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When large reservoirs are built and put into operation, the downstream
hydrological processes will be altered significantly, and ecology and
agricultural irrigation water of the basin will be affected to some extent. The
reservoir index (RI) and the sediment trapping efficiency (TE) of reservoirs are
defined to quantify the reservoir impacts on the water flow and sediment by
considering the static storage capacity. However, the regulating effect of
reservoirs on hydrological variables is not only related to static storage
capacity, but also to dynamic reservoir operation. Thus, in this paper, a general
rainfall-reservoir index (GRRI) is developed by coupling reservoir regulation
indicator (RR, including RI and TE) and effective rainfall affecting the dynamic
operation of reservoirs, and the GRRI is used as the covariate to carry out the
nonstationary frequency analysis of flood (Q) and annual sediment load (S) at
Gaochang (GC) station in Min River, Wulong (WL) station in Wu River, Ankang (AK),
Huangjiagang (HJG) and Huangzhuang (HZ) station in Han River, and Cuntan (CT)
station on themain streamof the upper Yangtze River. It is found thatQ and S at six
stations have obvious changes induced by reservoirs, the mean ofQ decreases by
22.8%–60.6%, and S drops by 47.7%–89.5% after the change-point of time series.
The nonstationary probability distribution models with GRRI as the covariate have
better fitting effects than nonstationary models with RR as the covariate. With the
incorporation of the impacts of effective rainfall, the GRRI can more accurately
capture the occurrence of nonstationarity in the downstream hydrological
frequency. These results might be helpful for exploring the impact mechanism
of the reservoir regulation on the downstream hydrological variables as well as
ecological management of basin.
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1 Introduction

Hydrological frequency analysis is a statistical measure to determine the occurrence
probability of hydrological events by fitting the probability distribution with observed data
(Bhat et al., 2019). The traditional hydrological frequency analysis is based on the
assumption of independence and stationarity. However, due to the impact of climate
change and human activities, the assumption of stationarity has been challenged (Xiong
and Guo, 2004; Milly et al., 2008; Salas and Obeysekera, 2014; Milly and Dunne, 2020), and
the nonstationary hydrological frequency analysis has received more and more attention

OPEN ACCESS

EDITED BY

Lei Wang,
Institute of Tibetan Plateau Research
(CAS), China

REVIEWED BY

Guohua Fang,
Hohai University, China
Chong Xu,
Ministry of Emergency Management,
China

*CORRESPONDENCE

Guoce Xu,
xuguoce_x@163.com

RECEIVED 14 April 2023
ACCEPTED 19 June 2023
PUBLISHED 27 June 2023

CITATION

Li R and Xu G (2023), Assessing the
impacts of reservoirs on downstream
hydrological frequency based on a
general rainfall-reservoir index.
Front. Earth Sci. 11:1204640.
doi: 10.3389/feart.2023.1204640

COPYRIGHT

© 2023 Li and Xu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 27 June 2023
DOI 10.3389/feart.2023.1204640

https://www.frontiersin.org/articles/10.3389/feart.2023.1204640/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1204640/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1204640/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1204640/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1204640&domain=pdf&date_stamp=2023-06-27
mailto:xuguoce_x@163.com
mailto:xuguoce_x@163.com
https://doi.org/10.3389/feart.2023.1204640
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1204640


from hydrologists (Vogel et al., 2011; Jiang et al., 2017; Wen et al.,
2019a; Xiong et al., 2020; Liu et al., 2019; Li et al., 2021).

The nonstationary hydrological frequency analysis is usually
based on the covariate analysis, that is, the probability distribution
parameters are expressed as functions of covariates (Rigby and
Stasinopoulos, 2005), so it is critical to accurately capture the
driving factors of hydrological variables (Jiang et al., 2019; Xiong
et al., 2020; Li et al., 2022). For river basins that are greatly disturbed
by humans, the hydrological variables (such as water level, water
flow, sediment concentration) in the river channel are significantly
altered by human activities. Among them, the reservoir regulation
has a conspicuous impact on the downstream hydrological variables
(Graf, 1999; Yang et al., 2002; Batalla et al., 2004; Yang et al., 2006;
Yang et al., 2008; Döll et al., 2009; Rossi et al., 2009; Biemans et al.,
2011; Zhang et al., 2015; Wu et al., 2018; Xiong et al., 2019; Li R.
et al., 2020; Li et al., 2022), especially the spread of water flow and the
sediment transport from upstream to downstream (Figure 1). Before
the reservoir construction, the water flow and sediment in the river
channel spread freely downstream without hindrance. After the
reservoir construction, the magnitude of the water flow becomes flat
due to the weakening of the reservoir. And usually the water flow in
the reservoir area is slow, the sediment carried by the flow will be
deposited in the reservoir, and only a small amount of sediment will
be carried downstream, so the sediment will be reduced and the river
will become clear in the downstream. Reservoir construction can
effectively reduce flood peaks, change the intra-annual distribution
of runoff and intercept sediment, therefore, it can improve soil
erosion, increase the assurance of water for crops, and have a very
obvious impact on vegetation ecology and agricultural irrigation.
The regulation effect of the reservoirs on water flow is usually
quantified by the reservoir index (RI) (López and Francés, 2013),

and the interception effect of the reservoirs on sediment is usually
quantified by the sediment trapping efficiency (TE) of reservoirs
(Brune, 1953; Vörösmarty et al., 2003), both of which are defined
based on the static storage capacity of the reservoir, and they are
widely used by hydrologists to analyze the impact of reservoirs on
hydrological variables (Zhang et al., 2015; Ray and Goel, 2019; Xiong
et al., 2019; Li R. et al., 2020; 2022).

However, the regulating effect of reservoirs on hydrological
variables (flood, runoff, sediment load and so on) is not only
related to static storage capacity, but also to reservoir operation,
which changes dynamically with rainfall. The reservoir operation
strategy also changes in real time in the case of high inflow and low
inflow (Ahmadi et al., 2015), which is not completely consistent with
the idea of quantifying the reservoir effects by RI and TE (as long as
no new reservoir is built in the basin, the regulation capacity of the
reservoir is the same every year). Therefore, it is necessary to
consider both the static storage capacity and the dynamic
operation of reservoirs to investigate the reservoir impacts on the
nonstationarity of downstream hydrological variables. Xiong et al.
(2019) defined the rainfall-reservoir composite index (RRCI) that
combined both the RI and the exceedance probability of scheduling-
related multiday antecedent rainfall input variables, and they found
that fitting effect of nonstationary probability distribution model
with RRCI as the covariate was better than the model with RI as the
covariate. Li R. et al. (2020) developed the rainfall-augmented
sediment trapping index (RSTI) that coupled TE and rainfall
characteristics, and used RSTI, TE, rainfall characteristics such as
rainfall amount and rainfall intensity as dependent variables to
simulate sediment load. The results showed that RSTI could achieve
better simulations than other factors in both linear and nonlinear
regression models. In essence, the action mechanisms of rainfall and

FIGURE 1
Sketch map about reservoir impacts on the streamflow and sediment.
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reservoirs on different hydrological variables in the river is similar,
so how to establish a general index to explain the effects of rainfall
and reservoirs on downstream hydrological variables (such as flood,
runoff, and sediment load) is worth exploring.

Therefore, the major objectives of this paper are as follows: 1)
develop a general rainfall-reservoir index (GRRI) by coupling
effective rainfall that drives hydrological variables and reservoir
regulation indicator to quantify the reservoirs impacts on the
downstream hydrological variables; 2) compare the GRRI with
RR by carrying out the covariate-based nonstationary
hydrological frequency analysis. Three sub-basins (Min River,
Wu River, and Han River) of the Yangtze River basin and the
Cuntan station on the main stream are selected as case studies to
perform the research in this paper, it has been found that
hydrological processes in these basins have been altered by
climate change and reservoir constructions (Tang et al., 2013;
Wu et al., 2018; Xiong et al., 2019; Li R. et al., 2020; Guo et al.,
2020; Lu et al., 2020).

The rest of this paper is organized as follows: the methods used
in this study are described in the next section; Section 3 introduces
the study area and data used in this study; the results of this study are
presented in Section 4; in Section 5, some discussions are described,
and the main conclusions are summarized in Section 6.

2 Methods

2.1 Trend and change-point analysis

The Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975)
and Pettitt (PT) test (Pettitt, 1979) are widely used as non-

parametric methods for trend and change-point detection in
hydro-meteorological series, respectively.

2.1.1 Mann-Kendall test
The Mann-Kendall statistic S is defined as follows for a series

x1, x2, ..., xn that satisfies the independent identical distribution
condition.

S � ∑n
i�2

∑i−1
j�1

sign xi − xj( ) (1)

in which,

sign xi − xj( ) � 1 xi >xj

0 xi � xj

−1 xi < xj

⎧⎪⎨⎪⎩ (2)

The standard normal statistic Z is calculated as Eq. 3 and the
variance of S is Var(S) � n(n−1)(2n+5)

18 .

Z �
S − 1( )/ 







Var S( )√
S> 0

0 S � 0
S + 1( )/ 







Var S( )√
S< 0

⎧⎪⎨⎪⎩ (3)

At a certain significance level α, if the absolute value of Z is
greater than the standard normal variate then the trend of the series
changes obviously and there is an upward trend when Z> 0 and a
downward trend when Z< 0.

2.1.2 Pettitt test
The Pettitt statistic Kt is defined as follows for a

series x1, x2, ..., xn.

Kt � max Ut,n

∣∣∣∣ ∣∣∣∣ (4)
where,

Ut,n � ∑t
i�1

∑n
j�t+1

sign xi − xj( ), t � 1, 2, ..., n (5)

Eq. 6 is used to calculate the probability values (pPT) when the
change-point of the series is located at Kt and there is a significant
change-point when pPT<α.

pPT � 2 exp
−6K2

t

n3 + n2
( ) (6)

2.2 General rainfall-reservoir index (GRRI)

In order to accurately assess the reservoir impacts on the
downstream hydrological variables, in this study, a general
rainfall-reservoir index (GRRI) is developed by coupling effective
rainfall that drives hydrological variables and reservoir regulation
indicator, and it is defined as follows

GRRI �
0,RR � 0
1 − FER( )1/RR−1, 0<RR ≤ 1

RR,RR > 1

⎧⎪⎨⎪⎩ (7)

where, FER is the probability distribution of effective rainfall, which
can be the probability distribution of univariate rainfall event or the
joint probability distribution of multivariate rainfall event; RR is an

FIGURE 2
Relationship of the general rainfall-reservoir index (GRRI) to
probability distribution of effective rainfall (FER) and reservoir
regulation indicator (RR) described in Eq. 7.
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indicator that symbolizes the impact of reservoir regulation, e.g.,
reservoir index (RI) and sediment trapping efficiency (TE). The
relationship between GRRI and RR and FER is shown in Figure 2.

Since FER ~ U[0, 1], (1 − FER) ~ U[0, 1],
(1 − FER) � GRRIRR/(1−RR), when 0<RR ≤ 1, the cumulative
probability distribution function and probability density function
of GRRI are

FGRRI yGRRI( ) � 0, yGRRI � 0
yGRRI

RR/ 1−RR( ), 0<yGRRI ≤ 1
1, yGRRI > 1

⎧⎪⎨⎪⎩ (8)

fGRRI yGRRI( ) � RR
1 − RR

· yGRRI
RR/ 1−RR( )−1, 0<yGRRI ≤ 1

0, yGRRI � 0 or yGRRI > 1

⎧⎪⎨⎪⎩ (9)

When 0<RR ≤ 1, the expectation of the GRRI is E(GRRI) �∫+∞
−∞ fGRRI(yGRRI) · yGRRIdyGRRI � RR.
For various hydrological variables, different effective rainfall and

reservoir regulation indicators are selected to calculate GRRI as
covariates for nonstationary hydrological frequency analysis. In this

study, the two hydrological variables of flood and annual sediment
load are taken as examples, their corresponding GRRIs are
calculated according to Eq. 7, which are marked as GRRI_Q and
GRRI_S respectively. Specific details on how to identify the effective
rainfall and reservoir regulation indicator for flood and annual
sediment load are described below.

2.2.1 Identifying the effective rainfall
Multi-day antecedent rainfall is the most direct meteorological

condition affecting flood events (Bennett et al., 2018). In this study,
20 levels of multi-day antecedent rainfall are counted, namely, the
rainfall on the day when the flood peak occurred, the sum of the
rainfall on the day of the flood peak and the rainfall on the previous
day, and the sum of the rainfall on the day when the flood peak
occurred and the rainfall on the previous 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19 days, they are recorded as P1, P2, P3, P4,
P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19 and P20
respectively. The one with the strongest Pearson correlation
coefficient with flood is chosen as the effective rainfall for flood.

FIGURE 3
Sketch map of study area.
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The rainfall amount and rainfall intensity reaching a certain
level affect the sediment generation and transport (Wen et al., 2019b;
Li R. et al., 2020). In this study, 16 threshold levels (TL) of daily

rainfall intensity, i.e., TL=0, 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55 mm/day, are selected to calculate the homologous rainfall
amount (marked asA0,A1,A2,A4,A6,A8,A10,A15,A20,A25,A30,A35,

TABLE 1 Characteristic parameters of the reservoirs in the study area.

River Reservoir Catchment area (104 km2) Total capacity (108 m3) Completion year

Min River Zipingpu 2.27 11.12 2006

Houziyan 5.4 7.06 2018

Changheba 5.66 10.75 2018

Dagangshan 6.27 7.77 2015

Pubugou 6.85 53.9 2009

Wu River Yinpan 7.49 3.20 2011

Pengshui 6.90 14.65 2009

Shatuo 5.45 9.10 2012

Silin 4.86 15.93 2005

Goupitan 4.33 64.54 2004

Wujiangdu 2.78 23.00 1983

Suofengying 2.19 2.01 2005

Dongfeng 1.82 10.25 1994

Yinzidu 0.64 5.29 2002

Hongjiadu 0.99 49.47 2004

Puding 0.59 3.99 1995

Han River Shiquan 2.34 5.66 1975

Xihe 2.52 2.29 2006

Ankang 3.57 32.10 1992

Shuhe 4.94 1.74 2009

Pankou 0.90 23.53 2011

Huanglongtan 1.11 11.63 1978

Danjiangkou 9.52 210 (340) 1967 (2013)

Wangfuzhou 9.59 3.10 2003

Cuijiaying 13.26 4.59 2010

Yahekou 0.30 13.20 1960

Large reservoirs upstream of Cuntan except Min River Ludila 24.73 17.18 2014

Guanyinyan 25.65 20.72 2014

Xiluodu 45.44 126.70 2013

Xiangjiaba 45.88 51.63 2012

Jinpingyiji 10.30 77.60 2013

Ertan 11.64 58.00 1998

Baozhusi 2.8 25.5 1996

Tingzikou 6.26 42 2013

Caojie 15.61 22.18 2009

Note: the numbers in brackets for Danjiangkou are the year and total storage capacity when the dam is raised.
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A40, A45, A50, and A55) by summing the amount of all daily rainfall
events with an intensity higher than the given TL value, and to
calculate the homologous rainfall intensity (marked as I0, I1, I2, I4, I6,
I8, I10, I15, I20, I25, I30, I35, I40, I45, I50, and I55) by averaging all daily
rainfall intensity with an intensity higher than the given TL value.
Among the rainfall amount and rainfall intensity corresponding to
different TL, rainfall variables with the strongest correlation with
sediment load are considered to be the effective rainfall affecting the
sediment load. The joint distribution of effective rainfall amount and
effective rainfall intensity is constructed as the probability
distribution of effective rainfall by using copula theory (Sklar,
1959; Nelsen, 2006) to participate in the calculation of GRRI_S.
If only rainfall amount or rainfall intensity is significantly correlated
with sediment load, the effective rainfall contains only one rainfall
characteristic, and its univariate probability distribution is
established for calculating GRRI_S.

The distribution of effective rainfall can be fitted using either
theoretical distribution or empirical distribution, the latter being
easier to calculate and apply in practice.

2.2.2 Reservoir regulation indicator
The reservoir regulation indicator (RR) include the reservoir

index (RI) for flood discharge and the sediment trapping efficiency
(TE) of reservoirs for river sediment, both of which are calculated as
follows:

The RI (López and Francés, 2013; Jiang et al., 2015) is defined to
reflect the impact of reservoirs on the downstream streamflow,
which is a dimensionless indicator with the following expression

RI � ∑N
i�1

Ai

AT
( ) · Vi

VT
( ) (10)

where N is the total number of reservoirs upstream of the
hydrological station; Ai is the controlled basin area of the ith
reservoir upstream, km2; AT is the total basin area controlled by
the hydrological station, km2; Vi is the total storage capability of the
ith reservoir, m3; VT is the sum of the total storage capability of all

reservoirs upstream of the hydrological station, m3. For a reservoir
system consisting of small- and middle-sized reservoirs, RI is usually
less than 1, whereas for a reservoir system with some very large
reservoirs (e.g., multi-year regulating storage reservoirs), RI may be
close to or greater than 1.

The TE was proposed by Brune (1953) and developed by
Vörösmarty et al. (2003) for quantifying reservoir’s ability to
intercept sediment, it is based on dividing a basin into multiple
(≥2) subareas by considering the differences in geographical location
of reservoirs in the basin (Vörösmarty et al., 2003), which is defined
as follows

TE �
∑m
j�1
TEsub,j · Qj

Qm
(11)

TEsub,j � 1 − 0.05







∑nj
k�1

Vk/Qj

√ (12)

where TE is the trapping efficiency for entire basin; TEsub,j is the
approximated trapping efficiency of the jth subarea in the basin;m is
the number of subareas; Qj is the discharge at mouth of each
regulated subarea j, m3; nj is the number of reservoirs in each
regulated subarea j, ∑ nj � N; Vk is the total storage capability of
the kth reservoir in the jth subarea, m3; Qm is the discharge at basin
mouth, m3.

Therefore, in this study, RI is taken as the reservoir regulation
indicator for flood, TE is used as the reservoir regulation indicator
for annual sediment load.

2.3 Covariate-based nonstationary
frequency analysis

The covariate-based nonstationary frequency analysis has been
widely concerned by hydrologists (Strupczewski et al., 2001; Rigby
and Stasinopoulos, 2005; Villarini et al., 2010; Salas and Obeysekera,

TABLE 2 The results of trend test by Mann-Kendall method and change-point test by Pettitt method for hydrological series.

Station Hydrological series Mann-Kendall (MK) test Pettitt (PT) test

Trend pMK Change-point pPT

GC Q ↓ 0.020 1996 0.015

S ↓ 0.000 1993 0.000

WL Q ↓ 0.069 2003 0.013

S ↓ 0.000 1984 0.000

AK Q ↓ 0.004 1987 0.001

HJG Q ↓ 0.000 1984 0.000

HZ Q ↓ 0.000 1984 0.000

S ↓ 0.000 1984 0.000

CT Q ↓ 0.137 1992 0.388

S ↓ 0.000 1991 0.000

Note: ↓ indicates a decreasing trend; pMK and pPT are the corresponding p-value of the Mann-Kendall test and Pettitt test, respectively. If pMK or pPT is less than 0.1, which means that there is a

trend change or a change-point in the hydrological series at 10% significance level.
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2014; Jiang et al., 2015; Xiong et al., 2020; Li et al., 2022), in which
distribution parameters are expressed as the function of covariates/
explanatory variables. In this study, Weibull (WEI), Gumbel (GU),
Gamma (GA), Logistic (LO), Normal (NO), Lognormal (LNO),
Generalized extreme value (GEV), and Pearson type III (P-III)
distribution are used as candidate distributions to fit hydrological
series, the location parameter (μt) and scale parameter (σt) of the
distribution are considered to change with the covariates. For the
three-parameter GEV and P-III distribution, the shape parameter
(ξ) is generally regarded as constant in order to reduce the
uncertainty caused by parameter estimation due to the sensitivity
of ξ. The nonstationary probability distribution models are
constructed based on Generalized Addictive Models in Location,
Scale, and Shape (GAMLSS) model by using the reservoir regulation
indicator (RR) and the general rainfall-reservoir index (GRRI) as the
covariate respectively. And the linear and exponential functions are
considered to describe the relationship between distribution
parameters and covariates. Taking the case that both location
parameter and scale parameter change with covariates as an

example, the formula of distribution parameters is expressed as
follows

Linear:
μt � α0 + α1 · RR
σt � β0 + β1 · RR{ or

μt � α0 + α1 · GRRI
σt � β0 + β1 · GRRI{

Exponential:
μt � exp α0 + α1 · RR( )
σt � exp β0 + β1 · RR( ){

or
μt � exp α0 + α1 · GRRI( )
σt � exp β0 + β1 · GRRI( ){ (13)

where α0, α1, β0 and β1 are model parameters estimated by the
maximum likelihood estimate method. The goodness-of-fit test of
probability distribution models is examined by
Kolmogorov–Smirnov (KS) test (Massey, 1951), if the p-value of
KS test is greater than the significance level of 0.1, it means that the
model fits well. The relative fitting qualities of the probability
distribution models are evaluated by the Schwarz Bayesian
Criterion (SBC; Schwarz, 1978), and the model featured with the
smaller SBC value is considered better.

FIGURE 4
Time series of hydrological variables at (A) GC station, (B) WL station, (C) AK station, (D) HJG station, (E) HZ station and (F) CT station.
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3 Study area and data

3.1 The study area

The Yangtze River is the largest river in China measuring
approximately 6,397 km in length. It spans the three steps of
China’s terrain from west to east, and flows through
11 provinces. The total basin area is about 1.8 million km2,
accounting for 18.8% of China’s land area. The vast area and
complex topography have created the diverse monsoon climate
characteristics of the Yangtze River basin. The average annual
precipitation is about 1,100 mm, with large inter-annual variation
and uneven distribution within the year. The annual runoff of the
Yangtze River basin reaches 960 billionm3 and is rich in hydropower
resources. The degree of hydropower development and water
resource utilization in the basin is relatively high, forming the
world’s largest reservoir group with the Three Gorges Reservoir
as the core (Xu and Zhang, 2018; Li H. et al., 2020). The basin has a
well-developed river network and numerous tributaries, with
8 basins exceeding 80,000 km2, 49 basins more than 10,000 km2.
In this paper, the Min River basin, Wu River basin, Han River basin
and the Cuntan station on the main stream (Figure 3) are taken as
typical study areas to carry out the nonstationary hydrological
frequency analysis.

The Min River is situated 99°37′E-104°38′E and 28°13′N-
33°38′N, covering a total area of 135,387 km2. It is located in the
upper reaches of the Yangtze River with a length of 735 km. The
annual average temperature is 15°C and mean annual precipitation
ranges from 800 mm to 1,100 mm (Tang et al., 2013). TheWu River,
with the coordinates of 104°18′E-109°22′E and 26°07′N-30°22′N,
and a catchment area of 87,920 km2, is the largest tributary in the
upper reaches of the Yangtze River measuring approximately
1,050 km in length. The annual average temperature varies from
13°C to 18°C and mean annual precipitation is from 900 mm to
1,400 mm (Wu et al., 2018; Li R. et al., 2020). The Han River is
situated 106°00′E-114°00′E and 30°30′N-34°30′N, covering a total

area of 159,000 km2. It is located in the middle reaches of the
Yangtze River with a length of 1,532 km and is the largest
tributary of the Yangtze River. The annual average temperature is
14°C–16°C and mean annual precipitation varies from 700 mm to
1,100 mm (Xiong et al., 2019; Xie et al., 2021). The Cuntan
hydrological station is a crucial control station for the main
stream of the upper Yangtze River, controlling nearly one-half of
the Yangtze River basin (catchment area: 866,559 km2), the annual
average temperature is 13°C and mean annual precipitation is
1,004 mm. Many reservoirs in these basins have been built and
put into operation, among which, the nonstationary analysis of
Cuntan station only considers the large reservoirs with a total
storage capacity greater than 1 billion m3, and the information of
all reservoirs is listed in Table 1.

3.2 Data

In this study, the collected data include streamflow data,
sediment data, rainfall data and reservoir data in the study area.
Specifically, daily discharge, daily rainfall, and annual sediment load
records during 1960–2019 of Gaochang (GC) station in Min River;
daily discharge, daily rainfall, and annual sediment load records of
Wulong (WL) station in Wu River from 1952 to 2019; daily
discharge and daily rainfall records (1956–2019) of Ankang (AK)
station and Huangjiagang (HJG) station in Han River; daily
discharge, daily rainfall, and annual sediment load records during
1953–2019 of Huangzhuang (HZ) station in Han River; and daily
discharge, daily rainfall, and annual sediment load records of
Cuntan (CT) station on the main stream of Yangtze River from
1960 to 2019. The streamflow data and sediment data are provided
by the Hydrology Bureau of the Changjiang Water Resources
Commission, China (http://www.cjh.com.cn/en/), and the rainfall
data is obtained from the National Climate Center of the China
Meteorological Administration (http://data.cma.cn/site/index.
html).

TABLE 3 Comparison of statistical characteristics for hydrological series before and after the change-point.

Station Hydrological series Change-point Mean Coefficient of
variance (Cv)

Before After Absolute change Relative change (%) Before After

GC Q (m3/s) 1996 16,863.9 13,023.8 −3,840.1 −22.8% 0.278 0.265

S (104 t) 1993 5,199.2 2,721.5 −2,477.8 −47.7% 0.437 0.493

WL Q (m3/s) 2003 12,138.4 8,635.9 −3,502.5 −28.9% 0.306 0.465

S (104 t) 1984 3,298.8 1,209.0 −2089.8 −63.4% 0.381 0.788

AK Q (m3/s) 1987 10,555.5 6,265.2 −4,290.3 −40.6% 0.429 0.653

HJG Q (m3/s) 1984 11,032.9 4,341.6 −6,691.3 −60.6% 0.670 0.878

HZ Q (m3/s) 1984 13,384.5 6,574.7 −6,809.8 −50.9% 0.538 0.703

S (104 t) 1984 7,542.3 792.4 −6,749.9 −89.5% 0.946 0.903

CT Q (m3/s) 1992 48,737.5 43,557.1 −5,180.4 −10.6% 0.230 0.235

S (104 t) 1991 44,239.3 22,030.0 −22209.3 −50.2% 0.243 0.625
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4 Results

4.1 Temporal variations of hydrological
series

The Mann-Kendall test and Pettitt test are used for trend and
change-point testing of annual maximum daily discharge (Q) and
annual sediment load (S) of GC, WL, AK, HJG, HZ, and CT station,
the results are shown in Table 2. From the results in the table, it can
be seen that, except for Q at CT station, the other hydrological
variables of the six stations have significant decreasing trends or
change-points at the significance level of 0.1. It is not difficult to find
that the change-points in the hydrological series are closely linked
with the time of the construction of the large reservoirs in the basin.
Since the nonstationary diagnosis results of flood series at CT station
are not significant, the nonstationary flood frequency analysis of CT
station will not be carried out below.

The inter-annual time series of Q and S at GC, WL, AK, HJG,
HZ, CT station are displayed in Figure 4. It can be seen from the
figure that all hydrological series at the six stations presented
downward trends after 1980 or 1990 when large reservoirs were

built in the basin, which is consistent with the results of Mann-
Kendall test. As displayed in Table 3, both the mean and coefficient
of variance (Cv) of each hydrological series change greatly after the
change-point compared with that before the change-point. In
addition to the mean of Q at CT station reduces by 10.6%, the
mean ofQ at other stations decreases by 22.8%–60.6%, and the mean
of S drops sharply by 47.7%–89.5%.

4.2 Results for the general rainfall-reservoir
index (GRRI)

4.2.1 Identification of effective rainfall
Figure 5 presents the Pearson linear correlation between rainfall

characteristics (including multi-day antecedent rainfall with
20 levels, rainfall amount and rainfall intensity with 16 threshold
levels as described in Section 2.2) and hydrological variables
including Q and S at the six hydrological stations (GC, WL, AK,
HJG, HZ, and CT). It is found that, P7, P6, P4, P5, and P17 are the
most relevant rainfall characteristics forQ at GC,WL, AK, HJG, and
HZ station, respectively. For annual sediment load, A15 and I2 are

FIGURE 5
Identification of the effective rainfall for hydrological variables including Q and S in the study area.
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the most relevant rainfall characteristics for S at GC station, A6 and
I1 are the most relevant rainfall variables for S at WL station, while S
at HZ station is only significantly correlated with A0 (i.e., the annual
rainfall), but has no obvious correlation with the rainfall intensity at
different threshold levels, A6 and I2 are the most relevant rainfall
characteristics for S at CT station. These rainfall characteristics most
correlated with hydrological variables are selected as effective
rainfall to calculate the general rainfall-reservoir index (GRRI).
The probability distribution of effective rainfall for both flood
and sediment load are constructed based on empirical
distribution. For the case that effective rainfall contains multiple
rainfall characteristics, the probability distribution can be deduced
from empirical Copula (Li R. et al., 2020).

4.2.2 GRRI calculation
To calculate the annual values of the general rainfall-reservoir index

(GRRI), the reservoir index (RI) and sediment trapping efficiency (TE)
should be estimated first. The calculation of TE requires dividing a basin
into multiple subareas (as in Figure 6) according to the differences in
geographical location of reservoirs in the basin. The Min River basin is
divided into two subareas, the outlet of the two subareas are Tongjiezi
station and Zipingpu station, and themean annual runoff at the outlet is
470.0 × 108 m3 and 148.0 × 108 m3 respectively. The Wu River basin is
divided into three subareas, the outlet of the three subareas are Yachihe
station, Sinan station and Wulong station respectively, and the mean
annual runoff at the outlet is 100.9 × 108 m3, 271.0 × 108 m3 and 486.4 ×

108 m3 respectively. The controlled basin by HZ station is divided into
five subareas, the outlet of the five subareas are Ankang station,
Huangjiagang station, Huanglongtan station, Baihe station and
Huangzhuang station, and the mean annual runoff at the outlet is
184.6×108 m3, 343.6×108 m3, 55.0×108 m3, 20.0×108 m3 and
455.0×108 m3 respectively. The upstream of CT station is divided
into five subareas, the outlet of the five subareas are Panzhihua
station, Tongzilin station, Xiangjiaba station, Gaochang station and
Beibei station, and the mean annual runoff at the outlet is 567.6 ×
108 m3, 590.6 × 108 m3, 1,433.0 × 108 m3, 841.0 × 108 m3 and 650.6 ×
108 m3 respectively. Then, the TE at GC, WL, HZ and CT station is
calculated by Eqs 11, 12, as shown by the red dashed lines in Figure 7,
the RI of the study area is computed by Eq. 10, as displayed by the blue
dashed lines in Figure 7. Next, the GRRI is calculated by Eq. 7 based on
RI, TE and the probability distribution of effective rainfall obtained in
Section 4.2.1, and general rainfall-reservoir index for flood and annual
sediment load (i.e., GRRI_Q and GRRI_S) are displayed as solid lines in
Figure 7. They all significantly correlated with hydrological variables
including Q and S (Table 4).

4.3 Frequency analysis of flood and
sediment load

The stationary hydrological frequency analysis and
nonstationary hydrological frequency analysis with RR (RI and

FIGURE 6
Sketch diagram of reservoirs in the study area for calculating the sediment trapping efficiency (TE).
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TE) or GRRI (GRRI_Q and GRRI_S) as the covariate are carried out
separately forQ and S at each hydrological station to investigate how
the reservoirs affect downstream flood and sediment load. The
summary of the results for fitting the stationary and
nonstationary probability distribution models to the Q and S is
shown in Table 5. The relative size of SBC values indicates that the
nonstationary models are better than the stationary models for Q
and S at all stations, and the nonstationary probability distribution
models with GRRI as the covariate have better fitting effects than
nonstationary models with RR as the covariate, and the results of KS
test indicating that the selected models are all reasonable. Therefore,
the nonstationary model with GRRI as the covariate is the best
model, which is obviously more suitable for the hydrological
frequency analysis at GC, WL, AK, HJG, HZ, and CT station.
For the nonstationary probability distributions, the location
parameter μt decreases with the increase of RR or GRRI,
revealing the decreasing degree of the frequency and magnitude
of downstream flood and sediment load due to the reservoir effects.

The quantile curve plots (Figure 8 for flood and Figure 9 for
annual sediment load) demonstrate that the magnitude of Q and S
decreases since 1980 or 1990 when a large number of reservoirs are
constructed upstream of the hydrological station, and hydrological
series is well fitted by the best models. Undoubtedly, with the
incorporation of the impacts of effective rainfall, the GRRI can
more conveniently and accurately capture the occurrence of
nonstationarity in the downstream hydrological frequency.
Taking the HJG station and WL station as an example, when the
Danjiangkou Reservoir, 6.19 km upstream of the HJG, was built in
1967, flood discharge of HJG began to decrease. As more reservoirs
were put into operation, flood discharge continued to decrease.
However, some relatively large events still occurred, such as
20,700 m3/s in 1975. When the Wujiangdu Reservoir was
completed in 1983, sediment load of WL began to decrease. As
more reservoirs were constructed, the magnitude of sediment load
kept decreasing. Whereas, some relatively large events still occurred,
such as 3,575 × 104 t in 1996. Obviously, the occurrence of this

FIGURE 7
The time series of RR (RI and TE) and GRRI (GRRI_Q and GRRI_S).
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TABLE 4 Pearson linear correlation coefficients between hydrological variables and the general rainfall-reservoir index (GRRI).

GRRI GC WL AK HJG HZ CT

Q S Q S Q Q Q S S

GRRI_Q −0.311 — −0.520 — −0.535 −0.782 −0.691 — —

GRRI_S — −0.492 — −0.775 — — — −0.780 −0.803

Note: the p-values corresponding to Pearson correlation coefficients in the table are all less than 0.1.

TABLE 5 Summary of the results of stationary and nonstationary probability distribution models for hydrological series. For the Q, the results presented in the
table include three models, that is the stationary model, the optimal nonstationary model with RI as the covariate, and the optimal nonstationary model with
GRRI_Q as the covariate; For the S, the results shown in the table cover three models, namely, the stationary model, the best nonstationary model with TE as the
covariate, and the best nonstationary model with GRRI_S as the covariate.

Station Hydrological series Distribution type Estimations of model parameters SBC p-KS

μt σt ξ

GC Q GA 15,327.830 0.295 — 1,184.719 0.997

GA 9.676–0.649 × RI 0.281 — 1,183.189 0.997

LNO exp (2.265–0.055 × GRRI_Q) 0.279 — 1,180.482 0.998

S GA 4,084.249 0.547 — 1,090.910 0.918

LNO exp (2.121–0.189 × TE) 0.471 — 1,071.256 0.959

GA exp (8.450–1.220 × GRRI_S) 0.443 — 1,067.850 0.880

WL Q GA 11,262.790 0.364 — 1,326.691 0.761

LNO 9.381–1.218 × RI 0.331 — 1,314.822 0.671

LNO exp (2.238–0.096 × GRRI_Q) 0.301 — 1,301.808 0.357

S WEI 2,366.491 1.327 — 1,183.701 0.561

GA 3,075.856–1912.193 × TE 0.412+0.203 × TE — 1,112.294 0.988

WEI 3,562.374–2,217.816 × GRRI_S 2.942–0.868 × GRRI_S — 1,099.619 0.972

AK Q WEI 9,385.536 1.813 — 1,264.880 0.947

WEI 11,688.060–6,175.465 × RI exp (0.917–0.606 × RI) — 1,257.965 0.560

WEI 12,241.830–7,562.779 × GRRI_Q exp (0.921–0.375 × GRRI_Q) — 1,246.721 0.859

HJG Q GA 7,269.016 0.870 — 1,271.562 0.308

LNO exp (2.246–0.195 × RI) 0.828 — 1,253.896 0.477

GA 12,423.160–11404.1 × GRRI_Q 0.532 — 1,196.408 0.892

HZ Q GA 9,725.522 0.715 — 1,358.158 0.520

GA exp (9.736–2.180 × RI) 0.633 — 1,343.763 0.462

WEI exp (9.745–2.021 × GRRI_Q) 2.562 — 1,292.787 0.953

S LNO 7.248 1.538 — 1,227.453 0.908

GA exp (9.555–1.929 × TE) 0.778 — 1,153.628 0.970

WEI exp (9.666–1.960 × GRRI_S) exp (0.753–0.370 × GRRI_S) — 1,148.301 0.893

CT S NO 33,504.810 16,413.560 — 1,343.165 0.892

LNO 10.636–1.828 × TE 0.264+0.289 × TE — 1,276.255 0.983

GA 42,262–35170.510 × GRRI_S exp (-1.332+0.456 × GRRI_S) — 1,270.194 0.953

Note: if p-KS is greater than 0.1, the model passes the goodness-of-fit test at 10% significance level.

Frontiers in Earth Science frontiersin.org12

Li and Xu 10.3389/feart.2023.1204640

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1204640


phenomenon can be well explained by GRRI, while RR is powerless
in this regard.

5 Discussions

The long-term variation in the hydrological series and the
quantile curves of nonstationary probability distribution models
with RR (RI and TE) or GRRI (GRRI_Q and GRRI_S) as the
covariate in Figures 8, 9 demonstrate that upstream reservoirs
evidently altered the downstream hydrological regimes, which is
consistent with the results of reservoirs impacts on the hydrological
regime in the basin found in previous studies (Jiang et al., 2015; Wu
et al., 2018; Xiong et al., 2019; Li R. et al., 2020; Lu et al., 2020). From
Table 5 and Figures 8, 9, nonstationary probability distribution
models with GRRI as the covariate are better than nonstationary
models with RR as the covariate, therefore, the GRRI might be a
useful index for capturing the nonstationarity in the downstream

hydrological frequency induced by reservoirs. Similar results could
be found in the study by Xiong et al. (2019) and Li R. et al. (2020).
The study of Xiong et al. (2019) showed that in the nonstationary
flood frequency analysis of the Han River basin, the rainfall-
reservoir composite index (RRCI) coupled with rainfall
characteristics and reservoir index (RI) has a better model fitting
effect than RI. Li R. et al. (2020) used rainfall amount, rainfall
intensity, sediment trapping efficiency (TE), and rainfall-augmented
sediment trapping index (RSTI) coupled with rainfall characteristics
and TE as dependent variables to establish regression models for
simulating the sediment load in the Wu River basin, they found that
both the linear regression model and the nonlinear regression model
with RSTI as the covariate are superior to the cases with other factors
as the covariate. Due to the combination of effective rainfall, the
GRRI (GRRI_Q and GRRI_S) is significantly different from RR (RI
and TE) (Figure 7). When GRRI and RR are in the range of 0–1,
GRRI is sometimes larger than RR and sometimes smaller than RR,
so the actual reservoir effect may be incorrectly estimated by the RR.

FIGURE 8
Quantile curve plots of stationary probability distribution model and optimal nonstationary probability distribution model with GRRI_Q as the
covariate for flood.
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When large-scale reservoirs are built in the basin, the magnitude of
downstream hydrological variables is generally small in most cases
(Figures 8, 9), however some events with large magnitude may also
occur. For example, most values of Q at HJG station were less than
10,000m3/s after 1967, butQ in 1975was 20,700 m3/s, andmost values of
S at WL station were less than 2,000×104 t since 1983, but S in 1996 was
3,575×104 t. The occurrence of these events may be related to the impact
of rainfall on the reservoir operation. Therefore, rainfall effects must be
considered in addition to reservoir storage capacity when attempting to
accurately quantify the reservoir impacts on downstream hydrological
variables. For example, in this paper, only those multi-day antecedent
rainfall samples corresponding to the timing of the annual maximum
daily dischargewere selected forflood frequency analysis. Thismeans that
extreme rainfall events corresponding to the non-annual maximum daily
discharge cannot be included, resulting in certain errors in the estimation
of rainfall probability distributions. Therefore, peaks-over-threshold
sampling method may be considered to reduce this error when
analyzing the impact of reservoirs on flooding (Xiong et al., 2019).

In the reservoir impact analysis of this study, the results of
the hydrological frequency analysis considering reservoir
impacts have obtained better simulations (Figures 8, 9) and
the change-point results correspond to the time of completion
of large reservoirs in the basin. These results demonstrated that
the hydrological series in the basin is mainly influenced by the
operation of large reservoirs in the Yangtze River basin (Xu and
Zhang, 2018; Li H. et al., 2020; Li et al., 2022; Zhang et al., 2022).

The construction of large reservoirs will undoubtedly affect the
observation data and may lead to nonstationarity, so all large
reservoirs should be considered in the study of reservoir impact
analysis, and small reservoirs with insignificant regulation
effects should be considered as far as possible when data are
available. In addition, reservoir construction is not the only
human activity that has an impact on hydrological variables, for
example, hydrological variables may also be affected by the
underlying surface conditions of the basin, which should be paid
more attention to the study of basins with obvious underlying
surface changes, such as the Yellow River basin in northern
China (Zhu et al., 2015; Wang et al., 2017; Xu et al., 2018; Zhang
et al., 2018). In order to gain a clearer understanding of the
hydrological mechanisms under changing environments, it is
necessary to comprehensively analyze the causes for the changes
in the hydrological series in future research. For example, the
study on floods can consider the influence of artificial flood
diversion and detention, and the study on sediment load can
consider the impact of artificial sand mining activities and land
use and land cover change in the basin.

6 Conclusion

In order to accurately assess the reservoirs impacts on the
downstream hydrological variables and provide theoretical

FIGURE 9
Quantile curve plots of stationary probability distribution model and optimal nonstationary probability distribution model with GRRI_S as the
covariate for annual sediment load.
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reference for ecological sustainable development and agricultural
irrigation, a general rainfall-reservoir index (GRRI) is developed by
coupling effective rainfall that drives hydrological variables and
reservoir regulation indicator in this study. The annual
maximum daily discharge (Q) and annual sediment load (S) of
Gaochang (GC) station in Min River, Wulong (WL) station in Wu
River, Ankang (AK), Huangjiagang (HJG) and Huangzhuang (HZ)
station in Han River, and Cuntan (CT) station on the main stream of
the upper Yangtze River are selected as case studies for performing
the nonstationary hydrological frequency analysis based on GRRI to
illustrate the reservoir effects on the downstream flood and sediment
load. The main findings are summarized as follows.

(1) The Q and S at GC station, Q and S at WL station, Q at AK
station and HJG station, Q and S at HZ station, S at CT station
all have significant decreasing trends or change points, and the
change-points in the hydrological series are closely linked with
the time of the construction of the large reservoirs in the basin.
Compared with the mean of hydrological series before the
change-point, the mean after the change-point has a great
change: Q decreases by 22.8%–60.6%, and S drops sharply by
47.7%–89.5%.

(2) For developing GRRI, the effective rainfall for Q and S are
optimized. The effective rainfall for Q at GC, WL, AK, HJG and
HZ station are 7-day, 6-day, 4-day, 5-day and 17-day antecedent
rainfall (including the rainfall on the day when the flood peak
occurred), respectively. The effective rainfall for S at GC station
is A15 (rainfall amount with an intensity higher than 15 mm/
day) and I2 (rainfall intensity higher than 2 mm/day); the
effective rainfall for S at WL station is A6 and I1; the
effective rainfall for S at CT station is A6 and I2; and the
effective rainfall for S at HZ station is annual rainfall.

(3) All the nonstationary probability distribution models are
better than the stationary models for Q and S at six
stations, and the nonstationary probability distribution
models with GRRI as the covariate have better fitting
effects than nonstationary models with RR as the
covariate. With the incorporation of the impacts of
effective rainfall, the GRRI can more accurately capture

the occurrence of nonstationarity in the downstream
hydrological frequency.
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