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At certain depths, the elastic properties of the ground are not affected by seismic
waves. However, as they reach the surface, the soil density decreases and so does
its elastic limit. This means that the expected ground motion acting at the
foundation of a structure cannot be adequately described without considering
the inelastic response of the soil near the surface. Therefore, one of the key
elements in characterizing the seismic response of civil structures is the site effect.
These depend mainly on the parameters of the soil beneath the structure and the
features of the ground motion acting at the depth, where non-linear effects are
negligible. Therefore, the main objective of this paper is to find an intensity
measure that incorporates the information provided by the soil profile under
the structure and the ground motion acting at the bedrock level. Due to the
random nature of both elements, a probabilistic framework using Monte Carlo
simulation has been developed to analyze this problem. For this purpose, random
soil profiles have been generated to obtain a representative sample of likely
scenarios of the study area. A large database of Colombian ground motion
records has been used to model the seismic hazard. Finally, power functions
capable of relating the input variables to the dynamic response of a large set of
reinforced concrete structures have been derived by consideringmulti-regression
analysis. It has been observed that, in several cases, intensity measures extracted
from the displacement spectrum appear in the mathematical arrangements.
These functions could be used to improve the efficiency of seismic risk
prediction at the urban level.
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1 Introduction

Soil–structure interaction is becoming fundamental in the estimation of seismic risk
(Cruz and Miranda, 2021). It is because the soil beneath the structure acts as an ultimate
filter that may amplify or de-amplify harmonics at specific frequencies depending on its
dynamic properties. Thus, it is expected that structures having significant mass
participation at specific periods may enter in resonance with the soil. One of the
most remarkable examples of this effect was observed during the earthquake that
affected Mexico City in 1985 (Beck and Hall, 1986). A large amplification has been
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observed of long-period waves produced by a highly attenuated
ground motion since the earthquake occurred far away from the
site. This event shifted several conceptual paradigms on aspects
related to the estimation of seismic risk. More recently, the use of
advanced non-linear models considering the soil–structure
interaction has provided information to better understand this
complex phenomenon (Pitilakis and Petridis, 2022).

In sites of high seismic risk, and depending on the complexity
(or importance) of a civil infrastructure, it is recommended to
analyze its dynamic interaction with the ground by using
advanced non-linear models. There are several ways to model
this interaction depending on the type of foundation (Lou et al.,
2011). Yet, in most cases, it is necessary to obtain a set of signals
acting at the base of a soil–structure model, below which the elastic
rebound theory is expected to apply (Ohnaka, 1976). These signals
should be recorded on a hard rock site for the latter assumption
to hold.

Therefore, a key aspect of the study of seismic risk is the
characterization of the dynamic response of the soil profile
(Pagliaroli et al., 2014). In this respect, it is common practice to
use simplified 1D soil models to advanced 3D finite-element-
method-based representations (Kaklamanos et al., 2015;
Fiorentino et al., 2019). However, the higher the complexity of
the model, the higher the computational time involved in solving
dynamic problems. In order to tackle this computational effort,
more simplified soil models are widely used. One of the most
employed is the 1D model, in which the soil layers are
considered Kelvin–Voigt solids (Hardin and Scott, 1967). This
model is represented by a purely viscous damper and an elastic
spring connected in parallel. In several cases, it allows a good
approximation of the dynamic response of a soil profile.
Moreover, this model has been extended to consider non-
linearities associated to the loss of stiffness of the soil, and the
consequent increase in damping due to shear strains (Yoshida et al.,
2002).

In line with the aforementioned concept, the frequency
content of the surface ground motions generated by
earthquakes depends on several complex phenomena such as
the type of rupture, the proximity to the epicenter and the depth,
and the mechanical properties of the media through which the
seismic waves pass. The variability associated with seismological
parameters (i.e., rupture type, proximity to the epicenter, and
depth) can be taken into account by not conditioning the
selection of ground motion records to specific values.
Regarding the mechanical properties of the media, depending
on the depth, seismic waves may degrade the stiffness at very low
shear strains (Okur and Ansal, 2007); the deeper, the lesser the
stiffness degradation. Therefore, in each location, there is a depth
limit in which stiffness degradation and the consequent increase
in damping do not occur. Notwithstanding, close to the surface,
and depending on the seismic intensity and soil type, a significant
degradation of the soil properties is expected (Kostinakis et al.,
2018).

Scaling ground motion records is another challenging problem
in estimating seismic risk. In this respect, there are several
methodologies to scale ground motions from a database.
Typically, the goal is to find a significant set of records leading
the structure to multiple performance levels. However, as indicated

by the well-known Richter’s law (Wesnousky, 1994), the number of
high-magnitude earthquakes is much smaller than the number of
low-magnitude earthquakes; therefore, finding high-intensity
ground motion records is less probable.

Consequently, it is sometimes necessary to scale low-intensity
records by significantly high factors. Therefore, scaling a single
record to increased intensity values may not take into account
the likely inelastic response of soils. It becomes important since
some soil types modify their dynamic properties at very low shear
strains. Not to mention that scaling natural ground motions to too
high or too low scale factors can lead to modified records that are far
from the physical properties of real ground motions (Bommer and
Acevedo, 2004).

This article has been oriented to develop a computational
framework for seismic risk assessment, capable of simultaneously
considering in a probabilistic manner i) the main characteristics of
the ground motion acting at the bedrock level; ii) the dynamic soil
properties and their evolution due to the degradation caused by the
seismic waves; and iii) the main features influencing the dynamic
behavior of reinforced concrete frame structures. Therefore, an
iterative algorithm has been designed to simulate random profiles
that meet the statistical distributions of the soil properties, given a
specific area. This algorithm randomizes the geometrical features used
in characterizing soil profiles. It takes into account the dependency of
layer thickness with depth, the correlation exhibited between closer
layers, and the total length of the soil profiles.

A probabilistic set of reinforced concrete frame structures has
been simulated to analyze its seismic response. Ground motion
records resulting at the surface, after seismic waves had propagated
through the soil model, have been used as input. Themain reason for
considering this structural typology is its widespread use. For
instance, buildings with reinforced concrete elements are
common in many earthquake-prone countries and regions (Park
and Paulay, 1991). In relation to this study, buildings of this type are
very common in the Andean and Caribbean regions of Colombia. In
fact, this type of building is mainly found in densely populated urban
areas, where there is a need to provide many housing units in a
relatively small area.

It has been assumed that the simulated structures rest on a
specific soil profile, which propagates seismic waves from the
bedrock to the surface, by considering the equivalent linear
method (Yoshida et al., 2002). The resulting seismic waves at the
surface are used to perform several non-linear dynamic analyses of
the structure. To do so, the city of Bogotá has been chosen as a case
study. Specifically, the information regarding geotechnical studies
performed over more than 20 locations within this urban area has
been analyzed (FOPAE, 2011). Then, a subset of 10 locations
providing information on lacustrine soil deposits was employed.
In addition, a Colombian database was used to characterize the
seismicity, which was provided by the “Servicio Geologico
Colombiano (SGC)” (SGC, 2020).

Finally, results stemming from the following three situations
were compared: i) analyzing the causal relationship between both
intensity measures (IMs) extracted from the resulting ground
motion that acts at the base of the building models and
engineering demand parameters (EDPs) able to quantify expected
damage; ii) using the ground motion records employed as input at
the bedrock level to estimate IMs; iii) developing a mathematical
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arrangement that allows combining information provided by the soil
profile and the IMs calculated from the ground motion acting at the
bedrock level. The results indicate that a power combination of
information variables (IVs), such as those related to IMs and the soil
dynamic properties, becomes an efficient intensity measure
identified herein as IMGD; the subscript GD stands for ground-
dependent.

2 Probabilistic soil modeling

A probabilistic soil model is generally used in geotechnical
applications to consider the spatial (Vanmarcke, 1977) and
temporal (Carrière et al., 2018) variability of soil properties and
their effects on civil structures. These models rely on statistics and
probability theory to simulate soil features such as strength and
stiffness, which can vary with location and time. These models
estimate the uncertainties and risks associated to both the behavior
of soil and the structures built on it. This helps engineers design safer
and efficient structures.

Figure 1 is a sketch of the computational framework developed
in this research. Input ground motions act at bedrock level. It is
worth recalling that in each of the locations, there is a depth limit in
which stiffness degradation and the consequent increase in damping
do not occur. Below this limit, the elastic rebound theory is assumed
(Ohnaka, 1976). Consequently, close to the surface, and depending
on the seismic intensity (Tothong and Luco, 2007), significant
degradation of soil properties is expected.

The variables represented within the soil profile scheme (shear
modulus, density, damping, and layer thickness, Gi, ρi, ξi and hi,
respectively) determine its dynamic features. Due to the complex
nature of soil composition, its randomness strongly influences
seismic wave propagation. Moreover, at the surface level, building
models are also simulated as probabilistic. Hence, the geometric and
mechanical properties, as well as the gravitational loads, have been
considered to be aleatory. Further details on the probabilistic
generation of these variables are presented in Section 5.

All the aforementioned elements have been integrated into a
probabilistic framework by following these steps:

i. Introduce a ground motion record at bedrock level.
ii. Estimate the stiffness degradation and increase in damping of

each soil layer.

iii. Calculate the resulting ground motion at the surface after
propagation through the soil profile, taking into account the
degradation of soil properties.

iv. The resulting ground motion estimated in the previous step acts
at the base of one of the probabilistic building models.

These steps have been applied after generating samples of soil
profiles and structures affected by ground motion records randomly
selected from a seismic database. It is preferable that these records
should have been acquired at seismic stations where the rock reaches
the surface.

2.1 Case of study: Bogotá microzonation

Since 1993, the Mayor Office of Bogotá has decided to carry out
seismic microzonation studies to improve design requirements for
civil infrastructure (FOPAE, 2011). The objective has been two-fold:
first, to better parameterize the dynamic response of the soil in front
of earthquake-induced ground motions; second, to identify areas
with similar seismic behavior to develop improved classification
maps according to the soil type.

In accordance with the aforementioned case, a seismic response
zonation map of the city was developed. The latter shows that there
are six different zones, which in turn are subdivided into 16 subsets
that depend on the depth of the bedrock level. This classification has
considered the geotechnical description of each site, the thickness of
the soil deposit, the fundamental period of the ground, and possible
site effects.

In this study, calculations are performed for the lacustrine soil
type, which is the most important deposit in the city. It is composed
of soft clays with high compressibility, interspersed with lenses of
loose sand, volcanic ash, and peat that can reach a thickness of up to
1 m. This soil type is characterized by sediment thicknesses ranging
from 50 m to 500 m. In terms of dynamic properties, for lacustrine
soil profiles with depths up to 200 m, the fundamental period of
vibration fluctuates between 1.1 s and 2.6 s, with shear wave
velocities between 140 and 280 m/s. For profiles with depths
between 200 m and 300 m, the fundamental period varies from
3.5 to 3.8 s, whose wave velocities are in the range 260–290 m/s.
Finally, for soil profiles that reach more than 300 m, the expected
fundamental periods vary from 4.9 up to 5.8 s, with a shear wave
velocity in the range 280–340 m/s. It should be noted that within the
analyzed area, the lacustrine soils exhibit amplifications at high
periods (between 2 s and 2.5 s) due to the effect of the soft soils and
the shape of the basin in which they are located (FOPAE, 2011).

As previously stated, of the total set of analyzed locations (more
than 20), 10 correspond to lacustrine deposits. Table 1 shows the
number and identification (Station ID) of the stations located in
lacustrine soils, as well as the main characteristics corresponding to
each station, such as latitude, longitude, length of the soil deposit,
number of layers into which the deposit is divided, the first three
periods of the soil vibration (Ti), maximum amplitude (Max Amp.),
and average shear wave velocity (Vsavg). In addition, the median
values ( �X) are given in the last row of Table 1.

In the following section, the random generation process to
simulate statistically compatible soil profiles, with data provided
in Table 1, is explained.

FIGURE 1
Schematic representation of the complete model.
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2.2 Application of Toro’s model to a
lacustrine soil type

Toro et al. (Silva et al., 1996) proposed a probabilistic model for
the variation of shear-wave velocity in soil and rock sites. In brief,
this probabilistic model consists of three main elements: i) a model
describing the random stratigraphy at the site; ii) the median wave
velocity profile; and iii) a model describing the deviations of the
velocity in each layer from the median, together with its correlation
with respect to the layer above. In sites where there is not enough
information to properly characterize uncertainties, this model
appears to be an effective solution. The main elements of Toro’s
model, applied to the lacustrine data for Bogotá city, are described as
follows.

2.2.1 Random stratigraphy at the site
For soil parameterization, the 10 lacustrine profiles specified

in the aforementioned report (FOPAE, 2011) are used. The
random stratigraphy is characterized by using the “Layering
Model” (Silva et al., 1996). This allows considering that as the
layer gets deeper, it becomes thicker. In general, this model
improves the prediction of ground motion intensity at the
surface by providing a better picture of stratigraphic
conditions at sites with different soil types.

Hence, this model assumes that the thickness of each layer
follows a depth-dependent probability distribution, where the
thickness of layer i is independent of the thickness of layer i-1.
The model also recognizes that soil layers tend to be thinner near the
surface and thicker at greater depths (Silva et al., 1996). Accordingly,
the following power law is adopted to characterize the depth-
dependent rate of layer boundaries:

λ h( ) � C3 h + C1[ ]−C2 , (1)
where λ is the layer boundary rate (1/m) and h is the depth in m. The
estimation of the values C1, C2, and C3 is carried out by using the

capabilities of the Monte Carlo method to minimize multi-
dimensional functions (Kucherenko et al., 2015).

Therefore, to estimate the probable evolution of λ, the entire
number of layers composing the 10-initial set of soil profiles
(193 layers) has been used; Figure 2A shows the relationship
between the entire set of λ versus the median depth associated to
each layer. Then, a second approach proposed in Toro (2022) has
also been analyzed. It consists of running averages of λ values over a
10-m window; Figure 2B shows this relationship. After several
simulations of the soil profiles, the regression obtained from the
first approach was used (Figure 2A) because the resulting number of
layers is more consistent with the observed information.

2.2.2 The median wave velocity profile at the site
Due to the cumulative process associated to the formation of

sedimentary deposits, it has been observed that a log-normal
distribution adequately parametrizes the aleatory characteristic of
shear wave velocities (Toro, 2022). This parametric distribution has
been adopted in the sampling process of the shear wave velocity. It
should be noted that, according to Toro’s model, the velocity is
estimated at the layer midpoints.

Figure 3 shows wave velocity soil profiles at low shear strains
(<10–3%) for the selected locations (thinner gray lines) and their
corresponding median values. Two main conclusions can be drawn
from these profiles: i) the deeper, the higher the shear wave velocity;
ii) the deeper, the thicker the layer, which confirms the conclusions
reached in Silva et al. (1996). Both features should be considered
when generating random samples of the profiles.

2.2.3 Deviations in the velocity in each layer from
the median

Another important aspect observed in soil profiles is related to the
spatial correlation of properties between closer layers. The closer the
layers, the higher the correlation (Angelini and Heuvelink, 2018). This
implies that widely separated layers tend to be less correlated.

TABLE 1 Summary of the main features of the lacustrine soil profile.

Soil profile Station
name

Latitude Longitude Length
(m)

Number of
layers

Fundamental
period (Ti)

Max
Amp

Vsavg
(m/s)

T1 (s) T2 (s) T3 (s)

1 CBANC 4.7085 −74.0789 50 11 1.5 1.2 0.5 14.1 136

2 CEING 4.7835 −74.0459 130 19 2.8 1.1 0.4 10 186

3 CUAGR 4.7541 −74.0527 130 16 2.6 1 0.6 13 201

4 CBOG1 4.6418 −74.0803 180 21 2.6 1.2 0.4 13.3 279

5 CCORP 4.7619 −74.0937 250 21 3.6 1.5 0.9 11.6 275

6 CJABO 4.6664 −74.0993 275 21 3.8 1.7 1.1 15.1 287

7 CNINO 4.6959 −74.093 225 21 3.5 1.4 0.9 22.4 260

8 CAVIA 4.6854 −74.1188 360 21 5.3 1.8 0.9 7.5 274

9 CFLOD 4.7297 −74.1464 500 21 5.8 2.4 1.5 9.2 344

10 CTIEM 4.6943 −74.1559 425 21 4.9 1.9 0.9 11.1 345

�X 237.5 21 3.55 1.45 0.9 12.3 274.5
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In order to consider the likely correlation exhibited by the
shear wave velocity between closer layers, it is necessary to
employ a correlation hypothesis (Vargas–Alzate et al., 2018).
It has been assumed that the correlation between adjacent soil
layers (ψi,j) decreases with distance by means of the following
model

Ψ i,j �
i � j Ψ i,j � 1

i � j ± w Ψ i,j � 1 − w

r
≥ 0

⎧⎪⎨⎪⎩ , (2)

where w is a number related to the position of a layer belonging to
the same profile; r is a coefficient associated with the rate of
correlation between adjacent layers. In this research, r has been
fixed to 100/3.

2.3 Probabilistic generation of soil profiles
based on the Monte Carlo simulation

The Monte Carlo simulation can be applied to solve a large
variety of numerical problems (Kroese and Rubinstein, 2012). It is
mostly used as a tool to assess the uncertainty in complex models
and systems. It can be seen as a numerical technique to generate
random datasets for assessing uncertainty in a system. Accordingly,
for each variable, random datasets are generated by assuming
parametric statistical distributions that fit the conditions of the
study. This simulation technique also makes it possible to
develop a mathematical arrangement that includes variables that
influence the model. Based on the description of the probabilistic
features that must meet the soil profiles, their statistical realizations
have been obtained viaMonte Carlo simulations. Figures 4A, B show
the random set of 1,000 shear wave velocity soil profiles that have
been employed in the development of the probabilistic framework
proposed in this research. It is worth mentioning that these soil
profiles correspond to low shear strains.

The damping properties at low shear strains have been obtained
by using degrading curves for the soil type analyzed. This is
discussed further in Section 4 of this article. Another important
variable influencing the dynamic properties of the simulated soil
profiles is density. This has been indirectly considered a random

FIGURE 2
Transition rates by considering direct values (A) and those obtained as a running average over a 10-m window (B).

FIGURE 3
Wave velocity soil profiles at low shear strains.
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FIGURE 4
Probabilistic soil profiles for shear wave velocity and damping. (A,B) Soil profiles at low shear strains. (C,D) Degraded soil profiles.

FIGURE 5
(A) Probabilistic soil profiles for density. (B) Relationship between elastic vs elongated periods.
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variable by using the following relationship proposed in Nakamura
(1989):

γ � 8.32 · log10 Vs − 1.61 · log10 H, (3)

where H stands for depth in m, Vs represents shear wave velocity
(m/s), and γ is the unit weight (kN/m3). Figure 5A depicts the
random set of density profiles after applying Equation 3. Figure 5B
relates the elastic periods with the elongated ones. The latter is
further discussed in Section 4.

3 Seismic hazard characterization

A seismic hazard is defined as the potential for future
earthquakes at a given site (Shedlock, 2002). This hazard is
usually expressed in terms of acceleration and the probability
that a certain level of ground motion is exceeded within a given
period of time. Seismic hazards can be estimated using several
methods, including probabilistic seismic hazard analysis (PSHA)
and deterministic seismic hazard analysis (DSHA) (Krinitzsky,
2003). Accurate seismic hazard characterization is essential for
several reasons, including risk assessment, effective planning, and
informed decision-making, to prevent potential earthquake-related
risks. In addition, accurate seismic hazard characterization can lead
to the development of a resilient civil infrastructure that can better
withstand seismic events.

3.1 Colombian seismic database

Colombia is located on the Pacific Ring of Fire, an area with the
highest concentration of earthquakes in the world (Comartin et al.,
2000). The country lies at the intersection of three tectonic plates: the
Caribbean, the South American, and the Nazca plates. This
geological feature significantly increases the seismic risk in
Colombia when compared to other regions. The main source of
seismicity is related to the subduction zone of the Colombian Pacific
plate and to the geological faults caused by the convergence of the
three plates. Studies show that almost 83% of the population lives in
moderate-to-high seismic risk areas.

In terms of geographical configuration, Colombia has been
divided into five regions. The city of Bogotá is located in the
central region, which is the most densely populated and
economically active in the country. It includes the central,
eastern, and western mountain ranges, running from southwest
to northeast, and covers approximately 2,825,540 km2, or 30% of
Colombia’s territory, with a population density of
121.82 inhabitants/km2.

Ground motions recorded in Colombia between 1993 and
2017 have been compiled, with a magnitude greater than
4.0 Mw. Accordingly, a total of 1992 records have been
extracted from the SGC (2020). They have been divided into
two groups based on the ground conditions in which they were
recorded. The first category includes signals recorded on rock, with
a total of 1,236 records. The second group includes signals
recorded on less rigid ground, with a total of 756 records. In
both cases, environmental noise and other factors that could affect
the accuracy of the signal have been corrected. It is worth recalling

that the elastic rebound theory applies below the bedrock level (see
Figure 1). This implies that linear scaling of ground motions below
this limit can be accepted without excessive error. Therefore, it
seems logical to use the outcrop datasets as input at the base of the
soil model (see Figure 1).

3.2 Ground motion selection based on a
proximity algorithm

In order to obtain a more precise representation of the
seismogenic environment of Bogotá, an algorithm has been
developed to identify the seismic records acquired at the stations
closest to a study point within the Colombian territory. It starts by
taking the entire set of 1992 ground motions and collecting the
relevant information, such as date of the seismic event, magnitude,
station name, and epicentral and hypocentral distance. Then, based
on the coordinates of the studied area and the maximum radius
around this point, the nearest stations are identified and the signals
recorded are extracted and addressed to two folders depending on
whether the station is located on soil or on rock. In parallel, a map
that allows identifying the analyzed point, and the stations delimited
within the radius, is created. Moreover, the program provides the
acceleration, velocity, and displacement spectra.

For this study, Bogotá city (latitude 4.6097 and
longitude −74.0817) has been used as a reference point by
considering a radius of 400 km. Thus, using the aforementioned
algorithm, a set of 1,023 groundmotions recorded on rock have been
identified.

Figure 6 shows both the study point and the nearest stations.
Table 2 shows the distances and IDs of the nearest stations found
within a radius of 400 km around Bogotá.

FIGURE 6
Seismic stations around Bogota city.
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3.3 Ground motion scaling

There are several methods for selecting ground motions from a
database (Haselton et al., 2012). Typically, the aim is to have enough
records leading the structure to different performance levels.
However, in current databases, there are often no strong ground
motion records with high intensity values. This can cause excessive
scaling, which may introduce bias in the structural response
(Haselton et al., 2012). To address this issue when using cloud
analysis (Jalayer et al., 2015), the method proposed by

Vargas–Alzate et al. (2022b) to select and scale ground motion
records has been used.

i. Identify the database.
ii. Identify the IM for selecting and scaling records.
iii. Calculate the IM for each ground motion in the dataset.
iv. Sort the ground motion records in descending order based on

the calculated IM values.
v. Define both the intensity intervals for scaling and the number of

records per interval.

TABLE 2 Lists of the stations that were found within a radius of 400 km of the study site.

Distance
(km)

ID
station

Distance
(km)

ID
station

Distance
(km)

ID
station

Distance
(km)

ID
station

Distance
(km)

ID
station

1.54 CTEJE 26.83 CCAQ1 164.66 MHOSP 241.86 CBARI 301.05 CCAL2

2.29 CCKEN 27.66 CCAQ2 167.88 CMAN1 242.01 CTULU 301.12 CBUIS

2.47 CBART 37.48 CROSA 168.73 MCOLO 248.17 CTOCH 302.47 RAC06

2.6 CBOG2 39.69 CQUET 171.64 CCALA 252.12 CTRUJ 303.26 RAC05

3.49 CBOG1 41.29 CQUE2 174.17 CSTRC 256.92 CBET2 304.37 RAC02

3.56 CPGA1 41.59 CCHIN 174.34 CBOCA 259.53 CBETA 304.58 CCAL7

3.88 CREAC 48.37 CANAP 174.97 CSUES 260.41 CYOTO 304.85 RAC03

4.07 CVITE 55.89 CARBE 175.05 CARME 275.26 CMACA 305.76 CCAL8

4.64 CUNMA 68.97 CVIL1 175.05 CPOST 280.65 CSJGU 307.98 CCAL3

5.27 CARAN 70.08 CCNEG 178.49 CMAZP 280.67 CBARR 307.99 RAC04

6.29 CGRAL 76.12 CGUAD 181.1 CNOBS 283.84 RAC01 309.68 CDAGU

6.54 CJABO 102.95 CFQNE 181.51 CFILA 286.51 CECAL 317.65 CGARZ

8.43 CARTI 124.2 CIBA3 181.76 CSLUI 287.58 CGIR2 319.76 CPLAT

8.97 CFONT 124.25 CVHER 182.83 CSONS 288.11 CBUC5 324.75 CTAME

9.05 CCARV 129.1 CIBA1 182.9 CPER2 290.85 CBUC4 344.04 CPAM3

9.68 CNINO 130.71 CPRAD 185.18 CPER3 291 CGIRO 345.37 CSAL1

10.56 CSMOR 130.99 CIBA2 193.32 CGENO 294.06 CBUC6 346.89 CPAMP

10.93 CBANC 131.61 CTUN2 196.32 CPER1 294.68 RAC10 352.08 CPAM2

11.65 CMARI 132.16 CTUN3 201.6 CRIO2 295.08 CBUC2 356.48 CDABE

11.99 CUSAQ 133.51 CTUN1 202.64 CRIOS 295.53 CBUCF 362.88 CPOP3

12.04 CTVCA 137.24 CNOCA 202.96 CYOPA 295.6 CBUC1 365.08 CPOP5

12.23 CBOSA 138.48 CNORC 205.32 CANSE 296.1 RAC09 366.75 CBMAL

12.4 CTIEM 146.1 CRECR 209.89 CPLA1 296.48 RAC08 367.47 CPOP2

12.56 CTUNA 147.91 CPENS 216.94 CVICT 297.74 RAC11 372.56 CPOP1

14.2 CPSUB 152.36 CORTC 218.59 CPBER 297.98 CCAL5 379.01 CFLOR

15.05 CFLOD 155.74 MEMTE 227.9 CNEIV 300.36 CSAMU 384.45 CSJUR

16.43 CUAGR 158.47 CCOLO 232.65 CANDE 300.71 CTUTU 390.25 CSAGU

16.88 CCORP 163.69 MUNAL 233.24 CSVIC 300.74 CCAL4

17.3 CUSAL 163.98 CPALE 234.53 CROLD 300.82 RAC07

19.69 CEING 164.01 MPALE 235.69 CVERS 300.89 CPTEJ
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vi. Scale the first ranked ground motion record so that the IM value
falls into the highest interval. Calculate the scale factor so that
the IM values are uniformly distributed within the interval. If
the IM fulfills the interval condition, no scaling factor is
considered. Repeat the process until there are Nrec records in
the highest interval.

vii. Repeat the previous steps to have the desired number of ground
motion records in each interval.

The choice of an optimal IM for this article mainly depends on
its efficiency. In this regard, Sa (T1), the spectral acceleration at the
fundamental period, is one of the most frequent IMs. However, its
ability to explain the non-linear dynamic response of systems has
been questioned (Grigoriu, 2016; Luco and Cornell, 2019). Instead,
an IM based on the geometric mean of spectral acceleration values

estimated at periods covering both higher and elongated modes of
response, Saavg, is more efficient than Sa (T1) (Eads et al., 2015;
Kazantzi and Vamvatsikos, 2015). Analogously, an IM identified as
AvSa is used here to select and scale the datasets. It should be noted
that AvSa differs from Saavg, in that it is calculated using the
arithmetic mean rather than the geometric one.

The period range for averaging the spectral ordinates of AvSa
should be determined from the dynamic properties of the entire
building population (Kohrangi et al., 2017). This range has been set
at (0.1–1.8) sec, which contains the fundamental periods of the
generated models, as can be seen in Vargas–Alzate et al. (2022b).
The intensity levels defining the upper and lower limits of each band
(step v) range from 0.04 to 0.4 g at 0.04 g intervals (i.e., 10 bands have
been defined). Therefore, the horizontal components of 1,000 ground
motion records (100 per band) have been obtained from the seismic

FIGURE 7
(A) Spectra of ground motion records acting at bedrock level. (B) Spectra of the resulting ground motions at the surface after the propagation
process. (C,D) Close-up of the spectral acceleration below 2 g.
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database. It should be noted that the scaling is applied to the ground
motion records acting at the bedrock level.

Figure 7A shows the spectra of the selected and scaled ground
motion records, and it can be seen that the spectral acceleration
values at low periods are by far unexpected. In this regard, it is worth
mentioning that these structures have been developed so that they
meet the performance levels of a high-seismic hazard region
(Vargas–Alzate et al., 2022b).

In order to fully explore the inelastic response of the analyzed set of
structures, the intensity of some ground motion records should be
increased by using high scale factors. For instance, it is necessary to scale
some ground motion records until the PGA values are in the order of
4 g, which can be seen as improbable according to observed seismicity.
Yet, by only considering these high intensity values, it is possible to
properly derive fragility functions.

In line with the aforementioned concept, it should be noted that the
window of periods in which the intensity measure is calculated includes
high abscissa (i.e., higher than 1 s). This causes the resulting average
intensity values (AvSa) to be much lower than the peak ordinate in the
corresponding spectrum. This effect is more notorious when
considering records acquired in stiff soil, as in the current study,
which exhibit large amplifications at low period values.
Consequently, very small displacements in the structures are
expected. Moreover, these high spectral ordinates are observed
within the ground motions acting at the bedrock level, as can be
seen in Figure 7A. Since a soil profile acts as a filter, and in the current
study it attenuates low period values due to the stiffness of the lacustrine
soil, it should be noted that the resulting spectral ordinates at the surface
(see Figure 7B) agree with realistic values.

4 Seismic wave propagation by
considering a 1D model

One-dimensional site response analysis is associated with vertically
propagating shear waves through horizontally layered media. To
account for material damping, the soil layer is modeled as a
Kelvin–Voigt solid. This is a material whose resistance to shearing
deformation is the summation of the elastic and viscous parts (Kumar
and Mondal, 2017). Numerically, site response analysis based on 1D
models can be performed using linear, equivalent linear, and non-linear
methodologies. Among them, the equivalent linear method is widely
followed because of its simplicity and reasonable accuracy with respect
to non-linear-based results (Yoshida et al., 2002). This methodology has
been used here to assess the stiffness degradation and the consequent
increase in damping within the soil profile.

At present, there are numerous software programs and codes that
can perform site response analysis following 1D models. In this article,
theWaveProp code (Pitilakis, 2023) has been used as a solver to develop
the iterative procedure related to the equivalent linear method. In
addition, due to the low computational time that this method
consumes, it becomes an ideal candidate to consider the uncertainties
in the mechanical properties of the materials. Hence, this method has
been used with a twofold objective: i) account for uncertainties in the
mechanical properties of soils; ii) provide an estimate of the modified
properties of soil layers affected by seismic waves.

As described previously, the propagation of the seismic waves
produces the degradation of soil stiffness and, consequently, the

increase of material damping in each layer. These changes depend
on the maximum shear strain reached during a seismic event. There
are several methods to consider this effect. One of the most
commonly used is the equivalent linear method (Kumar and
Mondal, 2017). This method consists of estimating, from iterative
linear approximations, the physical properties of an analogous soil
profile whose dynamic response is similar to that obtained by an
exhaustive but computationally expensive method, such as non-
linear dynamic analysis. These calculations are performed in the
frequency domain, which substantially reduces the computational
effort.

In the equivalent linear method, the degradation of the stiffness
and the consequent increase in the damping of the material in each
layer are considered using the normalized shear modulus (G0/Gmax)
and hysteretic damping curves, both as a function of the maximum
shear strain reached during the dynamic process. For the case study,
the reference curves have been selected from the geotechnical report
described previously (FOPAE, 2011). Figure 8 shows the stiffness
degradation (A) and damping curves (B) used in this study.

The iterative process associated to the equivalent linear
approximation is described step by step as follows.

i. Initially, each soil layer is modeled considering initial stiffness
(G0) and damping values (ξ0) corresponding to low shear strains
(see Figures 4A, B)

ii. From the properties described in the previous step, the time-
history of shear strains in each soil layer is calculated, γ(t); this
has been obtained using a one-dimensional soil model

iii. From the maximum strain reached during the propagation,
γmax � max (|γ(t)|), the effective strain in each layer is
estimated as γeff � α*γmax; in this research, α � 0.65

iv. For each layer, a new pair ofGi and ξi values is obtained from the
degrading curves for stiffness and damping (see Figure 8)

v. Steps ii to iv are repeated until the difference between two
consecutive values of G and ξ is less than 1%

vi. From the final values of G and ξ, for each soil layer, a linear site
response analysis can be performed

This iterative procedure has been used to estimate the non-linear
response of the probabilistic soil profiles shown in Figures 4A, B. It
should be noted that the density values (see Figure 5A) are used to
estimate Vs from the resulting G values. Thus, Figures 4C, D show
the resulting soil profiles after performing the equivalent linear
approximation. Finally, Figure 5B compares the elastic versus the
elongated periods. In all cases, a stiffness degradation of the soil
profile has occurred. It should be noted that there are several
outliers, which indicate that the equivalent linear method has not
been able to achieve convergence. This is probably because the
maximum shear strain reached the ultimate value shown in Figure 8.
It has been estimated that the number of profiles meeting this
condition is 122.

5 Probabilistic structural modeling

The development of accurate building models depends on the
amount of information about the mechanical and geometric
properties of structural components (Vargas–Alzate et al., 2022b).
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In urban contexts, knowledge of the spatial distribution of several
physical properties is also of importance. Basic information should
include the number of structures belonging to specific typologies, the
distribution of building height and length, number of stories, and
spans. Hence, the number of stories,Nst; the number of spans,Nsp;
story height, Hst; and span length, Sl, are considered random. Nst

andNsp follow a uniform discrete distribution in the intervals (3, 13)
and (3, 6), respectively; Hst and Sl are distributed uniformly in the
interval (2.8, 3.2) m and (4, 6) m, respectively.

Data on the variability of the mechanical and geometric
properties of the structural elements and those of the applied
loads are also useful. Accordingly, random variables such as the
concrete compressive strength, fc; the elastic modulus of the
concrete, Ec; the steel yielding, fy; the elastic modulus of the
steel, Es; live loads, LL; and permanent loads, DL, are assumed as
continuous Gaussian distributions. It is worth noting that live loads
are assigned as a fraction (33%) of the design value (Eurocode 8).
Table 3 shows the statistical moments of these variables.

In order to assign the cross-section dimensions of the first story
columns, the following equation has been used.

Wc orDc � c1p ln Nst( ) + c2pSl + c3 pΦ1,0 + c4, (4)

where ci are coefficients that may be adjusted depending on the
data distribution of the analyzed area. For this study, c1 � 0.4,
c2 � 0.05, c3 � 0.01, and c4 �-0.35; Φ1,0 represents the standard
normal distribution. It should be noted that columns are not
necessarily square, that is, one random sample is generated for
the width, Wc, and one for the depth, Dc, of the element (Eq. 4).
For upper stories, the size of columns decreases systematically by
5 cm for every three stories. Values generated are rounded to the
nearest multiple of 5 cm to be consistent with the real dimensions
of RC elements.

The width of beams, Wb, depends on the number of stories of
the buildingmodel and on the span length, and it has been calculated
using the following equation:

FIGURE 8
Degrading curves for lacustrine soil type. (A) G0/Gmax. (B) Damping (FOPAE, 2011).

TABLE 3 Mean values, µ; standard deviations, σ; and coefficient of variation,
c.o.v., of the assumed random variables.

RC frames

µ (kPa) σ (kPa) c.o.v

LL 1 0.1 0.1

DL 4.5 0.18 0.04

Fc 2.5E4 2.5E3 0.1

Fy 4.6E6 2.3E5 0.05

Ec 2.3E7 1.84E6 0.08

Es 2.18E8 1.09E7 0.05

FIGURE 9
One hundred building samples generated according to the
approach developed in Vargas–Alzate et al. (2022b).
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Wb � b1*Nst + b2*Sl + b3, (5)
where bi are coefficients that depend on the characteristics of the study
zone. For the hypothetical case study, b1 � 0.01, b2 � 0.02, and b3 � 0.19.
The depth of the beams, Db, is obtained using the following equation:

Db � g1*Nst + g2*Sl + g3, (6)
where g1 � 0.01, g2 � 0.05, and g3 � 0.17. No random term is
considered for beams. Accordingly, 1,000 probabilistic samples of
buildings have been generated to randomly pair with the soil profiles
shown in Figure 4; Figure 9 shows 100 cases from all the structural
models generated.

6 Intensity measures and engineering
demand parameters

For a dataset of ground motion records, a basic mathematical
background along with proper numerical tools allow extracting
some variables representing the seismicity of an area. In the
context of earthquake engineering, such variables are known as
instrumental IMs. Ideally, an IM should contain enough
information about the earthquake, so according to it, the
structural response can be predicted with confidence (Pejovic and

Jankovic, 2015). Notice that an IM can depend either on the ground
motion record or on both the ground motion and structural features
(Eads et al., 2015). In this article, information related to the soil
properties arises to increase the efficiency of the IMs.

6.1 Intensity measures

Three types of IMs have been considered in this research. The
first type corresponds to IMs derived from the dynamic equilibrium
equation for single-degree of freedom (SDoF) systems.

m€u t( ) + c _u t( ) + ku t( ) � −m€ug t( ), (7)
where €u(t), _u(t), and u(t) are the spectral acceleration, velocity, and
displacement time history responses of the SDoF, respectively; €ug(t) is
the acceleration ground motion; m, c, and k represent the mass,
damping, and stiffness of the system, respectively. IMs from 1 to
6 belong to this category (see Table 4). The second type of IMs is
extracted from the equivalent velocity spectrum (Benavent-Climent
et al., 2004; Yazgan, 2012; Cheng et al., 2015; Güllü et al., 2019). IMs
7 and 8 belong to this category (see Table 4). Finally, the third type of
IMs is calculated from the record. It means no spectral calculations are
performed to obtain these IMs. IMs 9 to 16 are of this type (see Table 4).

TABLE 4 Intensity measure description.

IM number Formula Intensity measure

1 Sa(T) � max(|€ug(t) + €u(t, ξ, T1)|) Spectral acceleration at T1

2 Sv(T) � max(| _u(t, ξ, T1)|) Spectral velocity at T1

3 Sd(T) � max(|u(t, ξ, T1)|) Spectral displacement at T1

4
AvSa � ∑n

i�1Sa(Ti )
n

Average spectral acceleration

5
AvSv � ∑n

i�1Sv(Ti)
n

Average spectral velocity

6
AvSd � ∑n

i�1Sd(Ti )
n

Average spectral displacement

7 VE(T) � �������
2EI(T1)

√
Equivalent velocity at T1

8
AvVE � ∑n

i�1VE(Ti )
n

Average equivalent velocity

9 PGA � max(|€ug(t)|) Peak ground acceleration

10 PGV � max(| _ug(t)|) Peak ground velocity

11 PGD � max(|ug(t)|) Peak ground displacement

12 SED � π
2g∫t95%

t5%
€ug(t)2 dt Specific energy density (Sarma, 1971; Sarma and Yang, 1987)

13 IA �
�����������
1
Δ∫t95%

t5%
€ug(t)2

√
dt Arias intensity (Arias, 1970)

14 IC �
�������������
1
Δ∫t95%

t5%
_ug(t)2 dt

√
Characteristic intensity (Reed and Kassawara, 1990)

15 velRMS � ∫t95%

t5%
_ug(t)2 dt Root mean of the velocity

16 accRMS � ∫tf
ti
|€ug(t)| dt Root mean of the acceleration (Housner, 1975)

17 CAV � accRMS
1.5

��
Δ

√
Cumulative absolute velocity (Park et al., 1987)

18 IF � PGV*Δ0.25 Fajfar intensity (Fajfar et al., 1990; Pinzón et al., 2020)
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6.2 Engineering demand parameters

EDPs are used to design or assess the expected behavior of
buildings. Their most valuable feature is that they provide the best
possible quantification of the level of performance of structures
that are subjected to the ground motions induced by earthquakes.
One of the most used EDPs for estimating this level is the
maximum inter-story drift ratio, MIDR (Mayes, 1995). This
EDP is highly used in both designing and assessing the
vulnerability of buildings.

For a story i, the evolution of the inter-story drift is given by

IDRi,n t( ) � δi,n t( ) − δi−1,n t( )
hi

, (8)

where δi,n(t) is the displacement at the floor i of the structure; hi
represents the height of the story i. The maximum inter-story
drift ratio at the story i, MIDRi, can be calculated as follows:

MIDRi � max
������������������
IDR2

i,x t( ) + IDR2
i,y t( )

√( ), (9)

In order to estimate the damage level of the most affected story, the
maximum inter-story drift ratio observed in the building, MIDR, is
given by

MIDR � max MIDR1,MIDR2 . . .MIDRNst[ ]. (10)
Based on Equation 10, this EDP has been employed in this research

to estimate the expected performance of the simulated structures.

7 Statistical analysis of IM-EDP clouds

There are many numerical methods to simulate the non-
linear dynamic response of buildings. They range from adapted
linear-static-based methods to more advanced ones, considering
the non-linear static (pushover-based methods) or dynamic
response of a structure (non-linear dynamic analysis, NLDA).
The latter has been employed in this research since it is the most
reliable numerical tool to simulate the non-linear dynamic
response of buildings.

Once defined and characterized hazard (see Section 3) and
exposure (see Section 5), 1,000 NLDAs are performed. The
Ruaumoko software has been used to perform structural
analyses (Carr, 2007). After performing these analyses, it has
been found that there are several simulations in which the
capacity of the structure to withstand gravity loads is exceeded;
in other words, the model is indicating structural collapse. These
results must be excluded from the statistical analysis as they are
excessively governed by chaos. Collapses have been identified as
simulations providing a Park–Ang damage index higher than 1
(Park et al., 1987). This criterion is very efficient in detecting
structural collapses in the current research. In addition, profiles
whose elongated periods indicated lack of convergence in the
equivalent linear method have also been excluded. Accordingly,
670 out of the 1,000 generated samples have been used to perform
the statistical analysis. The resulting cloud of IM-EDP points is
then employed to analyze some statistical properties related to data
variability.

7.1 Efficiency

In this study, IM-EDP relationships are characterized by
performing a non-linear regression analysis in the log–log space.
In this sense, the following general linear least-square model allows
several types of non-linear regressions:

y � α0 + ∑NIV

i�1
∑n
j�1
αj+ i−1( )*nzj + ε, (11)

where NIV represents the number of information variables (IV)
considered in the regression model; n represents the polynomial
degree; α0, α1, . . . αNIV*n are the scalars maximizing the coefficient
of determination, R2, between the model and data; zj represents
basic functions; and ε represents the residuals. It can easily be
seen how a polynomial regression falls within this model. That is,
z1 � x, z2 � x2. . . zn � xn. Substituting in Eq. 11 y � lnEDP and
zj � (ln IVi)j, the general linear least-squares model using
polynomial functions can be used to extract statistical information
from IM-EDP pairs according to the following equation:

lnEDP � α0 + ∑NIV

i�1
∑n
j�1
αj+ i−1( )*n ln IVi( )j + ε. (12)

This equation allows multi-linear (n = 1) and -quadratic (n = 2)
regression models in the log–log space. In this way, several sources
of information can be considered simultaneously to better predict a
specific EDP. R2 has been used herein to provide an estimation of
the variability when analyzing IM–EDP pairs. That is, the higher
the R2, the lower the variability when predicting some EDP, given
an IM. Consequently, the IM providing the highest R2 is the most
efficient one. Further information regarding the development and
implementation of this type of polynomial model in the log–log
space can be found in Chapra (2018).

7.2 Cloud analysis

Cloud analysis requires calculating the best-fit curve between
a set of IM–EDP realizations in the log–log space. The resultant
curve is used to estimate the median of a parametric statistical
distribution, given an IM value. The variability of this parametric
distribution is estimated as the logarithmic standard deviation of
the regression (Sy/x). In this way, the probability of exceeding a
certain damage threshold given an IM value can be calculated.
Variables described in Section 6 are used as IMs as follows, and
MIDR is used as an EDP. R2 has been calculated considering
three approaches: i) estimating IMs from the ground motion
acting at the base of the structure; ii) using the ground motion
records acting at bedrock level to estimate IMs; iii) developing a
multi-regression model that allows combining information
provided by the soil profile and the IMs calculated in the
previous approach. Two types of polynomials have been used
to calculate R2. It means n = 1 and n = 2 have been replaced in
Equation 12, thus providing two new coefficients of
determination, R2

L and R2
NL, where the subscript L stands for

linear and NL for non-linear.
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7.2.1 Approach 1: IM–EDP pairs using ground
motions acting at the base of the buildings

In this case, IMs have been calculated by using the resulting ground
motions at the surface once the seismic waves pass and degrade the soil

profile properties. In this way, Figure 10 shows the bivariate
distribution between IMs and MIDR. From this figure, it can be
seen that several IMs, especially those related to velocity and
displacement quantities, exhibit high efficiency. This result is

FIGURE 11
IM–EDP pairs using ground motions acting at bedrock level.

FIGURE 10
IM–EDP pairs using ground motions acting at the base of the buildings.
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consistent with that of the previous research, which has highlighted the
capabilities of velocity as an enhanced physical magnitude to predict
the deformation field of a structure (Vargas–Alzate et al., 2022b).

7.2.2 Approach 2: IM–EDP pairs using ground
motions acting at the bedrock level

Using ground motion records at the surface implies that the
effect of seismic wave propagation through the soil is not explicitly
considered in the estimation of seismic risk. In this section, the
resulting clouds of IM–EDP pairs have been analyzed using the
ground motion records acting at the bedrock level. Figure 11 shows
the bivariate distribution for IMs and MIDR under the
aforementioned condition. As expected, a significant decrease in
R2, for most of the IMs, has been observed.

It can be attributed to the influence of the filtering induced by the
soil profile. Notwithstanding, Sd (T1) andAvSd remain at a significant
level of efficiency. This efficiency is not as high as the one observed in
the previous approach, where AvSv reached an R2

NL equal to 0.851.

7.2.3 Approach 3: multi-regression model to
consider information from soil and ground motion
acting at the bedrock level

As previously stated, Eq. 12 allows identifying enhancing
arrangements that consider statistical information from several
IVs. To do so, it is necessary to replace NIV with the desired
number of IVs in this equation. In the present study,
NIV =2 and NIV =3 have been tested.

A large set of soil information variables has been included in the
identification of the enhanced arrangements. In Table 5, a
description of these variables is presented.

For the case of NIV =2, it has been found that AvSd and βNL

provide the best fit. Figure 12A shows the bivariate distribution
between IMGD–EDP pairs. This arrangement provides an R2

NL

equal to 0.794, which is higher than the one exhibited by AvSd in
the previous section (0.741). Table 6 shows α values for the
20 most correlated arrangements and the respective information
variables (IVs). It can be seen that Sd and AvSd appear in most of
the efficient combinations, thus confirming the robustness of
spectral displacement IMs with respect to seismic wave
propagation. In addition, the standard deviation of the
residuals (σε) has also been included for each regression
analysis. In this way, in future research, it might be possible
not only to perform the best estimate of the EDP but also to take
into account the variability of the bivariate distribution in the
sampling strategy.

If NIV =3, it has been observed that a mathematical
arrangement including AvSd, ΔTNL, and VsNL derives the
best fit for the bivariate distribution IMGD–EDP. In this
case, R2

NL is equal to 0.832, which is very close to the highest
efficiency exhibited in the approach 1 by AvSv (Section 7.2.1),
thus proving the enhanced capabilities of the multi-regression
approach. Table 7 shows the α values for the 20 most correlated
arrangements and the respective three IVs. It should be noted
that AvSd is present in all the arrangements.

TABLE 5 Description of the soil information variables.

Variables Equation Description

TSL ∑nlayer
i�1

TSL,i

Fundamental period of the soil profile

TSNL ∑nlayer
i�1

TSNL,i

Elongated non-linear period of the soil profile

�ξL ∑nlayer

i�1 ξL,i
nlayer

Average linear damping of the soil profile

�ξNL ∑nlayer

i�1 ξNL,i

nlayer

Average non-linear damping of the soil profile

�ρS ∑nlayer

i�1 ρS,i
nlayer

Average density of the soil profile

VsL ∑nlayer

i�1 VsL,i
nlayer

Average shear wave velocity of the soil profile

VsNL ∑nlayer

i�1 VsNL,i

nlayer

Average shear wave velocity of the degraded soil profile

ΔTL |TSL − TB| Absolute difference between the fundamental period of the soil profile and the fundamental period of the building (TB)

ΔTNL |TSNL − TB| Absolute difference between the elongated non-linear period of the soil profile and the fundamental period of the building (TB)

βL
1

|1−(TSL/TB

)2 | Dynamic amplification factor considering the fundamental period of the soil profile

βNL
1

|1−(TSNL/TB

)2 | Dynamic amplification factor considering the elongated non-linear period of the soil profile
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TABLE 6 Regression coefficients providing the best fit given NIV =2.

IV1 IV2 R2
NL α0 α1 α2 α3 α4 σε

AvSd βNL 0.794 −1.269 1.111 0.027 −0.076 −0.031 0.375

AvSd βL 0.785 −1.352 1.067 0.025 −0.018 −0.023 0.383

AvSd ΔTNL 0.781 −1.169 1.167 0.030 0.398 −0.316 0.387

Sd βNL 0.778 −2.174 0.755 −0.002 −0.007 −0.022 0.389

Sa Sd 0.774 −1.449 −0.205 −0.026 1.041 0.011 0.393

AvSd TSNL 0.773 −1.863 1.149 0.028 1.299 −0.582 0.393

Sd βL 0.773 −2.245 0.727 −0.004 0.032 −0.018 0.393

AvSa AvSd 0.773 −0.389 −0.167 −0.055 1.381 0.044 0.394

AvSd �ξNL 0.772 −6.085 1.619 0.064 −3.570 −0.498 0.395

AvSd AvVE 0.771 0.297 1.903 0.087 −0.638 −0.102 0.395

AvSd velRMS 0.771 −2.101 1.763 0.079 −1.014 −0.090 0.395

AvSd SED 0.769 −0.482 1.942 0.103 −0.410 −0.030 0.397

AvSd ΔTL 0.767 −1.344 1.086 0.025 0.129 −0.207 0.399

Sa AvSd 0.766 −0.816 −0.136 −0.017 1.277 0.034 0.399

AvSd IPGV−Δ 0.766 −0.181 1.851 0.092 −0.654 −0.110 0.399

AvSd PGV 0.766 −0.937 1.707 0.075 −0.729 −0.090 0.400

AvSd VE 0.762 −0.416 1.570 0.060 −0.358 −0.052 0.403

Sd VE 0.761 −0.927 1.486 0.055 −0.549 −0.089 0.404

AvSd TSL 0.760 −1.902 1.067 0.023 0.963 −0.486 0.405

AvSv AvSd 0.758 −0.167 −0.687 −0.099 1.882 0.090 0.407

FIGURE 12
(A) IMGD–EDP pairs given NIV =2. (B) IMGD–EDP pairs given NIV =3.
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8 Conclusion

In this article, the efficiency prediction of the non-linear dynamic
response of reinforced concrete frame structures has been analyzed. The
aim has been to develop advanced IMs that consider the dynamic
interaction between the building and the underlying soil. The non-
linear behavior of the latter has been considered by employing the
equivalent linearmethod (Yoshida et al., 2002). A set of probabilistic soil
profiles, structural models, and groundmotion records has been used in
this research. They have been integrated into a probabilistic framework
based on the Monte Carlo method, which allowed the identification of
mathematical arrangements highly correlated to the EDP of interest. A
1Dmodel to represent the soil profile has been employed to predict the
intensity of ground motions at the surface, once the seismic waves
generated by an earthquake reach the base of the building. In doing so, a
large group of statistically compatible random soil profiles is generated
starting from the main features of a basic set of soil profiles. A database
that collects almost 2,000 groundmotion records acquired in Colombia
has been used to characterize the seismic hazard.

The relationship between IMs and EDPs has been characterized
using non-linear regression analysis in the log–log space. In this respect,
the linear least squaresmodel allows for different types of regression, and
it can be used to extract statistical information from IM–EDP pairs. In
general, a polynomial regression model has been used to quantify the

efficiency of these pairs, where the higher the coefficient of
determination, R2, the lower the variability in seismic risk estimates.
It allowed identifying the most efficient IMs, given specific approaches.

First, the causal relationship between IMs acting at the base of the
structural models and the MIDR has been analyzed. From these
results, it has been observed that AvSv is the most efficient IM to
predict this EDP. This is consistent with previous observations
performed in Vargas–Alzate et al., 2022b. The second approach
has been applied to identify the most efficient IM to predict the
same EDP, but, in this case, IMs have been extracted from the ground
motions acting at the bedrock level. As a consequence, two main
conclusions have been drawn: i) the efficiency to predict the EDP
significantly decreased, and ii) the most efficient IM has been AvSd. In
fact, it has been observed that the IMs extracted from the displacement
spectra [Sd (T1) and AvSd] are least likely to lose efficiency when the
soil–structure interaction model is employed. The third approach has
been to develop amathematical arrangement with increased efficiency,
called IMGD, that extracts information not only from the acting
ground motion at the bedrock level but also from the dynamic
properties of the soil. In this approach, two cases have been
explored. First, the most efficient pair of IVs providing the best fit
has been found. This significantly increased the efficiency, although it
was not as close to the maximum correlation provided by the first
approach, where AvSv exhibited an R2

NL equal to 0.855. Thus, the

TABLE 7 Regression coefficients providing the best fit given NIV =3.

IV1 IV2 IV3 R2
NL α0 α1 α2 α3 α4 α5 α6 σε

AvSd ΔTNL VsNL 0.832 −11.098 1.363 0.041 −0.036 −0.276 3.352 −0.235 0.339

AvSd ΔTNL �ξL 0.830 −26.096 1.328 0.040 −0.264 −0.386 −8.488 −0.562 0.341

AvSd ΔTL �ξNL 0.826 −4.932 1.774 0.060 −0.014 −0.222 −3.055 −0.331 0.345

AvSd ΔTNL �ξNL 0.824 −3.733 1.726 0.057 0.122 −0.239 −2.283 −0.230 0.347

AvSd ΔTNL VsL 0.823 −14.645 1.244 0.034 −0.010 −0.292 4.411 −0.326 0.347

AvSd ΔTL VsNL 0.823 −11.389 1.228 0.033 −0.222 −0.225 3.188 −0.209 0.348

AvSd TSL
�ξNL 0.818 −5.243 1.792 0.060 0.520 −0.424 −3.132 −0.337 0.352

AvSd βL �ξNL 0.818 −4.969 1.623 0.060 0.090 −0.008 −3.043 −0.391 0.352

AvSd TSNL VsNL 0.818 −10.887 1.364 0.041 0.241 −0.376 3.265 −0.227 0.352

AvSd βNL
�ξNL 0.818 −4.205 1.588 0.057 0.068 −0.011 −2.549 −0.322 0.352

AvSd βNL VsNL 0.818 −10.229 1.173 0.031 0.081 −0.015 3.175 −0.258 0.352

AvSd ΔTNL TSL 0.818 −1.042 1.377 0.043 −0.306 −0.504 1.091 0.163 0.353

AvSd βNL �ρS 0.817 −633.116 1.117 0.027 0.017 −0.022 167.214 −11.053 0.353

AvSd �ξL VsNL 0.817 −62.719 1.329 0.038 −29.735 −3.869 0.512 0.128 0.354

AvSd TSNL
�ξNL 0.816 −4.002 1.741 0.057 0.484 −0.353 −2.357 −0.237 0.354

AvSd ΔTNL �ρS 0.815 −867.199 1.217 0.033 0.195 −0.299 229.458 −15.185 0.355

AvSd βL VsNL 0.814 −11.344 1.118 0.027 0.137 −0.008 3.492 −0.283 0.356

AvSd βNL VsL 0.814 −14.574 1.105 0.027 0.068 −0.018 4.657 −0.393 0.357

AvSd βL βNL 0.813 0.027 1.398 0.044 −0.415 0.068 0.448 −0.077 0.357

AvSd TSNL
�ξL 0.813 −41.214 1.368 0.041 −0.475 −0.393 −15.356 −1.305 0.357
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second approach has been oriented to look for the slate of three
(NIV � 3) IVs that provide the best fit. AnR2

NL equal to 0.832 has been
achieved. In this case, the resulting equation depended on AvSd, the
elongated period of the soil profile, and the degraded shear-wave
velocity average. This indicates that the probabilistic framework
properly reflects the resonance effect since the mathematical
arrangement identified as the most efficient one (IMGD) includes a
variable related to the proximity between the fundamental period of
the structure and the soil. In addition, several arrangements exhibiting
high levels of efficiency have been presented for the casesNIV � 2 and
NIV � 3. In this way, it may be possible in future research to have an
estimate of the EDP under study, by considering different types of
information. In addition, information regarding the statistical
variability of the bivariate distribution has also been provided.

Future research should be oriented toward extending the
computational framework to 3D soil models. Moreover, multi-
regression models can also be used to develop vector-valued
(Baker, 2007) IMs, which generally increase the efficiency of
predicting EDPs (Vargas-Alzate et al., 2022a). It is also important
to analyze how efficiency behaves when analyzing results classified
according to the number of storeys. Preliminary results indicate that
these sub-classifications tend to increase efficiency. It is worth
mentioning that the results presented in this research are tied to
the soil type studied. Therefore, a correct parametrization of the
degradation curves (see Figure 8) is a key aspect of the presented
framework. In general, the analysis of new soil configurations, EDPs,
IMs, and structural typologies will also provide valuable information
to enhance the capabilities of the proposed model.
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