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Climate change has led to an increase in the frequency of extreme events, such as
droughts and floods. This study aims to review the literature on the newly
proposed phenomenon known as drought-flood abrupt alternation (DFAA). A
comprehensive summary is provided to round up the numerous approaches
employed to identify DFAA events, as well as its mechanisms and impacts. To
provide a reference for responding and managing the emerging intensity and
frequency of DFAA events, we conclude the paper by listing the insufficiency of
current research and suggesting possible future research directions. As for the
impact of DFAA, besides the loss of life and property which can be caused by any
natural disaster, a DFAA event severely threatens food security by making a lasting
and profound impact on the land productivity through the alteration of the
combining conditions of water, soil, and temperature. As for the future
research directions, existing indexes developed for DFAA identification should
be improved by downscaling the temporal and spatial scale, with interactions of
neighboring drought and flood events taken into consideration. What’s more, to
better protect human society from the losses caused by DFAA, researches on
accurate DFAA prediction are encouraged.
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Introduction

Floods and droughts are not only the most commonly occurring natural disasters
globally (Bola et al., 2014; Yu et al., 2014; Daryanto et al., 2015; Amrit et al., 2020; Hameed
et al., 2020; Global Natural Disaster Assessment Report, 2021; Han et al., 2021), but also the
natural disasters causing the most significant damage to the economy, human life, and
agricultural production. Floods and droughts have thus been the focus of extensive research
in hydrological science, covering the occurring patterns, causes, and impacts (Samuel &
Sivapalan, 2008; Apurv & Cai, 2020; Mtewele et al., 2021).

Climate change and intensive human activities have highly disrupted global circulation
systems and led to a radical change in the pattern of extreme precipitation during the 21st
century. The frequency and intensity of floods and droughts have therefore increased
alarmingly, while the duration and timing of these events have become more unpredictable
(Jhong & Tung, 2018; Lehner et al., 2006; Zhang & Cong, 2014; Duan et al., 2022). An
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increase in drought occurrence has been explored worldwide, like in
the Amazon Basin, India, North America, Africa, and Asia (Duffy
et al., 2015; Duan et al., 2016; Xu et al., 2019; Miao et al., 2020).
Meanwhile, the return period of a fixed flood magnitude has
descended significantly over the last two decades. A 50-year flood
flow before the 20th century may have decreased to a 20 or 5-year
flood (Latif & Mustafa, 2020). What’s more, the pattern of flood
timing within a year has become ambiguous due to early snowmelt
or the increasing occurrence of extreme rainstorms (Yu et al., 2021;
Singh et al., 2022).

Under these circumstances, floods and droughts, which were
considered as separate disasters, have now tended to emerge into one
phenomenon. It is called drought-flood abrupt alternation (DFAA) (or
dry-wet events) and refers to the rapid shift between floods and droughts
within a year. For example, the downstreamof Pearl River Basin in South
China, where Hong-Kong and Macao are located, had just ended year-
long drought (fromOct. 2020 toApr. 2022) before it abruptly had aflood
with a 100-year recurrence period (Jun. 2022).

A storm surge coinciding with extreme flooding in a delta area
can lead to regional flooding; heavy rain combined with earthquakes
can trigger landslides (Yang et al., 2010; Bai et al., 2013). Multi-
hazard events can always undoubtedly induce greater loss in
economy and life than just a single disaster. And just like any
other multi-hazard event, a DFAA can pose a greater threat to eco-
environment, social and humanistic systems than a single flood or a
drought event (Zhou & Liu, 2018; De Luca et al., 2020; Xue et al.,
2022). To keep up with the increasing frequency of DFAA
occurrence, more researchers have put great effort in the study of
DFAA (Tang & Shao, 2007;Wang et al., 2012; XiongW. et al., 2017a;
Yang, et al., 2019a; Qin et al., 2019; Wang J. H. et al., 2021a; Gao &
Zhao, 2022). Tendency of publications on DFAA topic is shown in
Figure 1.

In order to protect human society from DFAA and to set up
emergency plans for DFAA, current studies have tried to explore the
generation, pattern and impact of DFAA (Wu et al., 2006; Shan et al.,
2015; Chen et al., 2020; Bi et al., 2021; Ford et al., 2021; Yu et al.,
2021; Ansari & Grossi, 2022). To study the generation of DFAA

events, the physical mechanism needs to be analyzed on the basis of
the precise definition and extraction of a DFAA event. Also, the
temporal or spatial pattern of DFAA can be easily explored once the
events themselves can be extracted efficiently from available
recording data. Besides, as the basis of a scientific issue, it is of
first priority to set up the definition of the phenomenon studied.
Therefore, this review starts from the definition of DFAA and the
indexes used to refer to a DFAA event.

Since the patterns of DFAA events differ from country to
country, area to area, and the results generated in previous works
can hardly be of any reference to researches afterward once the study
area is changed, the topic of DFAA is not combed through in this
paper. As for the impact of DFAA, its major strike on human society
is the impact on the eco-environmental system, especially on the
aspect of soil productivity and food production (Pan et al., 2022).
Therefore, the progress in exploring the eco-environmental impact
of DFAA is covered in this review.

Meanwhile, although the forecast and prediction of DFAA
events has numerous significance for setting-up disaster-
protection policies, this topic is not covered in our paper due to
the fact that little quantity of work related is done. Overall, this
review covers the current research on DFAA. In particular, it focuses
on three key aspects: 1) the definition of DFAA and the indexes
constructed to indicate DFAA; 2) the physical mechanisms of
DFAA; and 3) the eco-environmental impact of DFAA. We then
conclude the paper by detailing the gaps in the current research and
propose possible directions for future work.

Defining the drought–flood abrupt
alternation

In previous researches, there have been two terms referring to
the phenomenon of the abrupt transition between floods and
droughts: one is “drought-flood abrupt alternation” and another
is “dry-wet events” (Yang, Weng, et al., 2019b; Wang Y. et al.,
2021b). And between these two terms, drought-flood abrupt

FIGURE 1
Tendency of publications on DFAA topic.
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alternation has been used extensively (more than 80% of the papers
that we have reviewed choose to use it). Compared to “drought-flood
abrupt alternation”, “dry” and “wet” used in “dry-wet events” lacks
clarified boundaries to define the intensity of dry or wet. Therefore,
although no discussion has been made on the naming of this
phenomenon, we have applied the term “drought-flood abrupt
alternation” (DFAA) to depict the situation that a flood and a
drought happened closely in time in the same area.

Although the number of studies related to DFAA has increased
over the past 7 years, the blank of a unified definition of DFAA has not
yet been filled up (Bi et al., 2021). This review does not aim to give a
certain definition. However, it can be generated from existing works
on DFAA, in order to define an event of DFAA, three aspects have to
be settled: 1) the direction of the abrupt turn, i.e., whether it is turning
from flood (wet) to drought (dry), or from drought (dry) to flood
(wet); 2) the number of abrupt turning times in one event, for
example, a “flood-to-drought” (FTD) or a “drought-to-flood”
(DTF) event contains one abrupt turn, and a “flood-to-drought-to-
flood” (FDF) or a “drought-to-flood-to-drought” (DFD) event
contains two (Ma, Yang, et al., 2019; Shi et al., 2021); 3) the length

of time range of the abrupt turn within a DFAA event. Most existing
researches consider a realm of four to 6 months to be a common time
span for a FTD/DTF shift (Wu et al., 2006; Shan et al., 2015).

The multiple definitions of DFAA have resulted in numerous
approaches for the construction of indexes that indicate and identify
DFAA from historical records. For instance, indexes have been
proposed using Standardized Precipitation Index (SPI) or Palmer
Drought Severity Index (PDSI) for various time scales, such as days
or months (Wu, 2006). Additionally, the frequency of DFAA events
under a fixed time span varies with the climate features and regions.
Thus, defining an index that can be used in both (semi-)arid and
(semi-)humid areas, or that fits both Mediterranean and subtropical
monsoon climate zones, proves to be a complicated task.

Identifying drought–flood abrupt
alternation with existing indexes

Of all the studies reviewed in this paper, which were all
published in journals related to hydrology and natural hazards,

FIGURE 2
The progress of the index used to extract DFAA events from historical records.
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over 66.7% works covered the issue of DFAA identification. Building
an index to identify a DFAA event is the basis for research on other
aspects of DFAA. It not only helps turn a natural phenomenon into a
theoretical concept explicitly defined, but also presents this concept
as a quantifiable formula. It provides a tool to analyze the recorded
data and recognize historical DFAA events, allowing for the
temporal and spatial patterns of DFAA events to be further
explored. Similarly, building an index facilitates the investigation
of the physical mechanisms and impacts of DFAA. The progress of
the index used to extract DFAA events from historical records is
shown in Figure 2.

The initial identification of DFAA was developed solely
according to precipitation or the number of days of precipitation,
with droughts and floods generally selected independently. The
droughts were then rated by the number of consecutive dry days,
while the floods by the intensity of the initial rain or the precipitation
under various rainfall scenarios (Bi et al., 2019; Liu, 2019; Wang
et al., 2019). DFAA events were subsequently identified with
statistical methods such as the run-length theory (Tang & Shao,
2007; Xiong Q. et al., 2017b).

Following the previous research, tools to recognize DFAA
events were improved by applying existing indexes such as the
SPI and the percentage of precipitation anomalies. The method
of applying existing indexes is straightforward to understand
and the required data can be obtained easily. The indexes in
these studies were first calculated on a monthly or seasonal
basis, and threshold values for different ranks of DFAA events
were then set accordingly. DFAA events of different ranks could
therefore be easily captured by comparing the index values with
the threshold values (Chen et al., 2020; Gao & Zhao, 2022).
Zhang and Li (2019) extracted DFAA events recorded in the
Pacific West Bank between April and September of every year
for more than a decade using the SPI. The results were in
accordance with those extracted by the percentage of
precipitation anomalies.

The SAPI (standardized antecedent precipitation index) has also
been employed to determine the timing of precipitation when
selecting DFAA events. For example, Yang et al. (2021)
calculated the cumulative precipitation volume for no more than
100 days, which was then used to generate SAPI thresholds to
classify droughts and floods. The results were in agreement with
the recognition of DFAA under a seasonal time scale (Wang et al.,
2012; Yang, et al., 2019c).

Several studies have introduced the percentage anomaly (Pa) of
precipitation and the continuous days without available
precipitation (Dnp) into the identification of DFAA (Qin et al.,
2019; Zhang et al., 2019; Wang J. H. et al., 2021a). However, the
number of case studies is not sufficient to test the representativeness
and stability of this index.

Additional existing indexes have also been used to detect DFAA
events. For example, Zhao et al. (2020) and Yang, Chen, et al.
(2019a) employed the standard runoff index (SRI) and standardized
weighted average precipitation (SWAP) to determine the temporal
and spatial patterns of DFAA events in Hanjiang River Basin.
Results showed that, compared with applying SPI simply, SWAP
and SRI can better reflect elements such as the intensity of a drought,
the duration and the intensity of a flood, and the turning point of
DTF/FTD abrupt alterations.

DFAA can be easily identified by using just a single
meteorological factor as precipitation. However, the features of
drought are not fully reflected in these studies as other relevant
elements, such as evaporation, are ignored. Several scholars have
adopted both precipitation and air temperature to indicate a DFAA
event, improving the method by replacing SPI with SPEI
(standardized precipitation-evapotranspiration index). Zhen et al.
(2023) calculated SPEI for monthly, seasonal, and annual scales to
extract DFAA events in inland Eurasia, and the reliability of these
results were tested by comparing them with historical records.

Identifying drought-flood abrupt
alternation by building up indexes

Runoff drought-flood abrupt alternation
index (RDFAI)

Gradually, new indexes have been specifically proposed to identify
DFAA. The indexesmost widely adopted are the runoff drought-flood
abrupt alternation index (RDFAI) and the Dry-Wet Abrupt
Alternation Index (DWAAI). RDFAI contains both the long-cycle
drought-flood abrupt alternation index (LDFAI) and the short-cycle
drought-flood abrupt alternation index (SDFAI). In these indexes,
DFAA is identified as an integrated event rather than a composition of
two neighboring flood or drought events. The intensity and time scale
of a DFAA are both shown in one index. LDFAI was first proposed
among these indexes by Wu et al. (2006) for the lower Yangtze River
area, where the monsoon climate dominates and over 60% of
precipitation concentrates in summer (May to August). The index
considers both FTD and DTF, and it can be calculated as follows,

LDFAI � R78 − R56( ) · R56| | + R78| |( ) · 1.8− R56+R78| |

where R78 refers to the SPI during July and August; R56 is the SPI
during May and June, when R<0.5, it refers to drought and when
R≥0.5, it refers to flood; (R78 − R56) indicates the intensity of the
abrupt alteration; (|R56| + |R78|) indicates the joint intensity of flood
and drought; and 1.8−|R56+R78| is the weighting coefficient, which is set
to reduce the weight of a single flood or drought event while
increasing the weight of a DFAA event. In order to fit for
different climates in different areas, the weighting coefficient is
not a fixed value. As in Lu (2009), 0.9 was found to be more
appropriate for the Mississippi Valley.

LDFAI is an easily-built and quantifiable index and has thus
been used to identify DFAA in sub-tropical monsoon, mountain,
and Alpine mountain climate areas (Sun et al., 2017; Zhen et al.,
2021). However, studies using LDFAI generally focus on selecting
DFAA events occurring between April and September. Moreover,
application of LDFAI has not significantly improved the recognition
effect compared to SPI. Previous work has also revealed an increase
in uncertainties with LDFAI (Shan et al., 2015; He et al., 2016; Bai
et al., 2019).

Along with the application of LDFAI in different regions, the
numbers used in the original formula to refer to different months
have been conceptualized to only represent the months before or
after the alteration point. In the original formula, R78=SPI in July
and August, in the improved formula, Rj=SPI in months that are
after the turning point (abruption timing) from drought to flood or
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flood to drought, j can refer to more months other than just July and
August (Yuan et al., 2021). Similarly, R56 in the original formula has
been improved to Ri referring to the months before the turning
point.

Inspired by LDFAI, Zhang et al. (2014) proposed SDFAI, which
is calculated as follows,

SDFAI � Rj − Ri( ) · Ri| | + Rj

∣∣∣∣ ∣∣∣∣( ) · 3.2− Ri+Rj| |

where 3.2 is the weighting coefficient generated and tested by setting
j and i as 8 and 7 (or 7 and 6, or 6 and 5).

Compared to LDFAI, SDFAI narrows down the time scale from
neighboring seasons to neighboring months by keeping the basic
structure of LDFAI and changing only the weighting coefficient.
SDFAI is able to better identify a DTF compared to LDFAI (Sun
et al., 2012). Thus, LDFAI and SDFAI have been combined and
considered as the long-and-short-cycle runoff drought-flood abrupt
alternation index (RDFAI) (Fan et al., 2019).When RDFAI is greater
than 1, it represents a DTF event, and when RDFAI is smaller
than −1, it indicates a FTD event (Bi et al., 2021).

Dry-wet abrupt alternation index (DWAAI)

Based on RDFAI, Shan et al. (2018) proposed a DFAA index at
the daily scale known as the dry-wet abrupt alternation index
(DWAAI), based on the following formula:

DWAAI� K+ SPApre−SPApro( )× SPApre

∣∣∣∣ ∣∣∣∣+ SPApro

∣∣∣∣ ∣∣∣∣( )[ ]×a− SPApre+SPApro| |

K � ∑
n

i�1

SAPIi − SAPI0
i

( )

where SPApre and SPApro are the standardized precipitation
anomalies calculated respectively before and after the DTF
alteration; SAPIi and SAPI0 refer to the standardized antecedent
precipitation index (McQuigg, 1954) on the ith day after and the last
day before the alteration date, respectively; and n is the number of
days during the period after the alteration date, i.e., Pro-period.
Demonstration of a DFAA event is shown in Figure 3.

DWAAI further narrows down the time scale to days, and
improves the extraction efficiency of DFAA events, particularly
for those events less than a month. However, in Shan’s work,
only DTF events were considered, and DWAAI was tested in a
subtropical humid area. Previous research also claims that dry-wet

abrupt alternations generally occur in (semi-)humid, subtropical
humid, and tropical humid regions (Chen et al., 2020; Zhao, Deng,
et al., 2022a). Wang et al. (2020) used DWAAI to select both the
DTF and FTD events in the Poyang Lake area by applying a 52-year
data record (from 1960 to 2012). The value of weighting coefficient
‘a’ in the formula of DWAAI was determined to be highly empirical,
affected by the local climate characteristics and the temporal scale of
the research. More specifically, high uncertainties exist in the
calibration of “a” in different river basins. Future work should
investigate the impacts of the value of “a” on the selection of DFAA.

The detection of DFAA requires further research, irrespective of
whether new or existing indexes have been used. There is no unified
approach for different areas under various spatial and temporal
scales, and the uncertainties and sensitivity remain to be
comprehensively tested. In the following, we describe several key
aspects that require future work and research.

First, indexes such SPI, RDI, and SPEI are not completely
independent (Bi et al., 2019; Bonsal et al., 2011; Zhao et al.,
2020). How to select existing indexes, and how to differentiate
results generated by different yet correlatively related indexes
remains to be determined.

Second, the applications of RDFAI and DWAAI are limited in
the temporal scale and can be further tested in different river basins
across the globe. The number of DTF and FTD occurrences are
usually not even within 1 year or a time interval of measurement. In
the space of 1 year or more, if DTF happens once, maybe FTD does
not happen at all or happens twice or three times. Thus far, these
indexes are more commonly applied in humid regions, where FTD
occurs more frequently than DTF. Therefore, there is a gap in the
application of RDFAI and DWAAI in more arid/semi-arid areas. In
addition, whether RDFAI and DWAAI can efficiently detect DFAA
in the months from October to March also needs to be verified
(Liang et al., 2022). Current indexes cannot fully indicate DFAA
without considering its spatial pattern, which can easily lead to
missing DFAA events in small areas (Tu et al., 2022).

Third, current research generally takes precipitation as the sole
element when defining DFAA. Despite limited studies considering
several characteristics (e.g., temperature), other elements such as
previous soil moisture content and land use, which can affect the
generation of DFAA events, are rarely included. Thus, future
research should determine the major indicators for DFAA and
how to build an index using these indicators while controlling
the uncertainties via calibration. In addition to precipitation
indexes, previous studies have also attempted to identify DFAA

FIGURE 3
Demonstration of a DFAA event.

Frontiers in Earth Science frontiersin.org05

Bai et al. 10.3389/feart.2023.1203603

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1203603


using existing drought indexes, including the aggregate drought
index (ADI), temperature soil moisture precipitation drought index
(TMPDI) and palmer drought severity index (PDSI). Compared
with SPI, PDSI has the advantage of attaching the importance to the
impact of evapotranspiration on the soil moisture deficit, and an
improved version of PDSI, namely, the self-calibrating palmer
drought severity index (scPDSI) has been developed. The
advanced application of these indexes in DFAA identification is
reserved for future research, and the theory of constructing such
indexes can provide a reference for building an ideal DFAA index.
The advantages, disadvantages, sphere of application of different
indexes used to identify DFAA event are summarized in Table 1.

Analyzing physical mechanisms of
DFAA

Numerous studies have investigated the physical mechanisms
and impact of DFAA events (Bi W. X. et al., 2019; Gao Y. et al., 2019;
Bi W. et al., 2020; Yuan Y. et al., 2021).

A persistent lack of rainfall leads to a drought, while a storm
or continuous precipitation leads to flooding. The generation of
a DFAA event is the abrupt alteration between these two
scenarios and is therefore highly related to the local
precipitation, namely, the hydrological cycle (Yu et al., 2021).
The most straightforward approach to discover the physical
mechanisms is to detect the relationship between the DFAA
and the indexes of rainfall, such as SPI and Pa (Bai et al., 2019;
Xie et al., 2021; Zhang et al., 2022).

For example, Li et al. (2017) analyzed the characteristics of the
April-to-June rainfall with a return period between 10 and 20 days.
Time-lagged cross-correlation analysis was carried out to detect the
relationship between 10 and 20 days rainfall and DFAA. Zhao,
Deng, et al. (2022b) and Tang et al. (2021) compared the spatial
and temporal patterns of precipitation and DFAA events, revealing
the degree of precipitation concentration to be a key factor triggering
DFAA. By detecting DFAA with SPEI, Qiao et al. (2022)
demonstrated the duration, intensity, return period, and temporal
and spatial pattern of DFAA; and analyzed abrupt alterations in
rainfall and evapotranspiration. They concluded that the imbalance

TABLE 1 Features of different indicators used in DFAA identification.

Category Indicator Meteorological factors
taken into

consideration

Historical records
required

Detecting
efficiency

Applied scale
(temporal and

spatial)

Directly from
measurement data

Consecutive dry/rainy days
(with intensity of initial rain

under consideration)

precipitation Multi-annual daily
precipitation

- Multi-annual and
annual, on spot

Based on existing
indexes

SPI precipitation Multi-annual daily
precipitation

= PA Seasonal (Apr.-Sep.),
region/river basin

Pa (percentage of precipitation
anomalies)

= SPI Seasonal (Apr.-Sep.),
region

Dnp (continuous days without
available precipitation)

- Multi-annual and
annual, region

SAPI (standardized
antecedent precipitation

index)

- Seasonal, region

SWAP (standardized weighted
average precipitation)

>SPI Seasonal (Jun.-Oct.),
region/river basin

SRI (standard runoff index) runoff Multi-annual daily runoff >SPI Seasonal, region/river
basin

SPEI (standardized
precipitation-

evapotranspiration index)

precipitation and
evapotranspiration

Multi-annual daily
precipitation, temperature

(average, maximum,
minimum), sunshine
duration, relative

humidity

- Seasonal and annual,
region

Building up indexes
specifically for

DFAA

LDFAI (long-cycle drought-
flood abrupt alternation

index)

precipitation Multi-annual daily
precipitation

>SPI (highly dependent
on the coefficient; efficient

for DTF events)

Seasonal (May. to
Aug.), region/river

basin

SDFAI (short-cycle drought-
flood abrupt alternation

index)

>SPI (highly dependent
on the coefficient; efficient

for DTF events)

Seasonal (Apr. to Sep.)
and annual, region/

river basin

DWAAI (Dry-wet Abrupt
Alternation Index)

efficient for DTF and FTD
events

Within a month,
region/river basin

In the array of “Detecting Efficiency”, i.e., the efficiency of detecting DFAA events with a certain indicator, “-”means it has no reference to define its efficiency, and it is unknown whether it is

higher or lower than other indicators.
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in regional water vapor was the major driving factor for the abrupt
alteration from flood to drought or drought to flood in a DFAA
event.

Investigating how the local water cycle alters precipitation can
provide us with a deeper understanding of DFAA mechanisms. For
example, Yu et al. (2021) focused on the water vapor budget and the
transformation of the water vapor transport channel, while
Li et al. (2017) explored the water vapor source region and water
vapor transport channel to determine the potential connection
between the water cycle and DFAA.

However, precipitation alone cannot fully explain the physical
mechanisms of DFAA events. Therefore, along with the
development of research, several scholars have included
meteorological factors such as atmospheric temperature and wind
speed to depict the generation process of DFAA (Chen et al., 2020).
Previous studies have employed regression methods (e.g., the
enhanced regression tree) to detect the driving factors of DFAA,
identifying elements such as precipitation, evaporation, wind speed
(wind field, wind pressure), temperature, moisture, etc., (Yuan et al.,
2021; Zhang et al., 2021).

Several scholars have combined precipitation, temperature, wind
speed, and other meteorological factors as the embodiment of certain
weather events (including sea surface temperature (SST) anomalies) or
the local reflection of the macro-scale circulation phenomenon such as
atmospheric intra-seasonal oscillations (ISO) or the El Niño-Southern
Oscillation (ENSO) (Feng et al., 2012; Shen et al., 2012; Li et al., 2014;
Shan et al., 2018; Wang, Xiao, et al., 2021a; Yu et al., 2021; Zhen et al.,
2021; Zhao, Zhang, et al., 2022a). Current work has reported that DFAA

events in the Pacific West Bank are closely related to astronomical
phenomena such as sunspot bursts and large-scale circulations including
air-sea interactions in the tropical Indian Ocean, the summer monsoon
in the South China Sea, western Pacific subtropical high air pressure,
western pacific warm pool, the enhancement of the East Asian trough,
the thermal effect of Qinghai-Tibetan Plateau, and ENSO (Zheng et al.,
2017; Yuan et al., 2021; Zhang et al., 2021).

In addition to the atmospheric circulation and sea temperature
anomalies, other environmental factors such as regional
topographical conditions, low-frequency circulations, and
hydraulic engineering conditions are reported to affect the
formation of DFAA events (Tang & Shao, 2007; Zhang et al.,
2007; Wang et al., 2019). The conclusions on the generation of
DFAA provide a theoretical basis for the prediction of DFAA
through coupling with the GCM (Global Climate Model) data,
among which RCPs climate scenarios (a series of integrated
enrichment and emission scenarios) are used as input to GCM.

Exploring the eco-environmental
impact of DFAA

The impact of DFAA is discussed under the realms of disaster
protection, the local environment, and biological systems. As food is
the key factor to social security and stability, and the “water-energy-
food nexus” is one of the most important issues in hydrological
sciences (IHAS), determining the impacts of DFAA events on food
production and the crop growing environment has attracted much

FIGURE 4
Structure of present researches and proposed future directions.
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attention (Yu et al., 2014; Daryanto et al., 2015; Ma, Weng, et al.,
2019; Bi et al., 2021). The impact of DFAA on essential elements for
grain production, such as water, soil, and temperature is both direct
and intense. Current research has selected indicator factors such as
soil moisture, soil microorganisms, soil salinization, land
degradation, and soil erosion to discuss the DFAA impact on soil
(Gao & Zhao, 2022). Research on land productivity reduction after
DFAA can be differentiated according to the crop type (generally
maize or rice). The time scale for such research can be seasonal (e.g.,
summer maize) or yearly (Bi et al., 2020).

Due to its extreme sensitivity to the combination of water and
temperature, rice is the crop type mostly affected by DFAA. Thus,
rice has become a major research object, particularly in countries
that mainly consume rice (Xiong, Shen, et al., 2017a; Yan & Chen,
2013). Scholars have selected the characteristics of roots, leaves,
yield, and grain quality to represent the physiological properties of
the affected rice (Bi et al., 2020). By detecting the change trends of
these properties, the impact of DFAA on rice production is analyzed.
In order to investigate the correlation between DFAA and rice
production changes, and to further quantify the impact of DFAA
on rice, Chen et al. (2018) employed the Hydrus model to simulate
the process of DFAA in irrigated areas and the Jensen model to
simulate the reduction in rice production. Their study provides a
reference for further research on quantifying the impact of DFAA on
rice production at the microscopic scale.

The results of the current research reveal that in general, DFAA
has a greater impact on yield compared with a single flood or
drought event. In particular, yield is affected the most greatly by
DFAA, followed by drought, and subsequently by flood (Gao et al.,
2019). Despite the impact of DFAA on the local bio-environment
system, the feedback of different bio-environment systems with
varying land use types can also act towards the process of DFAA. For
example, Wang et al. (2019) discovered that after a DFAA (flood-to-
drought) happened in three regions, respectively dominated by
shrubs, grasslands, and wetlands, the temperature after a drought
is usually high, and the temperature decreased faster in shrubs >
grasslands >wetlands. Future work should investigate how this
interaction may reinforce or trigger a DFAA event.

Discussion and conclusion

This review rounds up the approaches developed to identify a
drought-flood abrupt alternation event (DFAA), as well as the
corresponding physical mechanisms and impacts of a DFAA.
Based on the comprehensive review, several directions for future
research are proposed. Structure of present researches and proposed
future directions is shown in Figure 4.

First, the definition needs to be settled, by answering the
questions that have been listed in the second section of this
review. Meanwhile, the issue of time scale does not only exists
for the definition of DFAA, but also for the identification of DFAA
by building up indexes, RDFAI and DWAAI are two widely used
and soundly developed indexes for identifying a DFAA event. The
uncertainty of applying these indexes highly lies in the calibration of
the contained weighing coefficients, which is relevant to the
temporal scale of the DFAA event intended to be detected. In
existing works, the establishment of RDFAI is based on the

assumption that a DFAA event occurs in the summer (from
April to September in a monsoon climate area). However, a flash
flood following a drought in winter (or dry spell) can also lead to a
DFAA (DTF) event. Therefore, RDFAI should be improved so that it
can be applied in different areas on an annual scale.

In addition to the issue of temporal scale, the spatial scale of
indexes being built up and applied also needs to be further studied.
In the literature, the smallest spatial scale on the formation of a
DFAA event is a large river basin, covering different types of land use
(e.g., smaller water basin, city and rural areas) at the same time.
DFAA events may happen on a smaller spatial scale. Research on the
formation of DFAA events has encountered challenges in
downscaling limits for the spatial scale. Physical mechanisms are
largely discussed on a regional basis. However, the formation of
DFAA in a watershed basin is not well studied, nor is the impact of
terrain/topography and land use on a local DFAA. Therefore, how to
downscale is a future direction in the aspect of DFAA identification.

Furthermore, the DFAA identification results based on the
RDFAI/DWAAI or the simple SPI do not differ substantially
because they are all based on the data of precipitation. Existing
discussion on additional contributing factors other than
precipitation is not adequate. Whether it is warranted to develop
additional indexes specifically for DFAA identification should thus
be discussed.

Moreover, neighboring drought and flood events may not be
entirely independent according to current research on the physical
mechanisms of DFAA events. Therefore, to identify a DFAA event,
future research on DTF and FTD events should account for the
interactive relationship between neighboring drought and flood
events.

As for the impact study of DFAA, current researches have
discussed the impact of DFAA events on soil characteristics,
rainfall, and regional vegetation, with the majority of studies
investigating the impact on food production. Future work should
explore the effects of DFAA on other eco-system environments,
as well as urban infrastructures including flood-preventing
engineering projects.

As for the generation of a DFAA, or to say, the physical
mechanism of a DFAA, existing works mainly focused on the
direct influence of meteorological elements or anomaly climatic
events, few considered the connection between the regional
feedback after the abrupt alternation within a DFAA period
and the occurrence of the next phase of this DFAA event.
Judged from this perspective, future researches can examine
whether specific areas with a particular combination of
vegetation, land use, and climate features can trigger and
intensify DFAA events and the interaction between these
elements and DFAA events.

In addition to the dimensions of DFAA covered in this
review, there are other branches of DFAA with too few works
to be reviewed in this paper but are of enormous value and
waiting to be further explored. Technique for the forecasting and
prediction of DFAA is one of these branches. It is key to
determine effective strategies for DFAA events. Attempts have
been made to forecast DFAA events based on the Global
Atmospheric Model (GCM) under different RCPs and WRF
models integrated with PRISM (Yang, Weng, et al., 2019b;
Chen et al., 2020). Future research is required to enhance the
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accuracy of prediction on the regional, catchment, and city
scales.
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