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In natural terrain scene UAV image matching, traditional feature point-based
methods often have problems such as an unstable number of extracted
feature points, difficulty in detecting feature points in weak texture areas,
uneven distribution, and low robustness. Deep learning-based image matching
methods can produce larger and more reasonably distributed matching pairs, so
this research paper tries to performUAV imagematching based on a deep learning
LoFTR algorithm for natural terrain scenes. The critical technical process was: first,
the LoFTR algorithm was used to generate dense feature matching, and then the
epipolar line constraints were used to purify the interior points, specifically, this
study used the MAGSAC++method to estimate the fundamental matrix, eliminate
the wrongmatching pairs, and finally get reliable matching results. In this research
paper, six sets of visible images taken by different UAVs equipped with different
sensors in the field were selected as experimental data to test the method and
were compared and analyzed with the traditional classical SIFT, ASIFT, and AKAZE
algorithms and the KeyNet-AdaLAM deep learning method. The experimental
results show that the method in this study obtains a dense number of robust
matching pairs with uniform spatial distribution in the UAV image matching of
natural scenesmainly inmountainous areas, and the comprehensive performance
is higher and more advantageous than the comparison methods.
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1 Introduction

With the rapid development of software and hardware of low-altitude UAV
photogrammetry technology, its unique advantages of high-precision spatial resolution
and high time-sensitive responsiveness can provide timely and reliable 3D scene information
for natural disasters such as landslides and mudslides. Image matching quality and speed
have become the key to data processing (Ji, 2018). At present, the mainstream UAV remote
sensing image feature matching methods mainly include traditional feature point-based
methods and deep learning-based methods. Feature point-based matching methods
generally detect feature points first, then describe them using descriptors, and finally
calculate the similarity of feature vectors based on the descriptors, such as the scale-
invariant feature transform (SIFT) (Lowe, 2004) algorithm, the ORB (Rublee et al., 2011)
algorithm, HARRIS (Haeeis and Stephens, 1988) algorithm, SURF (Bay et al., 2008)
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algorithm, the full-space affine invariant (ASIFT) (Yu and Morel,
2011) algorithm, the BRISK (Leutenegger et al., 2011) algorithm,
and KAZE (Alcantarilla et al., 2012)/Accelerated-KAZE
(Alcantarilla et al., 2013) algorithm. With the emergence and
continuous in-depth development of deep neural network
technology, some excellent matching methods based on deep
learning have emerged, such as the L2-Net (Tian et al., 2017)
algorithm, SuperPoint (DeTone et al., 2018) algorithm,
SuperGlue (Sarlin et al., 2019) algorithm, LoFTR algorithm (Sun
et al., 2021), KeyNet algorithm (Laguna and Mikolajczyk, 2022), etc.
Large topographic undulations and complex landscapes in natural
disaster zones in mountainous regions make it difficult to fly and
difficult to collect data, leading to unstable data quality, and
frequently resulting in shadows, occlusions, uneven brightness
distribution, and geometric distortion in the images, which
makes matching of such images challenging or impossible. Many
academics have already focused on this issue and used traditional
feature-matching techniques to match images of natural landscape
scenes in hilly places, yielding beneficial study findings. For feature
point coarse difference rejection, Xi’s novel method known as GSIFT
was suggested. Prior to rejecting coarse differences, it harvests
feature points with the SIFT technique, performs Euclidean
distance matching, and builds a system of UAV image-matching
feature points with the RANSAC algorithm and graph theory. This
system is capable of feature matching and producing high-accuracy
single response matrices (Xi, 2020). For UAV image matching in

karst regions, (Li et al., 2020) developed the enhanced algorithm
A-AKAZE, which greatly decreased the overall matching time and
produced more accurate matching pairs. Dai developed the
AKAZE improvement algorithm based on the DAISY descriptor
and the BRISK improvement algorithm, which are based on the
machine learning descriptor LATCH, which in turn are based on
an analysis of the characteristics of complex terrain images and
their influence on matching. It was demonstrated that while the
AKAZE improvement algorithm has a relatively small number of
matches, the total matching time is low and the matching efficiency
is high. The BRISK improvement algorithm takes longer, but it has
a higher percentage of accurate matches and can handle photos of
terrain with greater complexity (Dai et al., 2021). For complex
terrain in highland mountains, Gao et al. investigated a quick and
efficient UAV image matching technique under unique terrain and
landscape conditions, and they proposed an integrated scale-
invariant feature transform (SIFT) algorithm with the nearest
neighbor distance ratio (NNDR) and random sampling
consensus algorithm (RANSAC) model constrained method.
The technique not only extracts a lot of feature point pairs, but
it also has an alignment accuracy rate of 85% (Gao et al., 2022).
Using a dual strategy of grid motion statistics and kernel line
constraints for matching error point rejection, (Zong et al., 2022)
proposed an algorithm to improve the feature matching of AKAZE
UAV images for high-resolution images of mountain mudslides.
The algorithm replaces the original descriptor with the binary

FIGURE 1
Experimental data.
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descriptor BEBLID to complete Hamming distance matching, and
the number of correctly matched point pairs obtained is higher
than that of the original algorithm. In comparison to the previous
method, there are more correct matching pairs, but the running
speed is also much slower, by almost 40%. The majority of the
aforementioned studies are based on traditional manual feature
point matching techniques, which may still lead to uneven feature
point distribution or even failure to identify repeatable points of
interest in images with weak texture information, weak light
intensity, blur, and significant geometric distortion. This results
in poor robustness of matching results that do not meet the
requirements of downstream tasks. Emerging deep learning-
based matching methods tend to produce dense pairs of
matching points, but the application of such methods in image
matching for images with complex and variable terrain and large
geometric deformation is still relatively rare, and their application
potential needs to be further validated and explored. This article
will offer helpful references for future work on UAV image
matching in hilly terrain with challenging topography as well as
fresh perspectives on the use of the LoFTR method.

2 Experimental platform and data
sources

2.1 Experimental platform

All experiments in this research paper were conducted based on
the Google Colaboratory free cloud platform, which is a research
project of Google Inc. aimed at providing a cloud-based deep neural
network training platform for developers with approximately 12 GB
of temporary RAM and approximately 100 GB of temporary storage
space.

2.2 Data sources

In this study, six groups of images taken by different UAVs with
different sensors in different seasons were selected as test objects, as
shown in Figure 1. Due to the large size of the original image, all

images were down-sampled to 640 × 480. An overview of each test
image group is shown in Table 1.

3 Materials and methods

The fundamental process flow of the method employed in this
research paper is shown in Figure 2. The key ideas are as follows: 1)
Use a CNN local feature extraction network to extract local feature
maps of multi-scale from the left and right images; 2) spread the 1/
8 feature map of the original resolution image into one-dimensional
vectors, fuse the position encoding, and get through the LoFTR
module for graph attention calculation to obtain the self-attention
layer and cross attention layer; 3) get coarse feature block matching
confidence matrix dual-softmax method, and get coarse matching
prediction according to the confidence threshold and mutual nearest
neighbor (MNN) criterion; 4) a grid map of size 5 × 5 is created and
serialized for each chosen coarse prediction location, and the fine
matching is carried out within this local window, down to the sub-
pixel level. For each cell, its fine features are fused with the coarse
features of the grid centroid to obtain the fine feature representation of
each cell. To produce the fine feature representation of each cell, each
cell’s fine characteristics are combined with the coarse features of the
grid centroid. Additionally, the LoFTR module calculates the graph
attention, using the centroid of one of the cells as the final feature
point coordinate, and outputs the coordinate with the highest
confidence in the other 5 × 5 cell as the final matching prediction;
and 5) after all matching is done, inevitably there will be some point
pairs that do not match. In order to complete the epipolar line
constraint, achieve the goal of inner point purification, and
provide the desired matching outcome, the fundamental matrix is
also estimated using the MAGSAC ++ method.

3.1 Headings local feature extraction
with FPN

The original image needs to be transformed into a feature map
by a feature extraction network. Convolutional Neural Networks
(CNNs) are well suited for extracting local features. Multi-level

TABLE 1 Description of the test images.

Groups UAV Shooting
equipment

Capture
date

Image
size

Data description

A DJI
Phantom3

FC6310 2019.04 5,472 ×
3,648

On the slope, some terraces are surrounded by little bushes and have a very
uneven surface

B DJI
Phantom3

FC6310 2019.11 5,472 ×
3,648

Debris flow channels, thick vegetation, and wildly varying topography are
present

C iFly D3 Zhonghaida tilt camera
ILCE-QX1

2018.06 5,456 ×
3,632

The topography is comparatively flat, with some exposed rock and few
grasslands

D iFly D3 Zhonghaida tilt camera
ILCE-QX1

2018.06 5,456 ×
3,632

There are vegetation-covered hillside terraces, and the topography varies widely

E DJI M 300 Rainpoo M6Pro 2022.11 9,504 ×
6,336

Most of the area is covered in mudflows, and there are few structures, roads,
terraces, and significant topographic changes

F DJI M 300 Rainpoo M6Pro 2022.11 9,504 ×
6,336

There are patches of bare rock, little flora, and wildly varying geography
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features are extracted using feature pyramid networks (FPN) from
image pair IA and IB. The coarse-level features are denoted as
~F
A
and ~F

B
at 1/8 of the original image dimension, and the fine-level

features are denoted as F̂
A
and F̂

B
at 1/2 of the original image

dimension.

3.2 Local feature transformer (LoFTR)
module

To create feature representations that are simple to match, the 1/
8-size feature maps ~F

A
and ~F

B
are expanded into a one-dimensional

vector and put into the local feature transformation (Transformers)
module. ~F

A
tr and ~F

B
tr are the abbreviations for the converted

characteristics. The position encoding module, self-attention, and
cross-attention layers are all included in the feature transformation
module, which is utilized for feature augmentation. To maintain the
position information of each element, the position encoding module
employs the sin function to encode the position information into a
particular vector. In order to increase the feature specificity, the
feature map vector integrating the position data is input into the
LoFTR module for Nc times self-attention and cross-attention
iterative optimization. The retrieved improved features also include
information about how those characteristics were combined with
other feature points and location and appearance information.

The LoFTR module consists of the transformer’s encoder and
decoder, where the core of the encoder is the attention layer. The
encoder structure is shown in Figure 3. Three vectors are commonly
used as the attention layer’s input: a query vector (Q), a key vector (K),
and a value vector (V). The values of Query (Q), Key(K), and
Value(V) in the figure are obtained by multiplying the feature
vectors by the initialization weights, respectively. Whether the
features match each other, first calculate the inner product of Q

and K vectors, and then calculate the similarity between the inner
product and V vectors. The weights are determined by the
interrelationships between the input items and are assigned to
each item of the input model by the attention mechanism. The
attention mechanism can be used at the image-matching stage to
draw attention to the similar feature spots in the two images and
enable accurate matching later on. The features of a single image are
used as the input for the self-attention mechanism, which focuses on
each point’s association with its surroundings and incorporates
neighborhood information from the image. As a result, the
features of the strongly textured regions are gradually assigned to
the weakly textured regions after the self-attention layer. The features
of two corresponding images serve as the input for the cross-attention
mechanism, which causes the points to concentrate on their
associations with all the points on the other image while absorbing
information from the matching image. Two different attention
mechanisms are depicted in Figure 4. The classical dot-product
attention mechanism is shown in Figure 4A, where the complexity
of the dot-product operation between Q and K is O(N2), and N is
positively related to the total number of pixels in the image for the
feature-matching task. The LoFTR algorithm used in this study uses
linear attention in order to alleviate the computational cost of Q and K
dot product by replacing the kernel function of the original attention
layer as elu (·), which reduces the complexity of attention from
quadratic to linear with a complexity of only O(N), as shown in
Figure 4B.

3.3 Coarse-level matches module

The self-attention module and the cross-attention module
iteratively improve the features after the LoFTR layer and can be
utilized for matching. The score matrix S between the transformed

FIGURE 2
The basic workflow of the proposed algorithm (Sun et al., 2021)
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features is calculated as in Eq. 1, where τ is the dimension of the
feature ~Ftr.

S i, j( ) � 1
τ
· 〈~FA

tr i( ), ~FB

tr j( )〉 (1)

The probability matrix Pc of mutual nearest neighbor matching
is obtained using dual-softmax, where softmax denotes the
normalization of the score matrix S.

Pc i, j( ) � sof tmax S i, ·( )( )j · sof tmax S ·, j( )( )i (2)

In Eq. 2: S(i, ·) is the similarity score between the i th feature and
all features; S(·, j) is the similarity score between the j th feature and
all features. The matching pairs are filtered based on the confidence
level, and the matching points with confidence higher than θc are
retained. Then the mutual nearest neighbor (MNN) is further used
to reject the outliers of coarse matches, as shown in Eq. 3. The coarse
match prediction is denoted as Mc,

Mc � ~i, ~j( ) | ∀ ~i, ~j( ) ∈ MNN Pc( ), Pc
~i, ~j( )≥ θc{ } (3)

In Eq. 3:MNN (·) is the mutual nearest neighbor function, (~i, ~j)
represents the location of the matches above the threshold θc in the
confidence matrix Pc. In the coarse-level features of the image,Mc is
the matching pairs of true matches.

3.4 Coarse-to-fine matches

Following the completion of coarse-level matching, the
conversion to fine-level matching is carried out to bring the
matching outcome closer to the resolution of the original image.

First, mapping the coarse-matching point pairs~i, ~j onto the fine-
level features F̂

A
and F̂

B
to obtain points î, ĵ, respectively; a local

window of w × w is intercepted at the feature points î, ĵ of the fine-
level feature map. Then, this local window is input to the LoFTR
module, and Nf times of feature transformation is performed to
obtain a pair of local feature maps F̂

A
tr(î), F̂B

tr(ĵ) centered at î, ĵ,
respectively. Calculate the correlation score heat map of the local
window feature map F̂

A
tr(î) with F̂

B
tr(ĵ). By calculating the

expectation of the probability distribution, the position ĵ′ of the
matched feature points of î on the image IB with sub-pixel accuracy
is obtained. The entire set of (̂i, ĵ′) is assembled to get the final
matching result, Mf.

3.5 Exclusion of incorrect match pairs

Frequently, when the textures of two photos are identical, there
will be interference terms when trying to match the same points, and
there will invariably be some bad match pairs. A well-matched point
is typically referred to as an inliner, whereas a poorly matched point
is referred to as an outliner. The epipolar line geometric relations are
expressed by the essential or fundamental matrices and play a crucial
role. ① As long as the essential matrix or fundamental matrix is
obtained, the epipolar line expression can be written directly, and the
two-dimensional search interval can be constrained to the one-
dimensional epipolar line during the dense matching; ② Another
important role is that the epipolar line stereo images can be
produced, which is ready for the production of the DEM
products; ③ The third important role is that it is able to recover
the 3D model of the scene.

Without the assistance of internal and exterior camera
parameters, the fundamental matrix depicts the intrinsic
geometric relationship of the two perspectives. According to the
photogrammetric geometrical relations, it is known that the interior
points satisfy the epipolar line geometrical relations in stereo
matching, meaning that for each point on an epipolar line, its

FIGURE 3
Transformer encoder layer, h represents the multiple heads of
attention (Sun et al., 2021).

FIGURE 4
Attention layer in LoFTR. (A) dot-product attention layer with
O(N2) complexity; (B) linear attention with O(N) complexity. The scale
factor is omitted for simplicity (Sun et al., 2021).
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homonymous point on another image must be located on its
homonymous epipolar line. On the reference image and the
image to be matched, specifically, if the feature vector distance
between two feature points p and p′ is small, it is determined that
these two feature points correspond to the same scene and are
considered to be homonymous points, with the coordinates of the
point pairs being p(x1,y1) and p′(x2,y2), respectively. The
relationship between the reference image feature point (x1,y1)
and the point position of the image to be matched is described
by the equation:

p′TFp � 0 (4)

x2 y2 1[ ] F11 F12 F13

F21 F22 F23

F31 F32 F33

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ x1
y1
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 0 (5)

Setting the error threshold excludes the outer points, which are
measured as the distance from the reprojected point to the
kernel line.

According to this condition, the corresponding unknown
parameters can be calculated by more than eight pairs of
homonymous points. The previous standard detection method is
to use the Random Sampling Consensus (RANSAC) (Fischler and
Bolles, 1987) algorithm for roughness removal, which integrates the
removal of incorrect matching pairs into the process of calculating
the fundamental matrix and no longer treats it as a separate step to
complete the match purification and improve the correctness of the
match.

A previous study (Barath et al., 2020) proposed the MAGSAC++
method, which is faster, has higher geometric accuracy, and lower
failure rate compared to the existing RANSAC, LMdeS, MSAC, GC-
RANSAC (Barath and Matas, 2018a), and MAGSAC (Barath and
Matas, 2018b). Therefore, the MAGSAC++ algorithm is chosen to
estimate the fundamental matrix model to purify the inner points in
this research paper.

4 Results and analysis

4.1 Preliminary matching results based on
the LoFTR algorithm

The model trained in MegaDepth, a sizable outdoor dataset, was
used for image matching directly to confirm the efficacy of the
LoFTR method for picture feature matching of natural settings with
complicated topography and scenery in mountainous places. The
number of initial matching feature pairs and matching time were
compared using the SIFT, ASIFT, AKAZE, KeyNet-AdaLAM, and
LoFTR algorithms. The number of initial matching point pairs, the
matching runtime, and the qualitative outcomes of the LoFTR
algorithm matching are all displayed in Table 2; Figures 5, 6,
respectively.

The preliminary matching test findings’ statistical analysis
revealed that ① in comparison to the traditional techniques SIFT
and AKAZE, the LoFTR algorithm gets a considerable number of
feature matching pairs with uniform distribution in each pair of
images, as shown in Figure 6. The LoFTR algorithm has almost three
times more matched pairs than the ASIFT algorithm in the C-group
images, placing it second after the ASIFT algorithm in groups B and

E. As can be observed, the LoFTR algorithm’s performance is highly
stable, but the ASIFT method performs better in areas with more
texture but clearly performs worse than the LoFTR algorithm in
areas with less texture; ② although the learning algorithm KeyNet-
AdaLAM does not have as many initial matching pairs as the LoFTR
algorithm, which is about half of the LoFTR algorithm, the overall
performance is also stable; in comparison to the SIFT and AKAZE
algorithms, it obtains more matches per set of images and is more
suitable for matching natural scene images with challenging hilly
terrain. Moreover, it runs much faster and more consistently than
the ASIFT algorithm;③ the initial matching times for each batch of
photographs vary significantly amongst algorithm, in descending
order of time consumption: ASIFT > KeyNet-AdaLAM > LoFTR >
SIFT > AKAZE; the ASIFT algorithm not only takes up a lot of time,
but it also varies a lot and is very unstable in each group of images,
whereas the two learning algorithms, KeyNet-AdaLAM and LoFTR,
take up a stable amount of time in each group of images; ④
combining the analysis of feature matching quantity and time
consumption, it is discovered that the test matching time costs of
the learning algorithms KeyNet-AdaLAM and LoFTR are close in
each group of images and are barely impacted by different image
pairs; however, the ASIFT algorithm’s number of features is
positively correlated with the matching time, and the richer the
texture and the more features, the longer the matching time is; and
⑤ combining the aforementioned arguments, it is possible to
conclude that the LoFTR method has a high degree of

TABLE 2 Statistics of preliminary matching results for UAV images.

Groups SIFT ASIFT AKAZE KeyNet LoFTR

A 170 1,851 158 1,062 2,270

B 355 4,831 415 1,527 2,580

C 44 731 22 1,088 2,884

D 250 3,128 35 1,924 3,292

E 634 10,510 427 1,723 3,284

F 143 2,547 212 1,358 2,944

FIGURE 5
Matching time/ms.
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generalization in matching and can produce dense matching point
pairs. The matching results in Figure 6 also show that there may be a
small number of serious matching errors (boxed in yellow), and
further inspection reveals that some of the incorrect matching point
pairs are located outside the overlap region and share a lot of
similarities in their local texture information. If these matched
pairs are not removed, it will have a significant effect on the
calculation that follows.

4.2 Precise matching results with epipolar
constraint based on MAGSAC++ algorithm

Although the LoFTR algorithm takes longer than the SIFT and
AKAZE algorithms in the comparative examination of the initial
matching results, the number of matched point pairs obtained is
dense and uniform, and the stability is considerable. Eliminating the
matching error point pairs is required to further increase the
matching’s dependability and quality. The MAGSAC++
algorithm is then used to further reduce the error matching
point pairs in stereo image matching based on the initial
matching of the SIFT algorithm, ASIFT algorithm, AKAZE
algorithm, KeyNET-AdaLAM algorithm, and LoFTR algorithm.
SIFT+, ASIFT+, AKAZE+, KeyNET +, and LoFTR + (the
methods in this research paper) are used to denote the

approaches after eliminating mistakes for the convenience of a
later presentation. The correct matching pairs, also known as
inner points, are the outcomes after the incorrect matching pairs
have been eliminated. The accuracy rate was defined as the
proportion of inner points to the number of initial matching
pairings (or inner point rate). Finally, two indexes were used to
compare and evaluate each algorithm’s performance: the accuracy
rate (inner point rate) and the number of correct matching pairs
(number of inner points). In order to be fair, the MAGSAC++
algorithm was used to calculate the fundamental matrix, and the
minimum number of random samples was set to 8. The experiment
needs to define an epipolar line constraint threshold, which was set
at 2 pixels in this study in order to more accurately compare the
benefits of this research. In other words, matching reprojection
errors that are within two pixels of the proper matching point pair
were accepted, and those that were outside of two pixels were
disregarded. The matching results are shown in Figure 7, where
the red line connects the correctly matched points, and the yellow
line connects the incorrectly matched points. Table 3 lists the
number of accurate matching pairs and the accuracy rate.

It is evident from the test findings that ① the matching results of
comparison methods are significantly different, and the matching results
obtained by themethod in this research paper are themost stable, ranking
first in the number of inner points obtained in the A, C, D, and F groups
and second in the B and E groups; the matching accuracy rate of the

FIGURE 6
Feature matching results by LoFTR algorithm.
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method in this study also ranks first in theA, B,D, and F groups. It is clear
that the method described in this research has a high level of robustness
and overall performance;② in comparison to other methods, the SIFT+
andAKAZE+ algorithms have fewer inner points, and thematched point
pairs obtained in each group of images are also unstable, which is

FIGURE 7
The result after eliminating the mismatched point pairs.
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particularly unfavorable for subsequent computations such as orientation,
dense matching, and bundle adjustment; ③ comparing the ASIFT+
algorithm to the method in this research paper, it can be seen that the
matching pairs obtained by the ASIFT+ algorithm are not stable enough,
and the number of matching pairs in group C is less than 1/4 of the
algorithm in this study, and the overall matching accuracy rate is not as
high as that of themethod in this study. The number of correct matching
pairs obtained by the ASIFT+ algorithm is significantly higher than that
of SIFT+ and AKAZE+ in each group of images; ④ the KeyNet+
algorithm’s matching results reveal the number of valid matching pairs
produced by the KeyNet+ algorithm is about half that of LoFTR+ inA, B,
C, D, E, and F groups and the matching accuracy rate is lower. It is a
medium-level number of correct matching pairs with a low accuracy rate
since more point pairs are removed during the fine matching session;
there is a pretty misleading point in Group A that needs to be explained
more: LoFTR+ has more correct matching points than KeyNet + in
Table 3, and it looks like KeyNet+ hasmore correct matching points than
LoFTR+ in Figure 7 for Group A. In group A, the epipolar lines on the
two images are aligned. Thewrong point pairs are eliminated by LoFTR+,
and the correct matching points are connected and then overlapped
together, therefore, it appears that there are few matching points.
However, LoFTR+ has more correct matching points than KeyNet +,
consistent with Table 3; the KeyNet + algorithm’s results are superior to
those of SIFT+ and AKAZE+, particularly in the C and D groups; the
KeyNet+ method performs at a medium level overall, with some
applicability and a stable effect in matching difficult terrain photos in
hilly regions; and ⑤ comprehensive analysis of the abovementioned
experimental argumentation can be concluded in response to the
problem of matching drone imagery in mountainous areas that the
method in this research paper, based on deep learning LoFTR algorithm
matching, further uses the MAGSAC++ method to purify the initial
matching results, which can get more uniformly distributed correct
matching pairs with high reliability.

5 Conclusion

The accuracy of subsequent data processing will be directly
impacted by the quality of UAV image matching. In this study, the
MAGSAC++ technique is utilized to estimate the fundamental
matrix and reject the discrete points while the LoFTR approach
is used to match UAV images of natural scenes. Six groups of UAV
photographs captured in the field of natural scenes were subjected to
tests, and the results of these tests were compared to those of
numerous common matching techniques. The results
demonstrate that the method presented in this research paper
has a high and stable overall performance. Additionally, for each
group of images, a large number of correctly matched point pairs
with even spatial distribution were obtained, providing a solid
foundation for subsequent binocular stereo matching, relative
orientation, absolute orientation, and aerial triangulation leveling.

Although the experimental results verify that the method in this
study can achieve good matching results, there are still some problems
that are worthy of further research and discussion, for example, 1) the test
applies the pre-training model for preliminary matching directly, but the
original pre-training data does not includemuch of the image data in this
study; migration learning can be considered in the future to add some
data close to the target dataset based on the original large dataset pre-

training model for labeling and model training; 2) it is discovered that
several major mistakes matching points are situated outside the
overlapping area of the two images in the preliminary matching test
results carried out by the image employing the LoFTR method. It would
be better to prevent major errors when matching pairings outside the
overlap region if the picture overlap area could be calculated before
matching and just the overlap area could be focused on during image
matching; 3) in the future, a lightweight transformer can be considered to
be introduced to optimize this algorithm to improve the speed and
efficiency ofmatching. Further research will be done in the future to solve
the aforementioned problems.
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