large standard errors (σdx and σdy ). (B) Map view of the array (circles) and network (black crosses)
localizations near the power plants. The array localizations are corrected for a systematic misdirection of the back azimuth in dependence of the
origin (cf. Figure 8C). Array localizations are color coded by the distance to the corresponding network localizations. The median distance is 0.9 km, the
median absolute deviation 0.45 km.
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Our regression approach includes inter-station elevation
differences, which allows for estimates of the full 3-D slowness
vector. In Figure 11 we investigate results for the horizontal and
vertical apparent velocities (vapp,h and vapp,z), and the vertical angle of
incidence i � atan(vapp,z/vapp,h), for the entire data catalogue. The
horizontal apparent velocity is mostly between 6 and 8 km/s (median:
6.6 km/s, MAD: 0.4 km/s) and the vertical apparent velocity between
3 and 7 km/s (median: 4.1 km/s, MAD: 1 km/s). The angles of
incidence mostly range between 20° and 40°. For the Insheim
reservoir, some events feature increased vertical apparent velocity
values. The associated angles of incidence are larger than 50°. Low-
quality regression results for the period between December 2021 and
February 2022 involve very small values for the vertical apparent
velocity and the vertical angle of incidence. Consistent with the results
for the exemplary event (Section 3.2), errors associated with vapp,z are
distinctly larger if compared to the horizontal components. To
estimate the vertical slowness component with sufficient accuracy,
differences in elevation should be of the same order of magnitude as
the horizontal distances between the array sites. In this case, the
vertical angle of incidence could be used for depth estimation, e.g.,

using a vertical (borehole) array in combination with a conventional
horizontal layout.

Our analysis shows that conventional array processing
techniques, such as f-k analysis or OLS regression, are highly
sensitive to outlying data points and can heavily rely on manual
adjustments of the evaluation parameters (window size and position,
frequency band). Here, the IRLS algorithm, in combination with the
Biweight function, must be preferred. It yields stable and consistent
results, even in the presence of corrupted data. In comparison to a
regular f-k analysis, it is less sensitive to the frequency band (but
requires SNR >1 for the P wave onset) and is computationally more
efficient. The application of the algorithm to real-time data involves
a continuous evaluation of the cross-correlation function and
continuous robust estimations of the slowness vector and
associated uncertainties. If the correlation function exceeds a
certain threshold, distance estimates are calculated. In case of
insufficient processing results, indicated by the statistical errors,
the event can be re-evaluated using an adapted frequency band.
Here, an automatized choice of the filter settings can be based on the
cross-spectral matrix of the signals. The computational efficiency of

FIGURE 10
Origin of the outliers, statistical errors and distribution of the seismicity within the reservoirs. (A) Signal to noise ratio (SNR) of the P-Waves plotted
against the time of occurrence and color coded by the RMSE of the regression analysis. Low-quality results correspond to events with small SNR between
December 2021 and February 2022. There is not a strong correlation betweenmagnitude and low SNR during this period. (B)Network localizations (black
crosses), highlighted by the RMSE of the corresponding array analysis. It shows that outlying array localizations often agree with network
localizations that are also farther from the center of the network clusters. (C) Standard errors for array and network localizations (mean of σdx and σdy ),
color coded by the RMSE of the linear regression from the array analysis. The statistical errors of the array approach are mostly smaller if compared to
errors resulting for the network. (D) Event density, calculated in 0.25 km2 units, for array (left) and network (right) localizations. The array localizations
cluster more distinctly, especially in case of the Landau reservoir.
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the algorithm would also allow for a second evaluation stream
(i.e., secondary continuous calculations of the cross-correlation,
the slowness vector and associated uncertainties) within a
different frequency band.

6 Conclusion

We investigate the suitability of seismic arrays for
monitoring multiple geothermal reservoirs from one central
remote location. Here, the increased distance to the source
requires accurate processing techniques to receive reliable
earthquake localizations. We therefore employ robust linear
regression to estimate the slowness vector of seismic phases and
use statistical changepoint analysis to obtain automatized P-
and S-wave arrival times, which can be used for distance
calculations. The comparison to standard array processing
tools, such as ordinary least-squares regression and f-k
analysis, demonstrates that a robust approach is crucial to
achieve localization accuracy suitable for geothermal
monitoring. We further validate our results using a data
catalogue of 77 network localizations for the Landau and
Insheim deep-geothermal reservoirs, located in the Upper
Rhine Graben. It shows that we can clearly separate

earthquakes originating from the two reservoirs and the
quality of the array localizations is at least comparable to
those from the seismic network. Moreover, the remote
location of the array involves a significantly lower level of
seismic noise compared to the seismic network. This
enhances the sensitivity to small magnitude events and
ensures surveillance during noisy episodes.

Estimating the slowness vector of a seismic phase using linear
regression relies on observed delay times, derived from inter-
station cross-correlation functions. Here, we recommend using
the median of the cross-correlation matrix as a robust trigger
function as it remains unaffected by correlated noise between
single station pairs or degraded signal to noise conditions at
specific array sites.

We further demonstrate that incorporating elevation
differences into the regression model allows for an estimation
of the vertical slowness component (sz). This separates the
method from those limited to the horizontal plane, but the
statistical significance and accuracy of the results must be
evaluated with caution. If an array is to be used to accurately
estimate the vertical apparent velocity (and subsequently the
vertical angle of incidence), the elevation differences between the
array sites should be of the same order of magnitude as the
horizontal inter-station distances. However, elevation differences
should be included in the array analysis if they are expected to
contribute to the observed delay times. This eliminates the need
for elevation correction terms, and the impact on the calculation
time is only marginal.

When a set of observed delay times includes outliers, the use
of robust array processing techniques is crucial. We therefore
implement and test robust regression estimators for seismic array
data. Here, iteratively reweighted least squares in combination
with a Biweight function yields reliable parameter estimates, that
are significantly more stable compared to conventional least
squares regression and f-k analysis. The algorithm is
computationally efficient, making it well suited for real-time
applications.

To obtain P- and S-wave arrivals by an automated
approach, we introduce statistical changepoint analysis as an
alternative to autoregressive prediction. The determination of
a statistical changepoint only relies on the calculation of a basic
statistical parameter and not on autoregressive filtering. This
makes it computationally more efficient, at least when the
search problem is restricted to a single changepoint. The
quality of the estimated arrival times is remarkable,
resulting in highly accurate distance estimates for the array
localizations.

The final comparison between network and array
localizations shows that the results are very consistent. Most
array localizations form distinct clusters that can be clearly
attributed to either the Insheim or the Landau reservoir. A
few outliers for the array localizations in the period between
December 2021 and February 2022, coincide with low-quality
network localizations in the outer reservoir domains. Upon closer
examination of the seismicity within the two reservoirs, it
becomes evident that the array results cluster more distinctly
than the network results. Furthermore, the statistical errors from
the array analysis are generally smaller compared to those from

FIGURE 11
Horizontal and vertical apparent velocity and vertical angle of
incidence for 77 induced events from the Insheim and Landau deep-
geothermal reservoirs. Red and cyan marker edgings indicate results
for the Landau and Insheim reservoirs, respectively. The color of
the markers shows the corresponding angle of incidence
i � atan(vapp,z/vapp,h). Errors associated with the vertical apparent
velocity (vapp,z) are distinctly larger if compared to the horizontal
component (vapp,h). However, the estimated angles of incidence are
mostly consistent and range between 20° and 40°. For the Insheim
reservoir, some events feature increased vertical apparent velocity
values; the associated angles of incidence are larger than 50°. Low-
quality regression results from the period between December
2021 and February 2022 involve very small values for the vertical
apparent velocity and the vertical angle of incidence.
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the network localizations. This reflects the superior location
characteristics at the array, where the average seismic noise
level is about 100 times lower than in the Upper Rhine
Graben. As a result, the quality of the epicentral array
localizations is at least comparable with those derived from
the network.
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