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It is difficult to identify the fluid properties with one single logging curve in a caved-
fracture reservoir due to multi-stage tectonism, diagenetic evolution, rapid
lithology change, developed fractures, and significant heterogeneity. Therefore,
a stack generalization-basedmethod is proposed for improving fluid identification
accuracy. First, a traditional method with cross-plots is adopted by coring and
logging data, but it is found that the identification effect of the caved-fracture
reservoir fluid is poor. Second, based on the cross-plot, a correlation analysis is
conducted to select sensitive logging parameters such as resistivity, compensated
neutron, density, acoustic, and total hydrocarbon, which reflect changes in fluid
properties, as feature vectors for the identification of fluid types in caved-fracture
reservoirs. Third, support vector machine, k-nearest neighbor algorithm, decision
tree, and stochastic gradient descent classification are selected as the base
learners. 80% of the data sample points and the remaining 20% are selected as
training and test samples for building the stacking models to verify the prediction
accuracy of themodel. Finally, a fully connected neural network is used as ameta-
learner to control the final output. The experimental results show that the
prediction accuracy of the stack generalization method can reach 88%.
Compared with the cross-plot and single machine learning discriminant model,
the fluid identification method based on the stack generalization model has a
better effect and can improve the fluid identification effect of caved-fracture
reservoirs in the study area.
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1 Introduction

As a new field in the realm of oil and gas exploration and development, the research
of deep caved-fracture reservoirs has become increasingly critical. The supply of
conventional oil and gas resources is difficult to meet the increasing demand for
industrial development. The identification of caved-fracture oil and gas resources in
prominent oil and gas fields within the Bohai Bay Basin in China serves as compelling
evidence of the abundant reserves and development prospects associated with caved-
fracture reservoirs (He et al., 2010).

The strata in the study area having caved-fracture-type reservoirs belong to the
Carboniferous period. This region has undergone extensive tectonic activities and
diagenetic evolution, resulting in the formation of numerous fractures and
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significant heterogeneity. Consequently, the identification of
reservoir fluid properties becomes challenging. Many scholars,
both domestically and internationally, have conducted research
on this matter, such as the NMR and density porosity overlap
method of apparent resistivity spectrum of gas layer
identification method (Chen et al., 2017), the longitudinal
wave velocity and longitudinal wave velocity ratio cross-plot
fluid identification method (Jiang et al., 2014; Jia et al., 2018),
the different lithological application of Poisson’s ratio fluid
identification method (Dai, 2018), vertical and horizontal
wave velocity fluid identification (Zhang et al., 2008), the
neural network method (Bian et al., 2013), and a combination
of rock physical simulation and statistical techniques for fluid
identification (Ahmed et al., 2017).

In the past few decades, machine learning algorithms have
been widely used in logging interpretation for their ability to
explore the nonlinear relationship between logging response
features. The common machine learning models include the
support vector machine (SVM) (Kumar et al., 2022), neural
network (Maiti et al., 2007; Zhou, 2021), Bayesian network (Li
and Anderson-Sprecher, 2006; Cai, 2021), k-nearest neighbor
(KNN) algorithm (Wang et al., 2004), and capsule network (Zhou
B et al., 2021). Zhou et al. used the SVM for fluid identification of
thin reservoirs (Zhou et al., 2023). They selected kernel functions
and established a prediction model for thin reservoirs, with a
prediction accuracy of 85.7%. Bai et al. used the SVM to interpret
the low-resistivity oil layer in a tight sandstone reservoir in a
certain area (Bai et al., 2022). They found that the fluid
recognition accuracy of the support vector machine
classification model was higher than that of the log cross-plot
method, the back propagation neural network method, and the
Radial basis function neural network method. For the test of an
Ordovician Carbonate rock reservoir in an oil field (Zhao et al.,
2015), Zhao et al. used the KNN for fluid identification. They
found that compared with other common identification methods,
this method has higher identification accuracy, stronger
generalization, and robustness and has a better effect on oil
and water layer identification.

Different machine learning algorithms have their own
advantages and disadvantages due to their differences in
principle. It is difficult to evaluate the fluid properties of the area
due to the complex formation environment by applying a single
machine learning model.

In this paper, we apply a stacked generalization model to
evaluate the fractured reservoir. Compared with a single machine
learning algorithm, the method based on the stack generalization
(Qin et al., 2021) model adopts the idea of integrated learning and
has been widely used in various classification tasks. Especially when
this method is applied to the fusion of task models with few samples
and uneven samples, the identification effect of the model is also
better than that of a single machine learning model (He et al., 2022).
Currently, some authors use the stacked generalization method for
log lithofacies identification (Cao et al., 2022; He et al., 2022), and
there is limited research on the identification of fluid types in caved-
fracture complex reservoirs using the stacked generalization model.
Therefore, the methodology proposed in this study holds significant
relevance for fluid identification in such reservoirs characterized by
caved fractures.

2 Response characteristics and
sensitivity analysis of reservoir fluid
logging

The study area exhibits a monoclinic structural form that dips
towards the southeast. The overlying Carboniferous stratum
gradually thins from the southeast to the northwest and is
characterized by multiple stages of deposition, forming an
unconformity surface. The regional structure is located in the
middle section of the Hongche fault zone in the northwestern
margin of the basin. The Carboniferous caved-fracture lithology
in this area is complex, and fractures and dissolution pores are
widely developed. The complicated pore structure of the reservoir
leads to the complex relationship between the saturated liquid and
logging data, which makes it difficult to determine the liquid type
with the logging response characteristics.

The available data of the 24 wells in the area are shown in
Table 1, and the relative amplitude (FDB), total hydrocarbon base
value (QLj), and hydrocarbon humidity of the whole hydrocarbon
are calculated. The relative amplitude of total hydrocarbon is
shown as

FDB � QL

QLj
. (1)

The hydrocarbon humidity value calculation formula is

Wh � C2 + C3 + C4 + C5( )
C1 + C2 + C3 + C4 + C5( ) × 100%, (2)

where C1 is the dry gas and C2–5 represent the wet gas. Wh is the
humidity, which can be used to determine the hydrocarbon type (oil
or gas).

The logging response characteristics of the main fluids in the
area were analyzed and summarized based on the oil testing
conclusion data and logging curves from five wells (Tables 2, 3).

Based on the analysis and summary of the caved-fracture fluid
logging response characteristics in the study area in Tables 2, 3,
according to the data of 73 oil test intervals of 24 wells in the
C471 well area, the corresponding logging parameters were selected
as QL-RT, DEN-AC, CNL-GR, and RD/RT-RI cross-plots (Figure 1)
to identify the caved-fracture fluid.

Based on Figures 1A–D, it can be observed that the gas layer,
gas-bearing layer, and water layer exhibit low resistivity, while the
dry layer displays high resistivity. The gas layer has the
characteristics of high acoustic wave and low density, which is
different from other fluid characteristics. The density log value of
the dry layer is the highest, followed by the gas–water layer and the
water layer. According to the neutron-gamma logging response, the
dry layer presents the characteristics of low–medium gamma and
low neutron logging value, the neutron logging value is significantly
lower than that of the gas layer, and the neutron logging value of the
water layer is slightly larger than that of the gas layer. Generally,
conventional well logging curves such as RT, CNL, DEN, AC, and
QL (full hydrocarbon) curves are highly sensitive to fluid properties.

Although the cross-plot method can reflect the properties of
formation fluids to a certain extent, from the cross-plot, it can be
observed that the cross-plot method is effective in distinguishing
between dry layers and fluid reservoirs. However, it faces challenges
in effectively differentiating gas layers, gas–water layers, and water
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TABLE 1 Oil test, production data, and gas survey data from the study area.

Well
name

Top
depth

Bottom
depth

Total hydrocarbon
distribution range

Total hydrocarbon
base value

Total
hydrocarbon

average

Gas measurement
components

Daily gas
production (m³)

Daily water
production (t)

Interpretation of the
conclusion

C471 2,269 2,272 0.052–2.16 0.386 0.48 5 — 2.16 Water layer

C471 2,502 2,518 0.27–14.9 0.386 0.93 5 1,650 — Gas-bearing layer

C471 2,628 2,708 0.13–15.22 0.386 6.92 5 42,380 — Gas layer

C471 2,994 3,039 0.06–2.78 0.386 0.32 5 — 6.77 Water layer

C472 2,323 2,327 0.002–0.16 0.004 0.12 2 — 4.75 Water layer

C472 2,474 2,536 0.003–8.14 0.004 6.21 1 10,100 — Gas layer

C472 2,688 2,732 0.004–6.23 0.004 5.32 1 26,901 — Gas layer

C472 2,950 2,988 0.003–4.25 0.004 3.04 1 9,875 24.48 Gas–water layer

C473 2,636 2,648 0.21–3.72 0.229 2.84 5 6,670 8.93 Gas–water layer

C473 2,844 2,878 0.05–3.92 0.229 3.43 5 7,169 10.69 Gas–water layer

C473 3,430 3,458 0.07–2.41 0.229 0.36 5 — 21.25 Water layer

. . . — — — — — — — — —

CH3069 2,542 2,547 1.05–2.81 1.137 2.0094 5 5,973 7.93 Gas–water layer

CF0615 2,316 2,327 0.53–20.48 0.576 6.06 5 21,079 — Gas layer

CF0615 2,342 2,353 0.23–22.07 0.576 8.06 5 32,747 — Gas layer

Fro
n
tie

rs
in

E
arth

Scie
n
ce

fro
n
tie

rsin
.o
rg

0
3

Z
h
ao

e
t
al.

10
.3
3
8
9
/fe

art.2
0
2
3
.12

16
2
2
2

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1216222


layers. It shows that the single conventional cross-plot has a poor
overall effect on the identification of caved-fracture fluids and
cannot make full use of logging curves reflecting fluid properties
and express the semantic level stratigraphic information contained
in the logging curve.

3 Model principle and construction

3.1 Stacked generalization principle

Stacked generalization (David, 1992), as a typical learning method
in ensemble learning (Lü et al., 2019), uses a certain learner to integrate
the classification results of different base learners. The stacked
generalization model can increase the nonlinear ability of the model
by increasing the number of layers, but at the same time, it will also lead
to the phenomenon of model overfitting. Therefore, the general stacked
generalizationmodel is a two-layer structure (Niyogisubizo et al., 2022).
The stacked generalization model ensemble machine learning
algorithm models with better identification effects, such as decision
trees, nearest neighbors, and support vector machine algorithms. It
makes full use of the different characteristics of different algorithms and
then uses a new meta-learner to combine the prediction results of
individual base learners to finally complete the prediction of the task
results. The algorithm implementation process is illustrated in Figure 2.
First, the dataset is divided into multiple subsets, which serve as inputs
for the basic learners. Each basic learner generates a prediction result
based on its corresponding subset. The outputs of all the basic learners
are then used as inputs for the meta-learner, which produces the final
prediction result. By stacking and generalizing the outputs of multiple
base learners, the overall task’s prediction accuracy is improved.

In order to prevent the meta-learner from directly learning the
training set of the base learner, which causes too much risk of
overfitting, the learning of the base learner is carried out by means of
cross-validation (Geisser, 1975). The original training set D is
randomly divided into k sets D1, D2 , D3, D4,. . ., Dk of the same

size or with little difference. The j-th set Dj �
(x1, y1), (x2, y2), . . . , (xm, ym){ } has m pieces of data. Let the test
set of the j-th base learner beDj, and the training set is �Dj � D −Dj.
Denoting the total number of base learners with T, each base learner
algorithm is expressed as L1,L2, . . . ,Lt. Let the t-th base learner
algorithm Lt learn at �Dj; for the i-th example (xi, yi) of Dj, a
secondary training sample zit � ht(xi) is generated, and the output
set of all base learners L1,L2, . . . ,Lt for i examples is
((zi1, zi2, . . . , ziT), yi). D′� D′ ∪ ((zi1, zi2, . . . , ziT), yi) is
obtained throughout the cross-validation process as a training
instance of the meta-learner L, and the final meta-learner’s
prediction H(x) is the final output of the model.

Considering the diverse principles underlying the base learners
and their varying interpretations of the data space dimensions in
well logging information (Zhou H et al., 2021), classic algorithms
such as the SVM, KNN, decision trees, and stochastic gradient
descent classification method have been widely used in the field of
machine learning for many years and have been extensively
validated in practical applications. These algorithms have broad
application domains and are supported by a rich body of research,
demonstrating their ability to achieve robust performance in various
problem domains (Wu et al., 2017; Zhou X et al., 2021; Jung and
Kim, 2023; Pałczyński et al., 2023). Therefore, in this article, they are
used as the base learner, and the fully connected neural network is
used as the meta-learner (detailed in the subsequent section). The
pseudocode is shown in Table 4.

Among them, ht represents the learner obtained after Lt is
trained by �Dt, and H(x) is the output of the meta-learner, which is
also the final output of the whole model.

3.2 Model construction

Based on the introduction provided in the previous section, the
SVM, KNN, decision tree, and stochastic gradient descent
classification method with different mathematical principles are

TABLE 2 Response characteristics of caved-fracture fluid logging.

Type GR (API) AC (μs/ft) DEN (g/cm³) CNL (%) RT (Ω·m)

Interval Avg Interval Avg Interval Avg Interval Avg Interval Avg

Gas layer 40.4–77.7 61.2 70.3–86.9 76.8 2.25–2.55 2.41 21.6–38.9 26.3 6.9–85.7 31.2

Water layer 64.6–78.2 68.2 63.8–68.6 65.9 2.54–2.60 2.56 23.7–37.2 31.3 30.3–36.3 33.2

Gas–water layer 36.7–61.3 47.7 63.7–78.6 68.3 2.52–2.63 2.54 23.2–32.7 28.9 21.7–90.3 47.7

Dry layer 16.5–73.2 39.2 58.3–66.2 62.1 2.45–2.61 2.54 14.1–25.7 19.4 29.2–101 83.3

TABLE 3 Response characteristics of caved-fracture fluid mud logging.

Type Total hydrocarbon relative magnitude Hydrocarbon humidity value

Gas layer 0.1–10 0–0.016

Water layer 0.13–1.06 0–0.004

Gas–water layer 0.1–2.93 0–0.002

Dry layer 0.03–1.19 0.01–0.03
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FIGURE 1
Cross-plot of logging parameters: (A) RT and QL; (B) AC and DEN; (C) GR and CNL; (D) SP and RD/RS.

FIGURE 2
Stacked generalization process.
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used as the base learners, and the fully connected neural network

commonly used in deep learning is used as themeta-learner to control

the final output. Among them, the fully connected neural network is

also called multilayer perceptron, which is a kind of artificial neural

network with forward feedback (Du et al., 2020), known as the deep

feedforward network. A feedforward neural network includes an input
layer, a hidden layer, and an output layer. The input layer mainly

TABLE 4 Schematic diagram of the implementation steps of the stacked generalization algorithm.

Input: Training set: D � (x1 , y1), (x2 , y2), . . . , (xm, ym){ }; m is the number of datasets, and D′ represents the meta-learner training set

Elementary learning algorithms: L1 ,L2 , . . . ,Lt ; T learners, Lt represents the t-th base learner, L1 ,L2 , . . . ,L4 represent the SVM, KNN, decision tree, and stochastic gradient
descent classification method in turn

Secondary learning algorithms: L, meta-learner, represents a fully connected neural network

Cross-validation: indicates cross-validation, the number of cross-validation subsets k=5

Process

1: D1, D2 , D3, D4 ,. . ., Dk = Cross-validation (T,k)

2: for t � 1, 2, . . . , k do

3: ht � Lt( �Dt)

4: end for

5: D′ � ⌀

6: for i � 1, 2, . . . , m do

7: for t � 1, 2, . . . , T do

8: zit � ht(xi)

9: end for

10: D′ � D′ ∪ ((zi1 , zi2 , . . . , ziT), yi)

11: end for

12: h′ � L(D′)

For an input x, there is output: H(x) � h′(h1(x), h2(x), . . . , hT(x))

FIGURE 3
Meta-learner model structure diagram.

TABLE 5 Caved-fracture fluid sample data selection.

Type of fluid Fluid code Training data Prediction data

Water layer 0 8 3

Gas layer 1 76 18

Gas–water layer 2 16 5
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associates the feature information with the input nodes, transmits
information for the hidden nodes in the next step, and provides data
support for the calculation in the next step. The hidden layer is a node
layer that further processes the feature information, calculates the data
transmitted by the input node, and transmits the calculated
information to the output node to improve the nonlinear ability of
the model. The output layer is the last link in the transmission of
information, which further calculates the data and transmits
information to the outside of the network (Figure 3).

In the forward propagation stage, it can be seen that the input
layers x1, x2.xn form the X vector. Therefore, the hidden layer
neurons are activated by the hyperbolic function tanh to obtain
the output value of this layer:

aj � tanh ∑n
i�1
wijxij

⎛⎝ ⎞⎠, (3)

where aj represents the output value of the hidden layer neuron, tanh
represents the hidden layer activation function, gj represents the input

weighted sum of the j-th hidden layer neuron node, n represents the
number of neurons in the input layer, i represents the subscript of the
input layer neuron, j represents the subscript of the hidden layer
neuron, and wij is the weight of the hidden layer neuron j.

Similarly, the output value of the output layer neuron is activated
by the normalized exponential function softmax, which can be
expressed as

y � ak � softmax ∑m
j�1
wjkxjk

⎛⎝ ⎞⎠, (4)

where y (ak) represents the output value of the hidden layer neuron,
softmax represents the activation function of the output layer, m is the
number of neurons in the hidden layer,wjk is theweight of the output layer
neuron k, and xjk represents the output value of the neurons in the hidden
layer, which is equal to the input value of the neurons in the output layer.

Let

hk � ∑m
j�1
wjkxjk. (5)

FIGURE 4
Relationship between different base learner parameters and accuracy rate: (A) maximum depth and accuracy; (B) regularization coefficient and
accuracy; (C) number of iterations and accuracy; (D) nearest neighbor numbers and accuracy.
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From the definition of the softmax function, it can be known that

softmax hk( ) � s hk( ) � ehk

∑p
l�1
ehl
, (6)

where p represents the number of neurons in the output layer.
The loss function can be expressed as

L � −ln ehk

∑p
l�1
ehl

� − hk − ln∑p
l�1
ehl⎛⎝ ⎞⎠. (7)

In the backpropagation stage, when the loss function is passed from
the output layer to the input layer, the stochastic gradient descent algorithm
(SGD) is used as the optimizer to iteratively adjust the model weight. This
method is the most basic iterative algorithm for optimizing neural
networks at present, and it is simple and easy to implement (Li et al., 2022).

The gradient is also the partial derivative of the loss function L
with respect to the weight w, and the calculation based on the chain
rule can be expressed as

FIGURE 5
Meta-learner training time loss trend chart.

FIGURE 6
Relationship between different meta-learning parameters and accuracy rate: (A) training batch and accuracy; (B) learning rate and accuracy;
(C) hidden layer neural and accuracy; (D) regularization coefficient and accuracy.
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∂L
∂wik

� ∂L
∂hk

∂hk
∂wik

. (8)

The weight of the updated output layer can be obtained from the
aforementioned formula, which is expressed as

wjk� wjk − η ∂L
∂wjk

, (9)

where η represents the model learning rate that controls the update
speed of the parameters.

4 Model parameter selection

4.1 Data normalization

Conventional well logging curves RT, CNL, DEN, AC, and QL
are used as sample points, respectively, where QL can be calculated
from the gas measurement data. According to the oil test data,
121 oil test intervals of 38 exploration wells were selected, and the
corresponding fluid-sensitive logging parameters (deep lateral
resistivity (RT), neutron (CNL), acoustic time difference (AC),
formation density (DEN), and total hydrocarbon index (QL))
were used as the input data of the basic learner. The training
dataset for this study consists of 100 samples, while the testing
dataset comprises 26 samples. Among these, there are 76 training
samples and 18 prediction samples for gas reservoirs. For water
reservoirs, there are eight training samples and three prediction

samples. Finally, for the gas–water layers, there are 16 training
samples and 5 prediction samples. The distribution of sample data is
shown in Table 5.

Based on the earlier discussion, where the cross-plot method
demonstrated effective identification of dry formations, we will not
specifically focus on the identification of dry formations in this
study. The fluid data are mainly divided into the gas layer, water
layer, and gas–water layer. The label is set to 0 for the water layer,
1 for the gas layer, and 2 for the same layer of gas–water.

The dimension and order of magnitude of different logging
information are different. To eliminate the influence of unit and
scale difference between logging information, it is necessary to
normalize the features and normalize the input logging response
feature data. The formula can be expressed as

Xnorm � X −Xmin

X max−Xmin
. (11)

For nonlinear logarithmic characteristic curves, such as RT
curves, logarithmic transformation should be performed before
entering the model:

Xnorm � lgX − lgX min

lgX max−lgX min
. (12)

In the formula, Xnorm represents the normalized data, X
represents the original sample data, and Xmax、and Xmin,
respectively, represent the maximum and minimum values of the
sample data.

TABLE 7 Partial training sample data.

Well name GR(API) CNL(%) AC(μs/ft) DEN(g/cm3) RT(Ω·m) QL(%) Conclusion

C210 44.6 26.5 74.9 2.36 64.0 6.12 Gas layer

C210 56.4 22.6 73.5 2.38 68.3 8.14 Gas layer

C210 40.5 22.0 86.2 2.33 86.5 4.23 Gas layer

C214 56.2 23.4 80.6 2.35 77.3 6.29 Gas layer

C214 54.5 22.4 77.7 2.39 61.7 6.15 Gas layer

C214 62.0 24.4 73.5 2.30 42.3 5.08 Gas layer

C229 58.4 30.3 78.7 2.48 57.1 0.94 Gas–water layer

C243 45.2 27.8 65.4 2.50 42.2 1.30 Gas–water layer

C214 68.9 32.2 64.5 2.52 24.5 1.06 Water layer

C214 65.7 35.0 68.3 2.55 24.8 0.64 Water layer

C216 77.6 34.4 68.6 2.52 35.2 0.58 Water layer

C216 74.8 33.2 64.4 2.53 38.7 0.79 Water layer

TABLE 6 Corresponding parameters of the caved-fracture fluid prediction model.

Model Hidden layer
activation
function

Output layer
activation
function

Optimizer Regularization
factor

Hidden
layer
nodes

Training
times

Hidden
layer

number

Learning
rate

MLP tanh softmax SGD 0.004 256 2000 3 0.009
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4.2 Base learner parameter selection

After data standardization, the dataset was randomly divided
into the training set and test set in the ratio of 8:2, and the
training set was further divided into the sub-training set and sub-
validation set using the five-fold cross-validation method. Using
the sub-training set to train the model and the verification set to
verify the training effect, the size of the model parameters is
adjusted based on the effect of the verification. This process helps
in selecting the optimal parameters for the basic learner.

Stochastic gradient descent, KNN algorithm, decision tree
algorithm, and support vector machine algorithm were
selected as the basic learners, and different parameters in the
algorithm were set. The relationship between different
parameters of the experiment and the accuracy rate is shown
in Figure 4.

Among them, the maximum depth and the maximum number of
leaf nodes are used as the decision parameters of the decision tree. Since
the number of features is selected as 5, themaximum leaf child nodes of
the decision tree are set to 3, 4, and 5. The larger themaximum depth of

FIGURE 7
Flowchart of stacking generalization method application.
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TABLE 8 Results of caved-fracture fluid identification for different models.

Model Sample type Fluid type Predicted results Coincidence rate

Water Gas Gas–water

SVM Train Water 6 0 2 0.75

Gas 1 72 3 0.95

Gas–water 1 2 13 0.81

Overall 0.91

Test Water 2 0 1 0.67

Gas 1 15 2 0.83

Gas–water 0 2 3 0.60

Overall 0.77

KNN Train Water 5 1 2 0.63

Gas 2 70 4 0.92

Gas–water 2 2 12 0.75

Overall 0.87

Test Water 2 0 1 0.67

Gas 0 16 2 0.89

Gas–water 1 1 3 0.60

Overall 0.81

SGD Train Water 6 0 2 0.75

Gas 2 72 2 0.95

Gas–water 0 2 14 0.88

Overall 0.92

Test Water 3 0 0 1.00

Gas 2 14 2 0.78

Gas–water 0 1 4 0.80

Overall 0.81

DT Train Water 4 1 3 0.50

Gas 3 68 5 0.89

Gas–water 1 5 10 0.63

Overall 0.82

Test Water 1 0 2 0.33

Gas 2 12 6 0.60

Gas–water 0 2 2 0.50

Overall 0.58

STACK Train Water 7 0 1 0.88

Gas 1 75 0 0.99

Gas–water 1 2 13 0.81

Overall 0.95

(Continued on following page)
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the decision tree is, the more the tree is split, the ability of the model to
capture the nonlinearity of the data is enhanced, the probability of the
model overfitting is increased, and the generalization ability of the
model is worse. It can be seen from Figure 4A that with the increase in
the maximum depth of the decision tree, the accuracy of the model
shows a fluctuating trend. When the maximum depth is 5 and the
maximumnumber of child nodes is 4, themodel accuracy is the highest,
which is 79.8%.

The SVM algorithm completes the classification by maximizing the
classification interface and finding a hyperplane to separate the
classification targets as much as possible. When using SVM to
identify fluids, it is necessary to pay attention to the penalty term
coefficient C and the corresponding kernel function. Increasing the
penalty coefficient C in a model strengthens its ability to constrain
and suppress the parameters, which can lead to a higher degree of
regularization. However, if the penalty coefficient C is set to an excessively
large value, it can result in excessive parameter suppression and
potentially cause underfitting. Kernel functions are generally used for
higher-dimensional target tasks and can also provide models with
different nonlinear capabilities. It can be seen from Figure 4B that in
the SVM classification algorithm, the accuracy of the results using the
polynomial and radial basis kernel functions is higher than that of the
linear kernel function, and the accuracy of the polynomial kernel function
is slightly higher than that of the radial basis kernel function. When the
penalty term coefficient C is 1.1 and the kernel function is a polynomial
optimizer, the model has the best accuracy of 81.5%.

It can be seen from Figure 4C that the stochastic gradient descent
method is affected by the maximum number of iterations and the loss

function. The log, hing, and square loss functions are selected as
experimental comparisons. When the loss function is log loss, the
stochastic gradient descent method evolves into a logistic regression
algorithm with fast convergence and stable overall accuracy, with the
highest accuracy reaching 81.2%.Other loss functions aremore volatile and
unstable, among which the square loss function has the most violent
fluctuation.

As seen from Figure 4D, the KNN algorithm is affected by the
number of nearest neighbors and the construction method of the tree.
The construction method of the tree is divided into brute, kd-tree, and
ball-tree. It can be found that the constructionmethod of the tree has no
obvious influence on the algorithm. When experimenting on the
number of nearest neighbors, it is found that the number of nearest
neighbor algorithms has a significant impact on the generalization effect
of the model. When the number of nearest neighbors is 5, the highest
accuracy is 79.7%. When the number of nearest neighbors is 15–20, the
accuracy rate is not much different. When the number of nearest
neighbors is larger, the model is more prone to overfitting, so the
optimal number of nearest neighbors is 5.

4.3 Meta-learning model parameter
optimization

The initial learning rate of the meta-learner is set to 0.001.
Considering that there are too few data sample points, the model is
prone to overfitting, and the regularization parameter penalty factor is set
to 0.0005. The input layer is the secondary training set constructed by the

FIGURE 8
Graph of fluid identification accuracy of different models: (A) accuracy of training sample; (B) accuracy of testing sample.

TABLE 8 (Continued) Results of caved-fracture fluid identification for different models.

Model Sample type Fluid type Predicted results Coincidence rate

Water Gas Gas–water

Test Water 3 0 0 1.00

Gas 0 16 2 0.89

Gas–water 1 1 3 0.80

Overall 0.88
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output of the four basic learners after cross-validation training. Two
hidden layers are set in the middle of the meta-learner, the number of
neurons is set to 128 and 128, respectively, and the number of output
neurons is set to 3. The learning rate decay factor is 0.8. Themeta-learner
is trained for 10,000 rounds, and the training loss and test loss are reduced
to 0.04 and 0.03, respectively (Figure 5). It can be seen from the curve that
the training set loss and the validation set loss have a stable and consistent
downward trend, and there is no overfitting phenomenon.

The accuracy rate obtained by inferring the test set with the
meta-learner model is used as the evaluation index, and the
calculation method of the accuracy rate is as follows:

P � TP

TP + FP
, (13)

where P is the accuracy rate and TP is the number of positive
samples where the sample itself is positive. The model also predicts

the number of positive samples, and FP is the number of negative
samples that are predicted to be positive samples.

The hyperparameter training batch, the number of
intermediate hidden layers, the learning rate, and the
regularization parameters in the experiment are modified.
Based on the experimental method, the optimal parameters of
the fully connected neural network model were selected, the
accuracy of the model test set was used as the measurement
index, and judging whether the model is overfitting is
supplemented by the accuracy of the training set. The training
batch-accuracy, learning rate-accuracy, number of hidden layers-
accuracy, and regularization coefficient-accuracy graphs are
made, respectively (Figures 6A–D).

When the other parameters are fixed at a specific value, the
training batches are set in the range of 500–3,000, with an
interval of 500 for each training iteration (Figure 6A). It is found

FIGURE 9
Interpretation results of the stacking generalization method in the oil test interval (2,749–2,762 m) of well CheF6.
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that the training batch tends to be stable from 2,500 to 3,000,
and the accuracy trend of the training and test sets are
consistent, with no overfitting. At this time, the batch is
2,500 and has the best accuracy. When the model learning
rate is too small, the network model is prone to fall into
local optimum, and when the model is too large, it is not
stable enough and lacks robustness. It can be seen from
Figure 6B that when the learning rate is 0.009, the model
training accuracy is high. When the number of neurons in
the hidden layer is small, the model is prone to underfitting
and lacks nonlinear ability. As the number of neurons increases,
the nonlinear ability of the model increases. When the number
of neurons is 512, the training accuracy increases and the test
accuracy decreases significantly, and overfitting occurs at this
time (Figure 6C). Therefore, the number of neurons should be
256 for the best accuracy. As the regularization coefficient
increases, the penalty for the parameters is larger, and the
ability to suppress overfitting is stronger. When the
regularization coefficient is 0.004, the model test accuracy is
the highest (Figure 6D).

5 Field examples

Based on Section 3.2, model construction, meta-learner
parameter selection (Table 6) is used to construct the model.
Partial training sample data are shown in Table 7. The specific
flow chart of the model is shown in Figure 7, which predicts the
results of the fluid data of Carboniferous reservoirs in the study area.

Table 8 demonstrates that the interpreted conclusion is generally
consistent with the oil test conclusion. The highest recognition rate
for gas layers in the training samples is 98.7%, while in the test set, it
reaches 88.8%. Graphing Table 8, it can be seen that the stacked
generalization model identifies fluids more effectively than the single
model (Figure 8).

The stacking generalization model was used to explain the
processing and interpretation of the oil test interval of well CF6 in
the study area (Figure 9). For the fluids in different well areas, the
stacking generalization fusion model is used to identify the fluids, and
the new and old perforated wells are combined with the loggingmethod
to identify the fluids. Oil test section: 2,749–2,762 m, daily gas
production is 52,157 cubic meters, and the daily water production is

FIGURE 10
Comprehensive interpretation results of logging and logging in well CH21100.

Frontiers in Earth Science frontiersin.org14

Zhao et al. 10.3389/feart.2023.1216222

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1216222


0t. Since 0 in the model output means that the model has no reasoning,
themodel output is increased by 1, and the outputs 1, 2, and 3 represent
the water layer, gas–water layer, and gas layer, respectively. In the
2,749–2,754 m section, the density log response value decreased, the
neutron log response value increased, the resistivity showed a
downward trend, and the model inferred that it was a gas layer. In
the 2,756–2,762.3 m section, the density logging response value
decreased, the neutron logging response value increased, resistivity
showed a downward trend, and the acoustic logging response value
was inferred as a gas layer by the model. In the 2,764–2,771 m section,
the density shows a downward trend, the acoustic wave value increases
accordingly, the neutron value logging response value increases, and the
resistivity shows a gentle downward trend. Themodel of 2,764–2,771 m
is inferred as a water layer. Themodel interpretation corresponds to the
gas layer and the water layer, respectively, and also corresponds to the
gas measurement data. From the oil test interpretation conclusion and
the model interpretation conclusion, it can be seen that the model
interpretation conclusion is roughly consistent with the oil test
conclusion.

The stacking generalization method was also used for fluid
identification in the CH21100 well area. Fluid identification was
performed based on new and old perforated wells combined with
logging methods, and a recommended well section was suggested. The
mud logging shows that the gas measurement section, which has a
thickness of 20 m and QL between 2.93% and 8.348%, was interpreted
as a gas layer (Figure 10). Oil test section: 1,202–1,222 m, daily gas
production is 62,852 cubic meters; 1,240–1,275 m, daily gas production
is 16,553 cubic meters, and the daily water production is 12.4t. The
interpretation of themodel suggests that the gas layers are located in the
1,179–1,183 m, 1,203–1,209 m, and 1,210–1,237 m sections, while the
gas–water layer is in the 1,244–1,258 m section. These results are
consistent with the comprehensive mud logging interpretation and
oil testing conclusions.

6 Conclusion

This paper proposes a classification method based on a stacked
generalization model to identify caved-fracture fluid properties.

1) Compared to cross-plot and single machine learning
discriminative models, the fluid identification method based
on stacked generalization models yields superior results and
enhances the effectiveness of fluid identification in the caved-
fracture reservoirs.

2) The fusion algorithm based on the stacked generalization model
can obtain the global optimal parameters through two modes:
cascade learning and model fusion, which makes up for the
shortcomings of common machine algorithms such as
insufficient generalization ability and long training time.

3) The SVM, KNN, stochastic gradient descent, and decision tree
algorithm were used as the base learners, a fully connected neural
network was used as the meta-learner, the classification loss was
used as the cost objective function, the gradient descent method
was used to optimize the model parameters, and a stacking

generalization model was built for recognition research of the
fluid properties of the oil interval in the regional test. The results
show that the recognition accuracy rate of the model based on
stacking generalization reaches 88%.

4) In practical applications, the lack of coring data, similar mineral
composition, and structure of certain rock types can result in
errors in the model fluid identification of boundary intervals. To
address this deficiency, logging data can be combined to
complement the analysis.
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