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The decadal modulations are observed in impacts of El Niño and Southern
Ocean (ENSO) and Indian Ocean Dipole (IOD) on the tropical Indian Ocean
upwelling. Here, we explore important contributors to the decadal
modulations by combining the observational data since 1958 and
statistical model simulations. A Bayesian Dynamic Linear Model (BDLM),
which represents the temporal modulations of the IOD and ENSO
impacts, reproduces the timeseries of the eastern and western Indian
Ocean (EIO and WIO) upwellings more realistically than a conventional
Static Linear regression Model does. The time-varying regression
coefficients in BDLM indicate that the observed shift of the IOD impact
on the EIO upwelling around 1980 is mainly due to the changes of
alongshore wind stress forcing and the sensitivity of the upper ocean
temperature in the EIO through the surface warming tendency and the
enhanced ocean stratification. In contrast, the impacts of ENSO and IOD
on the WIO are modulated in relation to the decadal variability of the tropical
Pacific Ocean. When the eastern tropical Pacific Ocean is observed warmer
on decadal timescales, the accompanying changes of the dominant ENSO
flavors contribute to modulating the strengths of the atmospheric
convective activity over the Indian-Pacific warm pool and the easterly
wind variations in the equatorial Indian Ocean.
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Highlights

• A Bayesian Dynamic Linear Model (BDLM), which represents the temporal
modulations of the IOD and ENSO impacts, reproduces the timeseries of the
eastern and western Indian Ocean upwellings better than a conventional Static
Linear regression Model does.

• The BDLM results indicate that the IOD impact on the EIO upwelling is significantly
modulated primarily due to the stronger ocean stratification in addition to the stronger
surface wind forcing after 1980s than before.

• The ENSO impact on the WIO upwelling is also decadally modulated mainly due to
differences in the dominant ENSO patterns linked to PDO phase.
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1 Introduction

In the Indian Ocean, intense seasonally reversing monsoon wind
forcing prevails, more specifically, southeasterly wind dominates in
the southern Indian Ocean through the year, and north easterly
wind blows along Somalia, Oman in January and reverse in July (see
Figure 2 in Han et al., 2017). In response to the seasonally changed
monsoon forcing, the alongshore current (Somalia current) also
reverse during January and July. In both the eastern Indian Ocean
(EIO) and the western Indian Ocean (WIO), seasonal and annual
mean upwelling occurs (see Figure 1; Zhang and Han, 2020). In the
western basin around 12oS-2oS, open-ocean upwelling exists
(McCreary et al., 1993; Murtugudde et al., 1999), which is also
referred to as the Seychelles–Chagos thermocline ridge (SCTR;
Hermes and Reason, 2008; Yokoi et al., 2008; 2009) and in
contract, seasonally changed upwelling occurs along the coastal
area of EIO only during boreal summer (Figure 1C; Susanto
et al., 2001; Schott et al., 2009).

One of the key processes of the upwelling formation is
contribution of oceanic Rossby waves, possibly together with
local Ekman Pumping (e.g., Tozuka et al., 2010; Trenary and
Han, 2012). Previous works have also suggested that interannual
anomaly of depth of 20°C isotherm (D20) in WIO upwelling zone is
primarily caused by Rossby waves driven by winds in the central and
eastern Indian Ocean. A number of studies indicated the importance
of Rossby waves over the southern Indian Ocean (e.g., Woodberry
et al., 1989; Périgaud and Delecluse, 1992; 1993; Fu and Smith, 1996;
Masumoto and Meyers, 1998; Yang et al., 1998; Chambers et al.,
1999; Birol and Morrow, 2001; Wang et al., 2001; White, 2001; Jury
and Huang, 2004; Baquero-Bernal and Latif, 2005; Rao and Behera,
2005; Zhuang et al., 2013; Zhang and Han, 2020). The Indonesian
Throughflow variations in this area is weak (Potemra, 2001) but can
also show significant contributions to the southeast Indian Ocean
(see also Trenary and Han, 2012; Deepa et al., 2018; Hu et al., 2019).

Since the wind stress forcing at the sea surface plays an
important role in the upwelling directly and/or through the
Rossby wave propagations, the wind patterns associated with
different climate modes, such as the Indian Ocean Dipole (IOD),
the El Niño Southern Oscillation (ENSO) and Asian-Indian
monsoon, have gathered much attention (e.g., Zhang and Han,
2020; Zhang andMochizuki, 2022). By trying to estimate the relative
importance of the individual climate modes, many studies have
suggested that ENSO dominates the wind-driven Rossby waves
south of 10oS whereas the IOD dominates north of 10oS (Huang
and Kinter, 2002; Xie et al., 2002; Rao and Behera, 2005; Yu et al.,
2005; Gnanaseelan and Vaid, 2010). On the other hand, Deepa et al.
(2018) suggests that larger sea level variability both north and south
of 10oS during pure positive IOD compared to pure El Niño years,
and the co-occurrence of IOD and ENSO significantly enhances the
variability in magnitude. Murtugudde et al. (2000) also indicated
both the local and remote forcings contribute to interannual
anomaly of upwelling in the EIO (also see Han and Webster,
2002; Chen et al., 2016). In fact, Susanto et al. (2002) suggested
that ENSO plays a major role in interannual variability of coastal
upwelling along the Sumatra and Java coast, while other studies
suggested that the IOD is more important than ENSO in causing the
EIO upwelling (e.g., Shinoda et al., 2004; Yu et al., 2005; Chen et al.,
2016). The estimation of ENSO and IOD contributions still

represents large uncertainty as above. In addition to the spatial
dependency (e.g., EIO or WIO), temporal modulations can also
influence on estimations beyond the seasonal to interannual
timescales of ENSO and IOD. In particular, we can speculate that
longer-term (e.g., decadal) climate variability can modulate the
ENSO and IOD contributions by changing background states.
When focusing on ENSO contribution on decadal timescales, the
impact of the so-called ENSO flavor, namely, the different types of
ENSO events such as Central Pacific (CP) El Nino, Eastern Pacific
(EP) El Nino, may also represent distinct impacts on the Indian
Ocean upwelling.

A linear model is a simple but effective means to estimate the
ENSO and IOD contributions to the Indian Ocean upwelling. By
using an advanced Bayesian Dynamic Linear Model (BDLM), Zhang
and Han (2020) demonstrated that at interannual timescale, ENSO
is more important than the IOD over the SCTR region, but they play
comparable roles in the EIO. Furthermore, the impacts of ENSO on
EIO upwelling are different between EP and CP events, which is
mainly due to the difference of the subsidence of the convection.
This implies that the impacts of ENSO and IOD can be modulated
on longer timescales corresponding to the background atmosphere
and ocean states, while it was out of focus in the previous paper. In
this paper, we clarify a major contributor to the decadal modulation
of ENSO and IOD impacts on the Indian Ocean upwelling. As a
beneficial points of BDLM relative to a simple linear regression
estimation, it enables us to demonstrate temporal evolutions of the
IOD and ENSO contributions to the ocean upwelling, because the
regression coefficients are optimized as time-varying values. We try
to give physical interpretation for decadal modulation of the
regression coefficients and to understand underlying processes
contributing to decadal modulation of the Indian Ocean
upwelling. We use satellite data, reanalysis data and the advanced
statistical tools (e.g., Bayesian Dynamic Linear Model) for the period
of 1958–2016 when long record assimilation data is available.

The paper is organized as follows. A brief description of the data
and approach are provided in Section 2. Section 3 describes the
observed features of Indian Ocean upwelling associated with IOD
and ENSO. Section 4 describes the relationship between the
upwelling in the EIO and WIO and the contributions of IOD
and ENSO. Section 5 explores the decadal shift of IOD impact
on EIO as well as the underlying mechanisms responsible for these
changes. The decadal changes of the impacts of IOD and ENSO in
relation to the Pacific decadal variability are discussed in Section 6.
Concluding remarks and further discussion are provided in
Section 7.

2 Data and approach

2.1 Datasets and climate modes

The depth of the thermocline, which is often represented by
D20, is used for detecting upwelling. In this paper, D20 is calculated
from the 1ox1o monthly temperature data of European Centre for
Medium-Range Weather Forecasts (ECMWF) Ocean Reanalysis
System 4 (ORAS4) available for 1958–2016 (Balmaseda et al.,
2013). The 1ox1o gridded sea surface temperature (SST) data
from Hadley Centre Global Sea Ice and Sea Surface Temperature
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(HadISST; Rayner et al., 2003) available since 1870 is also used here.
According to the one and a half layer model, a deeper (shallower)
thermocline corresponds to a higher (lower) sea surface height
(SSH), the 1ox1o SSH anomaly (SSHA) dataset from ORAS4 is
also used as a proxy of upwelling. Moreover, the 1/4°x1/4o

monthly SSHA from Archiving, Validation, and Interpretation of
Satellite Oceanography (AVISO) data from 1993 to 2016 and the
monthly upper 700 m thermosteric sea level data fromWorld Ocean
Atlas 2013 (WOA13; Levitus et al., 2012) from 1959 to 2015 are also
analyzed. In this paper, we obtain monthly anomaly by removing the
monthly climatologies and linear trends of each dataset for the
periods of interested.

Towards understanding the processes associated with the
decadal modulations of ENSO and IOD impacts on WIO and
EIO upwelling, we also analyze the 2.5o x 2.5o monthly surface
wind stress for the period of National Centers for Environmental
Prediction (NCEP) (Kalnay et al., 1996); and the 2.5o×2.5o monthly
National Oceanic and Atmospheric Administration (NOAA)
precipitation available for 1948-present (Xie and Arkin, 1996; 1997).

Here we mainly focus on two major climate modes, namely,
ENSO and IOD. ENSO is defined by using Niño3.4 index, which is
the SST anomaly (SSTA) averaged in the (5oN-5oS, 170oW-120oW)
region. The IOD is detected by dipole mode index (DMI), defined as
the SSTA difference between the western pole (10oS-10oN, 50oE-
70oE) and eastern pole (10oS-0o, 90oE-110oE), following Saji et al.
(1999).

2.2 The static linear model (SLM)

In order to quantify the contribution from each climate mode,
firstly, we used the conventional static linear regression model
(SLM) as shown in Eq. 1. Here a response variable Y is equated
to a linear function of independent predictors (X1, X2, . . . XN), i.e.,

Y t( ) � b0 + b1 X1 t( ) + b2X2 t( ) +/ + bNXN t( ) + εt (1)
where each coefficient bi (i=0, 1, 2, . . . N) is a constant and
represents the influence of a unit change in Xi (i=1, 2, . . . N) on
Y, and εt represents an error term. In this paper, we use ENSO and
IOD index respectively as a single predictor. Eq. 1 becomes

Y t( ) � b0 + b1X1 t( ) + εt (2)
where X1 represents Niño3.4 index or DMI, and Y(t) represents time
series of upwelling indicator (e.g., D20A, SSHA, and SSTA) at a
specific location or averaged over a region (e.g., EIO and WIO).
Since ENSO and IOD indices are correlated, we perform the
regressions onto ENSO and IOD indices separately. In this way,
our results reflect the maximum amount of variance that might be
attributed to ENSO and IOD (see Zhang and Han, 2020; Zhang and
Mochizuki, 2022). Therefore, a single predictor in this paper gives a
primary estimation of the contribution from each climate mode.
Note that Han et al. (Han et al., 2017; Han et al., 2018) have
attempted to take into account interaction between ENSO and IOD
by removing the decadal ENSO effect from decadal DMI tomake the
two indices independent, and then performing regressions onto
ENSO and IOD indices simultaneously. As a result, they implicitly
assumed that the ENSO has an active impact on IOD and that the

IOD does not significantly affect ENSO, whereas in practice the
observed IOD can influence ENSO actively (e.g., Izumo et al., 2010).

2.3 The Bayesian dynamic linear model
(BDLM)

Since the regression coefficients in SLM are constant and do not
vary with time within the temporal period examined, SLM can only
measure stationary influence of the predictor on the predictand. In
practice, however, the relationship between the predictor and
predictand is often changing with time (Kumar et al., 1999;
Ashok et al., 2004; Annamalai et al., 2005; Xie et al., 2010;
Krishnaswamy et al., 2015; Han et al., 2017; Han et al., 2018;
Zhang and Han, 2020). The Bayesian Dynamic Linear Model
(BDLM) allows coefficients bi to vary with time, which
overcomes the limitation of constant coefficients of the SLM and
thus can simulate time-evolving impacts of Xi on Y. Below we use a
single predictor X1, which represents either Niño3.4 index or DMI,
as an example. The BDLM consists of two equations: an
“observation equation” analogous to the SLM, as shown by Eq. 3
below, and a “state equation” that controls the dynamic evolution of
coefficients bi, represented by Eq. 4:

Y t( ) � b0 t( ) + b1 t( )X1 t( ) + ε t( ),where ε t( ) ~ N 0,V t( )[ ] (3)
bi t( ) � bi t − 1( ) + wi t( ),where wi t( ) ~ N 0,Wi t( )[ ], i � 0, 1 (4)

The state Eq. 4 means that the predictive distribution of bi at
each time step t (i.e., posterior) is updated based on its previous step
t-1 distribution (i.e., prior) and the probability of observations Y
conditional on bi at time t (i.e., the likelihood) based on Bayes
theorem (Petris et al., 2009). Coefficient bi (i = 0,1) is obtained by
applying Kalman filtering and smoothing, with the corresponding
SLM coefficient as its initial guess. In Eqs 3, 4, the b0 (t) term
represents a time-varying level or intercept whose variability is
unexplained by predictor X1, while the b1 term represents the
nonstationary influence of X1 on Y; ε(t) and wi(t) are
independent white noises or errors, on the assumption of normal
distribution with a mean of 0 and variances of V(t) and Wi(t). For
more details on the BDLM and its applications to the Indian Ocean,
please see Petris et al. (2009), Petris (2010), R Development Core
Team (2016) and Han et al. (2017).

3 Observational analysis

Before exploring decadal modulation of ENSO and IOD impacts
on the Indian Ocean upwelling, we briefly describe the observed
features of Indian Ocean upwelling to show a potential focus in the
following analysis. The results indicate that the SSHs in the boxed
regions (i.e., EIO and WIO) are key areas to characterize the Indian
Ocean upwelling variability, and that the atmospheric and ocean
states near the equator should provide us useful information to
clarify relating physical processes.

Figure 1A shows the standard deviation of annual mean SSHA
based on ORAS4 data during the period of 1958–2016. Clearly, we
can see large SSH fluctuations in the WIO (boxed by 50oE-80oE,
2oS-12oS, about 8 cm) and central Indian Ocean (about 6 cm).
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Large fluctuation also appears along the coastal area of EIO and the
eastern coast of Bay of Bengal (about 6 cm). Figures 1B,C are the
composite maps of SSHA during El Nino events and positive IOD
events, respectively. During both the El Nino and positive IOD
events, southeasterly wind prevails along the southeastern Indian
Ocean and easterly wind blows along the equator. There is positive
SSHA in EIO and negative SSHA in WIO, where the SSH
fluctuations are strongly observed (Figure 1A). Naturally, the
ENSO and IOD co-occur events also show a similar spatial
pattern (Figure 1D). The satellite observation (Supplementary
Figure S1A) and the objective analysis (Supplementary Figure
S1C) also show a high variability in WIO and central Indian
Ocean as well as along the eastern coast in EIO, consistent to
the results of reanalysis data (Supplementary Figure S1B,D). It is
known that the weakened convection (e.g., reduced precipitation
and enhanced outgoing longwave radiation at the top of the
atmosphere) in the eastern basin and the enhanced convection in
the western basin is accompanied by easterly wind stress
anomalies in the equatorial basin and alongshore winds along
Sumatra and Java coast, which will further increase coastal and
equatorial upwelling in the EIO and reduce the upwelling in the
WIO (Supplementary Figure S2). Meanwhile, the easterly wind
anomalies induce negative Ekman Pumping velocity in the

eastern basin, and forces positive SSHA which can propagate
westward, reducing upwelling in the WIO.

4 Simulated EIO andWIO upwellings by
ENSO and IOD contributions

In this section, we verify the timeseries of the EIO and WIO
upwellings estimated by SLM and BDLM, which are useful means to
discuss decadal modulation of the potential impacts of ENSO and
IOD. Figure 2 represents the regressions of the modeled EIO and
WIO upwellings onto the annual mean ENSO and IOD indices for
the period of 1959–2016. Correlation values suggest that IOD can be
slightly more important in EIO (Figures 2A,B), while the relative
importance is not clear for the WIO upwelling (Figures 2C,D).
Correlation values also indicate superiority of BDLM to SLM in all
cases. The errors of the BDLM results are generally smaller than
those of the SLM results (Figure 3). In terms of ENSO impact, in the
EIO region (the observed standard deviation is 2.6), the Root Mean
Squared Error (RMSE) of SLM is 2.3 and the RMSE of BDLM is 1.4.
In the WIO region (the observed standard deviation is 3.4), the
RMSE of SLM is 3.3 and the RMSE of BDLM is 2.1. Our analysis
verifies that the BDLM can represent the temporal modulations of

FIGURE 1
(A) Standard deviation of SSHA (color shading, unit: cm) and precipitation (contour, unit: mm/day) during 1958–2016. Composite maps of SSHA,
precipitation anomaly and zonal and meridional wind anomalies at 1000 hPa (vectors, unit:m/s) of (B) El Nino events, (C) positive IOD events and (D) co-
occur events from 1958 to 2016. The SSHA is based onORAS4 data, the wind is fromNCEP data, and the precipitation data is fromNOAA. The black boxes
indicate the eastern Indian Ocean (EIO) and western Indian Ocean (WIO) mean upwelling zones. The El Nino and positive IOD events are defined
from NOAA website. (E) Time series of seasonal means of the ENSO index (red bars; November-January) and IOD index (blue bars; September-
November).
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the IOD and ENSO impacts, and well reproduces the timeseries of
the EIO and WIO upwellings better than a conventional SLM does.
In the following, we try to explain the possible underlying processes

that can contribute to improving the ocean upwelling as above,
focusing on the regression coefficients mathematically optimized in
BDLM estimation.

FIGURE 2
Time series of annual mean ORAS4 SSHA (black line), SSHA explained by ENSO index (i.e., NINO3.4 index) using conventional Static Linear Model
(SLM; blue line) and Bayesian Dynamic Linear Model (BDLM; red line), for the (A) EIO box, (C)WIO box, shown in Figure 1. Panels b and d are the same as
panels (A,C), respectively, but for SSHA explained by the IOD index (i.e., DMI). Specifically, the blue and red lines are the b1X1 terms of Eqs 2, 3, respectively,
with X1 being Niño3.4 index for (A), (C) and DMI for (B), (D). The correlations between AVISO observed SSHA and modeled SSHA using SLM (BDLM)
are shown at the bottom of each panel. Here all the time series have been normalized by its standard deviation. The standard deviation of EIO, WIO are
2.6 cm and 3.4 cm, respectively.

FIGURE 3
Error of SSHA for SLM (blue line) and BDLM (red line) estimation in (A) EIO and (C)WIO region. Panels (B,D) are the same as panels (A,C), respectively,
but for IOD contribution. Here the errors are estimated as the deviations of model results from the observation. Or in other words, Error (SLM) = Y(SLM)-
OBS and Error (BDLM)=Y(BDLM)-OBS. The standard deviation of the observation and the root mean squared errors of SLM and BDLM results are listed in
each panel.
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FIGURE 4
Time series of BDLM coefficients, i.e., b1 of Eq. 3, in the EIO (eastern box of Figure 1) for (A) ENSO (red curve), and (B) IOD (blue curve); (C) and (D) are
the same as (A) and (B) but for the WIO upwelling region (western box of Figure 1). The horizontal dashed-dotted black line in each panel shows the
corresponding SLM coefficient, i.e., b1 of Eq. 2, which is a constant value.

FIGURE 5
Regression onto SON DMI for precipitation (color shading; unit: mm/day) and zonal and meridional winds anomaly at 1000 hPa (vectors; unit: m/s)
during the periods (A) 1958–1979 and (B) 1980–2016. (C) Differences of these two periods (i.e., panel b minus panel a). (D–F) The same as (A–C), but for
SST (color shading; unit:oC). (G–I) The same as (A–C), but for the zonal and vertical winds (vectors; unit: m/s and hPa/day, respectively) along the
equatorial Ind-Pacific Ocean. Shades represent vertical wind velocity.
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5 The decadal shift of IOD impact
before and after 1980s

As discussed in Section 2, the BDLM can measure the time-
varying influence of the climate modes, Figure 4 shows the
optimized values of the coefficient b1 in Eq. 2. It should be noted
that all four panels of Figure 4 do not represent same time series. In
EIO, in particular, the IOD plays a weaker role before 1980s and a
stronger influence afterwards in magnitudes (see Figure 4B). In
order to see the related processes that may cause this decadal shift in
impacts, we calculated regressions of SSTA, precipitation and wind
stress onto IOD index for the period of 1958–1979 and 1980–2016
(Figure 5). Weak and strong easterlies in the equatorial Indian
Ocean before and after 1980, respectively, are accompanied by
differences in atmospheric circulations over the western Pacific
and Indian subcontinent. Even though the zonal SST contrast in
the equatorial Indian Ocean is assumed to be unity (i.e., discussing
regressions onto IOD index), the relatively stronger easterlies along
the coastal area of EIO after 1980s drives a relatively stronger
upwelling as shown in Figure 4B. In fact, the observed
regressions of the autumnal SST in EIO onto the IOD index
particularly focusing on the coastal area (95oW-110oW, 10oS-0o)
are −0.48 and −0.66 during the periods 1958–1979 and 1980–2016,
respectively, and the difference of these regression values are
significant at a 90% confidence limit in F-test.

These differences are primarily due to the background change of
ocean temperature. Figure 6 shows the difference in vertical sections
of Indo-Pacific ocean temperature andWalker circulation cell before

and after 1980s. After 1980, the strong warming tendency is
observed in the surface layer of the whole Indo-Pacific Oceans
(Figure 6B) together with the changes in Indo-Pacific Walker
circulation (Figure 6A). In particular, this ocean surface warming
is accompanied by the strong vertical gradient around the ocean
thermocline in the eastern Indian Ocean. As a result, the coastal
wind in the eastern Indian Ocean induces the IOD signal more
effectively in EIO. The optimized values of the coefficient b1
represents changes of the efficiency in forming the IOD signal in
EIO as an ocean response to the surface wind stress forcing aloft,
corresponding to changes of the background states of the Indian
ocean. Since the IOD index is defined as zonal contrast of the Indian
Ocean SST anomalies, the uniform negative anomaly in the Indian
Ocean in Figure 5F suggests that the IOD-related SST anomalies
represent the enhancing and reducing tendencies in the EIO and
WIO, respectively.

6 Relationship to decadal variability in
the tropical Pacific

From Figure 4A, we also found that there is decadal modulation
in impacts of ENSO on EIO upwelling, namely, stronger impact
between 1976 and 2002 and weaker impact before 1976 and after
2002. The ENSO and IOD impacts on WIO also show similar
timeseries (see Figures 4C,D). These values of b1 are highly
correlated with the so-called PDO index (The correlation values
relative to the PDO index 9-year running mean applied are −0.71,

FIGURE 6
(A) The difference of equatorial vertical wind velocity (shade, hPa day−1), and zonal (m s−1) and vertical wind velocity (vectors) along the equatorial
Indian Pacific Ocean before and after 1980 (i.e., values after 1980 minus those before 1980). (B) The difference of ocean temperature before and after
1980 (shade, oC), and the climatology (bold curves, oC). Cross marks represent the significant differences at a 95% confidence limit.
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0.64 and 0.44 in Figures 4A,C,D, respectively). Note that, for
convenience, here we refer to the above three periods as the
negative, positive and negative PDO periods, respectively. Thus,
the ENSO has stronger and weaker impacts on EIO upwelling
during the positive and negative PDO periods, respectively.
Consistent with this BDLM result, the observed regressions of
SST in EIO onto the NINO3.4 index represent the significantly
larger value in magnitude in the positive PDO period than in the
negative PDO period at a 95% confidence limit. We examine the
related processes by discussing the differences of regressions in the
positive and negative PDO periods as below (Figure 7). Besides, the
composite maps (i.e., the background states) represent the PDO-like
patterns (Figure 8). The convective activity in the atmosphere is
reduced largely over the western Pacific Ocean as a part of the weak
Walker circulation (Figure 8A), corresponding to warm upper ocean
in the eastern Pacific Ocean (Figure 8B). In contrast to Figure 6B, the
composite maps (i.e., the background states) hardly show significant
differences in the upper ocean temperature of the Indian Ocean.

We further plot the regression of SSTA, precipitation and wind
forcing onto ENSO index during the above defined positive and
negative PDO periods (see Figure 7). Even though we always use
NINO3.4 index to define the ENSO events, the observed SST
anomaly in the eastern Pacific Ocean is slightly shifted eastward
in the positive PDO period (Figure 7F). In other words, during the
positive and negative PDO periods, the spatial patterns of SST

anomaly in a background state are similar to the so-called
Eastern Pacific (EP) and Central Pacific (CP) El Nino events,
respectively. This is further related to stronger easterly wind
along the equatorial Indian Ocean during the positive PDO
phase and will drive stronger upwelling in the WIO boxed
region. Some studies indicated that EP El Nino events can be
more frequently observed in the positive PDO period (Feng
et al., 2019), when using two widely used El Nino classification
methods: the so-called NINO method (Kug et al., 2009) and the El
Nino Modoki index (Ashok et al., 2007). Both the methods define
1 EP (1972/73) and 1CP (1968/69) events during 1958–1975, 4 EP
(1976/77, 1982/83, 1986/87, and 1997/98) and 2 CP (1977/78, and
1994/95) events during 1976–2001 and 2 EP (2006/07, and 2014/15)
and 3 CP (2002/03, 2004/05, and 2009/10) events during 2002–2016
(e.g., Table 1 in Feng et al., 2019). Note that 2 El Nino events for each
of the periods during 1958–1975 and during 1976–2001 are
inconsistently classified by the above two methods. This suggests
that during the positive PDO period, there are relatively more EP El
Nino events, which may lead to stronger equatorial easterly wind in
the Indian Ocean, which will further drive stronger upwelling in the
WIO. The optimized value of the coefficient b1 seems to represent
changes of ENSO impact primarily due to the distinct ENSO flavor
associated with the changes in the background states. The observed
regressions of the wintertime SST in central equatorial Pacific
(NINO4 region; 160oE-150oW, 5oS-5oN) onto the NINO index

FIGURE 7
Regression ontoNDJ ENSO index for precipitation (color shading; unit: mm/day) and surfacewinds (vectors: m/s) during (A) negative and (B) positive
PDO periods. (C) The difference of these two periods [i.e., panel (B)minus panel (A)]. (D–F) The same as (A–C), but for SST (color shading; unit: oC). (G–I)
The same as (A–C), but for the zonal and vertical winds (vectors; units: m/s and hPa/day, respectively) along the equatorial Ind-Pacific Ocean. Shades
represent vertical wind velocity.
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(NINO3.4 index in this study) are 0.57 and 0.71 during the positive
and negative PDO periods, respectively. The difference of the
regression values of NINO4 SST is significant at a 95%
confidence limit, also suggesting the relatively weak contribution
of CP El Nino in the positive PDO period.

7 Conclusion and discussion

In this paper, the decadal modulations of ENSO and IOD
impacts on the tropical Indian Ocean upwelling are explored by
combining the observational data since 1958 and statistical model.
The BDLM enables us to demonstrate temporal variations of the
contributions of ENSO and IOD by optimizing regression
coefficients, thereby showing superiority to the SLM in
reproducing the upwelling tendency. We found that the
optimized values in the regression coefficients contribute to
representing the effects of decadal variations of the background
climate states that can modulate the strength of the Indian Ocean
upwelling. For example, there is a decadal shift of IOD impact before
and after 1980s for the EIO upwelling. This is mainly caused by the
shift of wind stress forcing along the eastern coast in magnitudes,
corresponding to the changes in sensitivity of the ocean response to
atmospheric forcing in relation to the strength of upper ocean
stratification (Section 5). The impacts of ENSO on EIO upwelling
(and the ENSO and IOD impacts on WIO upwelling) is also
modulated on decadal timescales, and the impact is stronger

during the period of 1976–2002. Our analysis shows that this is
mainly caused by the stronger easterly wind along the equatorial
Indian Ocean, dependent on the distinct ENSO flavors dominantly
observed in a specific decade (Section 6). Thus, the optimized
regression coefficients in BDLM improve the Indian Ocean
upwelling particularly on decadal timescales, by reflecting the
decadal changes in the Indian Ocean response (i.e., stratification)
as in Section 5 and probably in the Pacific Ocean forcing (i.e., ENSO
flavor) as in Section 6.

Note here, our results are based on static linear regression model
and the Bayesian dynamic linear model, as discussed in Zhang and
Han (2020). Thus, the contribution of oceanic waves is not directly
estimated but implicitly taken into account in defining regression
values in a statistical sense. Since the oceanic wave also plays an
important role when moving westward, advanced estimates of its
contribution can be a topic for future research. In addition, the
upwelling as a response of the ocean to wind stress forcing can
represent feedback to wind stress. While, logically speaking, the
contribution of this feedback can be grossly represented in our
estimation, the detailed coupled processes of atmosphere and ocean
are still unclear. Direct verification of coupled climate process
modulating the ocean upwelling is also an interesting research
questions for future works. Nevertheless, we have built on Zhang
and Han (2020), in which they mainly focused on the ocean
upwelling on interannual time scales, by showing some
important processes that primarily effect on the modulation of
the impact of climate modes on decadal timescales. Our results also

FIGURE 8
Same as Figure 6, but for the difference of (A) vertical velocity (shaded, hPa/day) and zonal (m s−1, vector) and temperature (shading) averaged along
the equatorial Indian- PacificOcean during positive and negative PDOperiods. The negative PDO periods are defined as 1958–1976 and 2002–2016, and
the positive PDO period is defined as 1976–2002. The climatology of ocean temperature (bold curves, oC) is superimposed in panel (B). Cross marks
represent the significant differences at a 95% confidence limit.
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suggest that the different types of El Nino and the changing atmosphere-
ocean state in the climate models towards precise simulations of the
impact of climate modes on the Indian Ocean upwelling.
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