AUTHOR=Titos Manuel , Gutiérrez Ligdamis , Benítez Carmen , Rey Devesa Pablo , Koulakov Ivan , Ibáñez Jesús M.
TITLE=Multi-station volcano tectonic earthquake monitoring based on transfer learning
JOURNAL=Frontiers in Earth Science
VOLUME=11
YEAR=2023
URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2023.1204832
DOI=10.3389/feart.2023.1204832
ISSN=2296-6463
ABSTRACT=
Introduction: Developing reliable seismic catalogs for volcanoes is essential for investigating underlying volcanic structures. However, owing to the complexity and heterogeneity of volcanic environments, seismic signals are strongly affected by seismic attenuation, which modifies the seismic waveforms and their spectral content observed at different seismic stations. As a consequence, the ability to properly discriminate incoming information is compromised. To address this issue, multi-station operational frameworks that allow unequivocal real-time management of large volumes of volcano seismic data are needed.
Methods: In this study, we developed a multi-station volcano tectonic earthquake monitoring approach based on transfer learning techniques. We applied two machine learning systems—a recurrent neural network based on long short-term memory cells (RNN–LSTM) and a temporal convolutional network (TCN)—both trained with a master dataset and catalogue belonging to Deception Island volcano (Antarctica), as blind-recognizers to a new volcanic environment (Mount Bezymianny, Kamchatka; 6 months of data collected from June to December 2017, including periods of quiescence and eruption).
Results and discussion: When the systems were re-trained under a multi correlation-based approach (i.e., only seismic traces detected at the same time at different seismic stations were selected), the performances of the systems improved substantially. We found that the RNN-based system offered the most reliable recognition by excluding low confidence detections for seismic traces (i.e., those that were only partially similar to those of the baseline). In contrast, the TCN-based network was capable of detecting a greater number of events; however, many of those events were only partially similar to the master events of the baseline. Together, these two approaches offer complementary tools for volcano monitoring. Moreover, we found that our approach had a number of advantages over the classical short time average over long time-average (STA/LTA) algorithm. In particular, the systems automatically detect VTs in a seismic trace without searching for optimal parameter settings, which makes it a portable, scalable, and economical tool with relatively low computational cost. Moreover, besides obtaining a preliminary seismic catalog, it offers information on the confidence of the detected events. Finally, our approach provides a useful tentative label for subsequent analysis carried out by a human operator. Ultimately, this study contributes a new framework for rapid and easy volcano monitoring based on temporal changes in monitored seismic signals.