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During the tunnel construction process using the drilling and blasting method, the
induced blasting vibration always poses a great threat to the stability and safety of
the adjacent tunnel supporting structure. To improve the efficiency and safety of
tunnel blasting construction, the vibration propagation and peak particle velocity
(PPV) distribution of the lining of an excavated tunnel were investigated during the
blasting of an adjacent tunnel located in Guangxi province. The evolution process
and distribution characteristics of the PPV of the lining of adjacent tunnels were
monitored and analyzed. The results show that the maximum blasting vibration
velocity of the lining of the adjacent tunnel can be shown as: PPVx > PPVz > PPVy;
hence, the PPVx plays a significant role in the vibration of the adjacent tunnel.
According to the tensile stress failure criterion, the PPV threshold was determined
to be 12.7 cm/s in this study. To control the damage of surrounding rock induced
by the blasting vibration, compound wedge-shaped cutting technology, stress
wave dislocation superposition technology, and pre-splitting blasting technology
were employed to reduce the impact of blasting vibration on the excavated tunnel.
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1 Introduction

When a highway is constructed in a mountain area, the neighborhood tunnel is used
frequently, and it is restricted by terrain conditions and environmental factors (Editorial
department of China Journal of Highway and Transport, 2022). As the most widely used and
efficient method for rock excavation in engineering practice, the drilling and blasting
technique is widely used in mountain tunnel excavation (Chen et al., 2023; Liang et al.,
2023). However, the dynamic load induced by blasting can easily damage the bearing
capacity of the surrounding rock and supporting structure, leading to cracking, spalling, and
even collapse of existing tunnel (Li et al., 2014; Xue et al., 2019; Liang et al., 2023). For
instance, on 10 September 2020, during the construction at 540 m of the left tunnel of Leye
Avenue in Leye County, Guangxi, a sudden rock collapse occurred on top of the tunnel. Nine
workers who were working on the tunnel were trapped. The blasting vibration caused by the
explosion always poses a great threat to the stability and safety of a tunnel structure (Zhou
et al., 2020; Cheng et al., 2021; Yu et al., 2021; Xue et al., 2023). Consequently, the influence of
blasting on the stability of adjacent tunnels has attracted wide attention.

At present, the research on the vibration characteristics of tunnel induced by blasting
load can be divided into three categories: theoretical analysis, field test, and numerical
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analysis (Cao et al., 2016; Yang et al., 2022; Xu et al., 2023). (1)
Theoretical analysis: the stress wave theory and tensile stress
criterion are the theoretical basis for the analysis of vibration
response of tunnels (Jiang and Zhou, 2012; Xie et al., 2016). Li
et al. (2013) established the motion equation of an adjacent tunnel
structure according to the propagation of the blasting stress wave
and theory of energy conservation, calculating the stress distribution
of a tunnel. They then proposed a theoretical method for predicting
the dynamic response of this tunnel. Chen et al. (2017) employed the
separation of variables method to solve the displacement potential
function for the propagation of blasting-induced vibration waves.
They discussed the peak particle velocity law in surrounding rock
under different blast loads and surrounding rock parameters. Luo
et al. (2022) derived the frequency domain expression and vibration
velocity spectrum expression for the equivalent blasting load in
porous media through theoretical analysis, and the propagation and
attenuation of the primary frequency of blasting vibration of
multiple cutting holes and caving holes in infinite rock mass
were explored. (2) Field test: the vibration characteristics of the
tunnel structure can be evaluated by the field blasting vibration
monitoring test. Zhang et al. (2008) analyzed the blasting vibration
characteristics of middle rock and concrete lining of bifurcation
tunnel under different modes of cutting blasting. Fu et al. (2011)
carried out vibration monitoring on the vault and side wall near a
tunnel working face, analyzing the blasting vibration characteristic
of the surrounding rock near the blasting source. Dang et al. (2018)
arranged three-dimensional velocity sensors in the bottom foot and
arch waist of an adjacent tunnel, obtaining the blasting vibration
velocity of the lining. Lin (2011) carried out long-term blasting
vibration monitoring, investigating the relationship between the
PPV and charge, and the stability of the tunnel, which was
disturbed by blasting vibration, was then assessed by the dynamic
stress ratio method. (3) Numerical analysis: the numerical analysis
method is being gradually applied to investigate tunnel engineering
with the rapid development of computing technology. Kim et al.
(2006) used the PFC 2D software to simulate the blasting of tunnel
contour holes, and numerical models with different joint angles and
joint spacing were established to analyze the failure mechanism of
tunnel blasting, considering the angle and spacing of discontinuous
interfaces. Liang et al. (2013) used the three-dimensional numerical
analysis method to comprehensively analyze the influence of tunnel
static stress and dynamic stress caused by blasting on the existing
tunnel lining. Shin et al. (2011) studied the influence of blasting
vibration on the performance of existing tunnels from the
perspectives of vibration velocity, displacement, and stress of
lining. Yu et al. (2014) used ABAQUS software to analyze the
blasting vibration characteristics of adjacent tunnels on soft soil
foundation, evaluating the safety of tunnels. Liu et al. (2020)
established the three-dimensional numerical model using
ANSYS/LS-DYNA, analyzing the distribution characteristics of
vibration velocity and stress of adjacent tunnels; the relationship
between vibration velocity and tensile stress of the tunnel lining was
then established. Yang et al. (2015) conducted a three-dimensional
numerical simulation study on rock damage evolution during the
excavation of deeply buried tunnels using LS-DYNA software. The
impact of practical millisecond delay blasting on damage extension
was discussed, and the mechanisms of rock damage and evolution
were then explored during the excavation process of deeply buried

tunnels. Zhou et al. (2016) established a numerical model for an
existing tunnel and an adjacent tunnel under construction at
different spacing values, and the vibration response of the
existing tunnel to the adjacent blasting construction was
analyzed. Yang et al. (2019) employed a three-dimensional
dynamic finite element model to validate field monitoring results,
and the mechanisms that cause the difference between the surface
and inside vibration were discussed in detail.

In general, the vibration criteria of tunnel blasting often simply
refers to the degree of safety allowed for the PPV in the tunnel
construction process. In the safety regulations for blasting, the
allowable range is specified from 10 cm/s to 20 cm/s. However, as
research advances, scholars have discovered a critical defect in that
the peak vibration velocity is used as the unique criterion for
assessing the safety of blasting-induced vibrations in many
practical engineering cases (Chen et al., 2023). In fact, the
vibration response of the tunnel is determined by objective
factors, such as the blasting load and the tunnel’s properties
(Ling et al., 2021; Song, 2022). It is difficult to control blasting
disasters only by referring to the safety regulations for blasting or
similar engineering experiences. Therefore, it is important to analyze
the propagation characteristics of blasting vibration and the
vibration response law of adjacent tunnels, and it is necessary to
explore vibration control technology for reducing blasting vibration.
Blasting disasters can be effectively controlled, and the safety
construction efficiency can be improved.

2 Engineering condition and blasting
vibration monitoring

2.1 Engineering condition

A double-line tunnel was excavated using drilling and blasting
method in Guangxi. The maximum width of the excavation section
is approximately 16.0 m. The minimum horizontal distance between
the tunnels is also approximately 16.0 m. That can be considered a
small clear distance tunnel. The layout of tunnels is shown in
Figure 1. The tunnel passes through the mountain with thin
covering soil, and the large area of bed rock is exposed. The
surrounding rock is slightly or moderately weathered limestone.
However, the rock is hard and complete, and the unconfined
compression strength of part rock sample can exceed 100 MPa.
Physical and mechanical tests were carried out on the moderately
weathered limestone stones collected from the tunnel, and the main
physical and mechanical parameters are summarized in Table 1.

The double-line tunnels were excavated step by step. The right
line was excavated, followed by the left tunnel. Therefore, the right-
line existing tunnel would be disturbed by the vibration caused by
the blasting excavation of the left line. The left tunnel was excavated
by the bench method, and the upper bench profile was excavated by
smooth blasting. The width and height of the excavation section are
16.0 m and 6.6 m, respectively. The design of the excavation footage
is 2.0 m, 2.5 m, and 3.0 m, respectively. Under different footage
conditions, the charge of each blast holes increased slightly with the
increase of footage, and the main parameters, such as the number of
blast holes and delay time, were almost kept the same. The blasting
parameters are listed in Table 2 and Figure 2, respectively. The type
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of hole was defined according to the function of the hole in the
tunnel blasting. The symbols of MS1 and x# were used to represent
the detonation time. The layout of the blasting holes is shown in
Figure 2. Furthermore, to control the blasting vibration, the contour
blasting was divided into two parts. The wall was blasted using the
MS13, followed by the vault blasting at the MS15.

2.2 Monitoring scheme and technology

Based on the propagation theory of stress wave and the
principle of blasting vibration monitoring, the blasting
vibration monitoring test was carried out on the adjacent
right-line tunnel. The layout of monitoring points is shown in
Figure 3. Five monitoring points were arranged on the lining
close to the blasting tunnel, which were numbered as 1#, 2#, 3#,
4#, and 5#, respectively. The vertical position of the monitoring
points was 1.2 m away from the tunnel floor, and the distance
between the monitoring points was 5 m. Monitoring point 3# was
parallel to the working face of the excavating tunnel at the
tunneling direction. Monitoring points 1# and 2# were located
in front of the working face section. The area of the left tunnel
parallel to those measuring points is not excavated yet.
Monitoring points 4# and 5# were located at the rear of the

working face section, where both the tunnels have been
excavated, forming the middle rock. Three-dimensional
velocity sensors were installed at each monitoring point to
monitor the blasting vibration velocity on the lining of the
right excavated tunnel.

In order to comprehensively consider the influence of rock
characteristics, mountain structure, geological structure, and
other factors on blasting vibration, the intelligent blasting
vibration meters are shown in Figure 3, which is composed of
the NUBOX-8016 acquisition equipment and TP3V-4.5 three-
dimensional speed sensor. The measurement range was from
0.0047 cm/s to 35 cm/s, which can simultaneously measure the
vibration signals in the X-horizontal radial, Y-horizontal
tangential, and Z-vertical direction. In order to obtain
accurate and detailed blasting vibration signals, the frequency,
trigger level, acquisition time, and delay time of the instrument
were set to 5 kHz, 0.1 cm/s, 1s, and 20 ms, respectively. The
blasting vibration meter was installed before detonation, as
shown in Figure 3, and this must be activated to await the
trigger and store the vibration data when the vibration
velocity exceeds 0.1 cm/s.

2.3 Monitoring results

Three kinds of field blasting tests with different maximum
charge quantities of a single section were carried out. A total of
15 sets of data were obtained. The vibration velocity data of the
monitoring points in the nearby tunnel are listed in Table 3.

Taking the blasting vibration results at the section of the ZK356
+ 262 as an example, the curve of vibration velocity and time is
shown in Figure 4. It can be seen that eight segments of the blasting
vibration wave were monitored during the blasting. As the charge
amount of the cutting section (MS1) is the maximum, the PPV is
also significantly higher than other segments. Hence, the blasting
vibration of the MS1 influence on the adjacent tunnel lining is
discussed.

FIGURE 1
Position relationship of double-line tunnel.

TABLE 1 Main physical mechanical parameters of moderately weathered
limestone.

Parameters Minimum Maximum Average

Natural density (g/cm3) 2.67 2.67 2.67

Uniaxial compressive
strength (MPa)

40.0 98.5 62.9

Elastic modulus (GPa) 2.68 4.02 3.46

Wave velocity (m/s) 4305 5236 4691

Poisson 0.18 0.23 0.21
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In order to analyze the vibration characteristics of the
adjacent tunnel, the PPV induced by the maximum charge of
28.8 kg, 36.0 kg, and 42.0 kg have been drawn in Figure 5. The
position 0 m on the abscissa represents the blasting working
position, the positive value represents the unexcavated
direction, and the negative value is the excavated direction.
The PPV-x of the adjacent tunnel is the largest, followed by the
PPV-z, and the PPV-y is the smallest; these results indicate that
the horizontal vibration wave plays a significant role in the
vibration of the adjacent tunnel. With the increase of explosive

dosage, the PPV of the monitoring points gradually increased.
In the longitudinal direction of the adjacent tunnel, the PPV at
the blasting location is the largest, and then decays in both
directions of the tunnel. However, when the distance from the
monitoring section is the same, the PPV on the unexcavated side
is slightly higher than that on the excavated side; these results
indicate that the PPV attenuation rate on the unexcavated side is
slower than that on the excavated side. Therefore, more
attention should be paid to the blasting vibration on the
unexcavated side.

TABLE 2 Main parameters of blasting.

Blast hole Time Explosive

Type Number Length (m) Angle (°) Segment Delay (ms) Single hole (kg) Total (kg) Sum (kg)

Cutting hole 12 3.4 41 MS1 0–50 2.4 28.8 28.8

Auxiliary Cutting hole 8 2.6 51 MS3 50–100 1.8 14.4 14.4

Caving hole #1 8 2.4 58 MS5 100–150 1.8 14.4 14.4

Caving hole #2 8 2.2 66 MS7 150–200 1.5 12.0 19.2

Floor hole #1 4 2.1 90 MS7 150–200 1.8 7.2

Caving hole #3 4 2.1 74 MS9 200–250 1.5 12.0 21.9

Floor hole #2 4 2.0 90 MS9 200–250 1.8 3.6

Caving hole #4 7 2.1 90 MS9 200–250 0.9 6.3

Floor hole #3 2 2.0 90 MS11 250–300 1.8 3.6 9.6

Caving hole #5 4 2.1 83 MS11 300–350 1.5 6.0

Contour hole #1 20 2.0 90 MS13 350–400 4.5 27.0 27.0

Contour hole #2 22 2.0 90 MS15 400–450 0.6 13.2 16.8

Bottom foot hole 2 2.1 90 MS15 400–450 1.8 3.6

FIGURE 2
Layout of blasting hole.
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In order to further analyze the difference of the vibration
velocity attenuation characteristic between the unexcavated side
and the excavated side of the adjacent tunnel, the fitting formula
based on the detonation center distance (R) and the single maximum

charge quantity (Q) was used to investigate the PPV of the adjacent
tunnel. The fitting formula can be described as follows:

PPV � K R/Q1/3( )−α � K SD[ ]−α (1)

TABLE 3 Blasting vibration monitoring data of nearby tunnel.

Monitoring
position

Footage
(m)

The maximum
charge (kg)

Segment Monitoring
point

Blasting center
distance (m)

Peak particle velocity (cm/s)

PPVX PPVY PPVZ Resultant
velocity

ZK356 + 262 2.0 28.8 MS1 1# 26.0 6.53 2.90 5.80 9.20

2# 24.5 10.44 3.47 7.29 13.20

3# 24.0 11.29 4.69 8.70 15.03

4# 24.5 6.54 3.01 6.09 9.43

5# 26.0 3.77 2.44 3.97 5.99

ZK356 + 275 2.5 36.0 MS1 1# 26.0 7.50 3.58 3.97 9.21

2# 24.5 12.12 6.47 7.76 15.78

3# 24.0 14.19 7.57 10.05 18.96

4# 24.5 9.31 4.92 6.54 12.40

5# 26.0 6.02 3.04 5.35 8.51

ZK356 + 303 3.0 42.0 MS1 1# 26.0 9.36 2.13 4.65 10.67

2# 24.5 12.12 6.47 7.76 15.78

3# 24.0 17.13 6.54 12.67 22.29

4# 24.5 10.11 3.01 9.43 14.15

5# 26.0 7.26 3.58 3.97 9.02

FIGURE 3
Layout of blasting vibration monitoring points.
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whereR is the linear distance from the explosion source to themonitoring
point (m), Q is the maximum charge quantity (kg), K and α are the
blasting vibration coefficient, which is dependent on rock characteristics
and geological conditions, and SD is the scale distance (m/kg1/3).

Taking the logarithms of formula (1), formula (2) can be
expressed:

lnPPV � lnK − ln SD (2)

FIGURE 5
The PPV distribution of adjacent tunnel.

FIGURE 4
Vibration velocity–time curve.
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Let y � lnPPV, x � ln SD, b � lnK, and formula (2) will be:

y � b − ax (3)
As shown in Figure 6, according to Eqs 1–3, the PPV is fitted

with the proportional distance, and the fitting results of the
unexcavated side and excavated side are obtained.

The stress wave propagation attenuation parameters of the K
and α are determined. The formula of vibration velocity attenuation
(4) is described as follows:

PPVunexcavated � 340.4 · SD−1.55

PPVexcavated � 487.8 · SD−1.90{ (4)

The attenuation law of the blasting vibration in the excavating
direction and excavating section is different. The values of α are 1.90 and
1.55, respectively. Those are relatively close, indicating that the geological
conditions of the rockmass in the tests had tiny differences. The values of
K are 487.8 and 340.3, respectively; the difference between the two values
is obvious, indicating that the excavation state in the excavating direction
and excavated section had a significant impact on the propagation and
attenuation of the blasting vibration.

3 Safety criterion of blasting vibration

3.1 The relationship between PPV and tensile
stress

During blasting excavation, the blasting disturbance generated
by the blasting energy released will eventually propagate outward in
the form of elastic waves. On the wave vibration surface, the
relationship of the peak vibration velocity of the particle and
stress can be expressed as

σ � vρCP (5)
where σ is the dynamic stress on the wave surface (Pa), v is the peak
particle vibration velocity (m/s), ρ is the density of the vibration
medium (kg/m3), and CP is the elastic longitudinal wave velocity of
the vibration medium (m/s).

3.2 The PPV threshold

The damage of the adjacent tunnel lining can be judged according
to the maximum tensile stress criterion. When the tensile stress on the
lining exceeds the tensile strength of the concrete material, it can be
judged that the lining structure has been destroyed.

According to the code for the design of concrete structures, the
design value of the tensile strength of the C25 concrete is 1.27Mpa.
Considering the strain rate effect, the dynamic tensile strength
improvement coefficient of rock is 1.24 (Jiang et al., 2023). The
permitted dynamic tensile stress can be obtained using Formula (5),
and then, the PPV threshold of the adjacent tunnel is calculated. Hence,
the critical value is 12.7 cm/s in this study. In comparison with Table 1,
the blasting vibration is smaller than that of the threshold value. Hence,
it is necessary to employ useful technology to reduce the vibration.

4 Blasting vibration reduction
technology

4.1 Compound wedge-shaped cutting
technology

During tunnel blasting, the satisfactory cutting blasting effect can be
realized using the single-stage large-wedge cutting blasting method
(Zhong et al., 2022). However, the vibration intensity is very strong in
the cutting blasting process as a great quantity of explosives is necessary.
Moreover, the blasting effect is limited by the impact of stress clamping,
andmost of the energy is converted into vibration rather than being used
to break the rock (Tian et al., 2019). Fortunately, as shown in Figure 7, the
compound wedge-shaped cutting can reduce the charge as the additional
free surface will be provided by the middle hole. When the middle hole is
used to break the rock, the stress of the remaining cutting holes will be
released, reducing the clamping effect. The explosive energywill be used to
break the rock effectively as the energy of vibration is reduced.

4.2 Stress wave dislocation superposition

From the vibration monitoring analysis of the blasting test area, it
could be found that the maximum vibration velocity was caused by the
cutting holes. Hence, it is necessary to control the maximum single-
segment charge of the cut blasting. As shown in Figure 8, if the stress
wave generated by the single blasting hole can be superimposed on the
staggered peaks, this can effectively decrease the strength of the seismic
waves resulting from the superposition of the total charge of the blasting
hole. Fortunately, with the development of electronic detonator
technology, the precision of the hole initiation time can be
controlled in 1 m (Iwano et al., 2020). The delay time of each
cutting blasting hole can be controlled to control the blasting effect.

4.3 Pre-splitting blasting

The propagation of blasting seismic waves mainly depended on
the wave impedance of the medium. As shown in Figure 9, when the
tunneling contour is formed with pre-splitting crack, and the
blasting vibration wave reaches the crack, the vibration wave will

FIGURE 6
Blasting vibration velocity attenuation of the adjacent tunnel.
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generate reflection and transmission. The tensile wave will return to
the blast zone, and a portion of the damped compression wave will
be transmitted. The transmitted wave intensity will be weakened,
reducing the vibration behind the pre-splitting crack.

4.4 Analysis of damping effect

The blasting vibration reduction technology is provided and
used in the blasting control area. When the compound wedge-

shaped cutting technology is used, the blasting vibration can be
reduced by about 15%. If the delay time of the cutting blasting hole is
set from 3 m to 5 m, the blasting vibration can be reduced by about
20%. When the pre-splitting holes are arranged at the wall of the
tunnel, the blasting vibration can be reduced by about 20%–30%.
This can reach 60% if the all the contour holes are set as pre-splitting
holes. In engineering practice, the blasting vibration must be
controlled to reduce the risk. It is necessary to analyze the
engineering condition and technical level so that the appropriate
technical methods can be employed.

FIGURE 7
Compound wedge-shaped cutting.

FIGURE 8
Stress wave dislocation superposition mechanism. (A) Simultaneous detonation, (B)Millisecond delay detonation superposition and (C) Dislocation
superposition.

FIGURE 9
The layout of pre-splitting blasting holes.
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5 Conclusion

In this article, the vibration of blasting excavation of a double-
line tunnel project in Guangxi is investigated. The blasting vibration
propagation is analyzed by field monitoring. The relationship
between the maximum stress and the PPV is analyzed, and a
reasonable PPV threshold is proposed. Then, blasting vibration
reduction technology is provided. The research results have been
successfully applied to guide field construction.

(1) The blasting vibration of the adjacent tunnel can be shown as:
PPVX > PPVZ > PPVY, in which the PPVX plays a significant
role in the vibration of the adjacent tunnel.

(2) When the distance from the blasting center to the monitoring
points is the same, the PPV located at the unexcavated side is
slightly higher than that of the excavated side, which
indicates that the attenuation rate of the PPV of the
unexcavated side is slower than that of the excavated side.
Attention should be paid to the blasting vibration of the
unexcavated side.

(3) The relationship between the maximum tensile stress and
PPV of the adjacent tunnel lining is analyzed. According to
the ultimate tensile stress failure criterion, the PPV threshold
of the adjacent tunnel is determined to be 12.7 cm/s in this
study.

(4) Compound wedge-shaped cutting technology, stress wave
dislocation superposition technology, and pre-splitting
blasting technology are employed to reduce the blasting
vibration. The blasting vibration can be reduced from 20% to
60%. The blasting vibration must be controlled to reduce the
risk. It necessary to analyze the engineering condition and
technical level so that the appropriate technical methods can
be employed.
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