Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY Derek Keir, University of Southampton, United Kingdom

*CORRESPONDENCE Haizhou Qu, ⊠ guhaizhou@swpu.edu.cn

RECEIVED 06 April 2023 ACCEPTED 16 May 2023 PUBLISHED 23 May 2023

CITATION

Zou B, Qu H, Zhao R, Zhang L, Zhang Y, Ma Z, Zhang X, Huang Q, Mo Q, An H and Pei Y (2023), Corrigendum: Diagenesis of the first member of Canglangpu formation of the Cambrian Series 2 in northern part of the central Sichuan Basin and its influence on porosity. *Front. Earth Sci.* 11:1201571. doi: 10.3389/feart.2023.1201571

COPYRIGHT

© 2023 Zou, Qu, Zhao, Zhang, Zhang, Ma, Zhang, Huang, Mo, An and Pei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Corrigendum: Diagenesis of the first member of Canglangpu formation of the Cambrian Series 2 in northern part of the central Sichuan Basin and its influence on porosity

Bing Zou^{1,2}, Haizhou Qu^{1,2}*, Rongrong Zhao³, Lianjin Zhang⁴, Yu Zhang³, Zike Ma⁴, Xingyu Zhang¹, Qinyang Huang^{1,2}, Qianwen Mo³, Hongyi An³ and Yu Pei⁵

¹State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu, China, ²School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China, ³Exploration department of Petrochina Southwest Oil and Gasfield Company, Chengdu, China, ⁴Central Sichuan Oil and Gas Mine of PetroChina Southwest Oil and Gas Field Company, Suining, China, ⁵Geological Exploration & Development Research Institute, CNPC Chuanqing Drilling Engineering Company Limited, Chengdu, China

KEYWORDS

diagenesis, Series 2, Cambrian, the first member of Canglangpu formation, northern part of the central Sichuan Basin

An Corrigendum on

Diagenesis of the first member of Canglangpu Formation of the Cambrian Terreneuvian in northern part of the central Sichuan Basin and its influence on porosity

by Zhou B, Qu H, Zhao R, Zhang L, Zhang Y, Ma Z, Zhang X, Huang Q, Mo Q, An H and Pei Y (2023). Front. Earth Sci. 10:1059838. doi: 10.3389/feart.2022.1059838

In the published article, there was an error in the article title. Instead of "Diagenesis of the first member of Canglangpu Formation of the Cambrian Terreneuvian in northern part of the central Sichuan Basin and its influence on porosity", it should be "Diagenesis of the first member of Canglangpu Formation of the Cambrian Series 2 in northern part of the central Sichuan Basin and its influence on porosity".

In the published article, there was an error in Figure 1 as published. In the picture, the age of the strata is incorrect. The corrected Figure 1 and its caption appear below.

In the published article, there was an error in Table 2 as published. The stratigraphic age in the table name is incorrect. The corrected Table 2 and its caption appear below.

In the published article, there was an error in Table 3 as published. The stratigraphic age in the table name is incorrect. The corrected Table 3 and its caption appear below.

In the published article, there was an error in Figure 7 as published. In the picture, the age of the strata is incorrect. The corrected Figure 7 and its caption appear below.

In the published article, there was an error. The stratigraphic age is incorrectly divided. A correction has been made to the **Abstract**, paragraph 1. The corrected sentence appears below:

"In this paper, taking the first Member of the Canglangpu Formation of the Cambrian Series 2 in the northern central Sichuan Basin as an example."

A correction has been made to the **keywords**. The corrected keywords appear below:

"diagenesis, Series 2, Cambrian, the first member of Canglangpu Formation, northern part of the Central Sichuan Basin"

A correction has been made to the **Introduction**, paragraph 1. The corrected sentence appears below:

"The Central Sichuan Paleo-uplift controls the process of hydrocarbon accumulation in the Sinian-Cambrian Series 2 in the Sichuan Basin. At present, the exploration horizons in this area are mainly concentrated in the Sinian Dengying Formation and the Cambrian Series 2 Longwangmiao Formation, and there are few studies on other horizons."

A correction has been made to the **Conclusion**, paragraph 1. The corrected sentence appears below:

"In this paper, taking the Cang 1 Member of the Canglangpu Formation of the Cambrian Series 2 in the north part of the central Sichuan Basin as an example."

The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

FIGURE 1

Location and comprehensive stratigraphic histogram of the study area. (A) Structural unit division of the Sichuan Basin (modified from Reference Hu (2021)); (B) Lithologic histogram of the Canglangpu Formation in Well CT1. GR: natural gamma ray; Rt: true formation resistivity; Rxo: flushed zone formation resistivity.

TABLE 2 Contents of carbon and oxygen isotopes in the first member of Canglangpu Formation of the Cambrian Series 2 in well JT1, central Sichuan Basin (Ma at el., 2022).

Sample No	Lithology	lsotope	
		δ13CV-PDB	δ18OV-PDB
70-6960m	Powder crystal dolomite	-2.4	-7.7
71-6961m	Powder crystal dolomite	-0.7	-5.9
72-6962m	Powder crystal dolomite	-1	-6.3
73-6963m	Powder crystal dolomite	-3.1	-9.3
74-6964m	Powder crystal dolomite	-1.6	-6.3
75-6965m	Powder crystal dolomite	-1.3	-5.9
76-6966m	Powder crystal dolomite	-3.4	-9.3
77-6967m	Mudstone	-2.5	-8.8
78-6968m	Oolitic dolomite	-2.9	-8.9
79-6969m	Calcareous mudstone	-0.7	-6.5
80-6970m	Powder crystal dolomite	-1.1	-7.1
81-6971m	Powder crystal dolomite	-0.6	-6.9
82-6972m	Powder crystal dolomite	-0.4	-6.2
83-6973m	Argillaceous dolomite	-0.8	-6.9
85-6975m	Powder crystal dolomite	-0.9	-7.1
86-6976m	Powder crystal dolomite	-1.4	-7.1
87-6977m	Argillaceous dolomite	-0.7	7.2
88-6978m	Argillaceous dolomite	-1.3	-7.8
89-6979m	Argillaceous dolomite	-0.9	-7.5
90-6980m	Argillaceous dolomite	-1	-8.1
91-6981m	Powder crystal dolomite	-0.8	-7.3
93-6983m	Oolitic dolomite	-0.9	-7.6
94-6984m	Oolitic dolomite	-0.8	-7.4
1-6985m	Oolitic dolomite	-0.6	-6.9
3-6987m	Oolitic dolomite	-0.6	-7
4-6988m	Oolitic dolomite	-0.8	-7
5-6989m	Oolitic dolomite	-0.8	-7.3
6-6990m	Oolitic dolomite	-1.6	-8.6
7-6991m	Oolitic dolomite	-1.8	-7.7
8-6992m	Oolitic dolomite	-1.1	-7.4
10-6994m	Calcareous mudstone	-1.9	-9.6
11-6995m	Calcareous mudstone	-2	-9.5
12-6996m	Argillaceous limestone	-1.8	-9.9
13-6997m	Argillaceous limestone	-0.9	-8.5
17-7001m	Oolitic limestone	-1.7	-9.7
18-7002m	Oolitic limestone	-1.9	-9.1

TABLE 2 (*Continued*) Contents of carbon and oxygen isotopes in the first member of Canglangpu Formation of the Cambrian Series 2 in well JT1, central Sichuan Basin (Ma at el., 2022).

Sample No	Lithology	lsotope	
		δ13CV-PDB	δ18OV-PDB
19-7003m	Oolitic limestone	-1.5	-8.4
20-7004m	Oolitic limestone	-2.1	-9.8
21-7005m	Oolitic limestone	-1.5	-8.9
23-7007m	Oolitic limestone	-1.3	-9.2
24-7008m	Oolitic limestone	-1.4	-9.5
25-7009m	Oolitic limestone	-1.2	-10
38-7022m	Oolitic limestone	-0.9	-10
40-7024m	Oolitic limestone	-1.4	-9.2
41-7025m	Sandy limestone	-1.3	-8.4
42-7026m	Sandy limestone	-1.5	-9.3
43-7027m	Sandy limestone	-1.5	-8.2
44-7028m	Sandy limestone	-2.1	-9
46-7030m	Sandy limestone	-1.6	-8.8
48-7032m	Sandy limestone	-2.1	-9.2
50-7034m	Sandy limestone	-1.4	-9
52-7036m	Sandy limestone	-2.1	-9.5
53-7037m	Oolitic limestone	-1.5	-8.7
55-7039m	Oolitic limestone	-2.1	-10

(Continued in next column)

Sample No	Paleo-salinity index Z	Uncorrected paleo-salinity S/‰	Corrected paleo-salinity S/‰	Paleo-water temperature/°C
70-6960m	119	27.1	34.1	18.9
71-6961m	123	28.9	35.9	11.6
72-6962m	122	28.5	35.5	13.1
73-6963m	116	25.5	32.5	26.2
74-6964m	121	28.5	35.5	13.1
75-6965m	122	28.9	35.9	11.6
76-6966m	116	25.5	32.5	26.2
77-6967m	118	26	33	23.9
78-6968m	117	25.9	32.9	24.3
79-6969m	123	28.3	35.3	13.9
80-6970m	122	27.7	34.7	16.4
81-6971m	123	27.9	34.9	15.6
82-6972m	123	28.6	35.6	12.8
83-6973m	122	27.9	34.9	15.6
85-6975m	122	27.7	34.7	16.4
86-6976m	121	27.7	34.7	16.4
87-6977m	122	27.6	34.6	16.8
88-6978m	121	27	34	19.4
89-6979m	122	27.3	34.3	18.1
90-6980m	121	26.7	33.7	20.7
91-6981m	122	27.5	34.5	17.2
93-6983m	122	27.2	34.2	18.5
94-6984m	122	27.4	34.4	17.7
1-6985m	123	27.9	34.9	15.6
3-6987m	123	27.8	34.8	16
4-6988m	122	27.8	34.8	16
5-6989m	122	27.5	34.5	17.2
6-6990m	120	26.2	33.2	22.9
7-6991m	120	27.1	34.1	18.9
8-6992m	121	27.4	34.4	17.7
10-6994m	119	25.2	32.2	27.6
11-6995m	118	25.3	32.3	27.2
12-6996m	119	24.9	31.9	29.1
13-6997m	121	26.3	33.3	22.5
17-7001m	119	25.1	32.1	28.1
18-7002m	119	25.7	32.7	25.3
19-7003m	120	26.4	33.4	22

TABLE 3 Date of paleotemperature and paleo-salinity of the first member of Canglangpu Formation of the Cambrian Series 2 from Well JT1 in central Sichuan Basin (Ma at el., 2022).

(Continued on following page)

Sample No	Paleo-salinity index Z	Uncorrected paleo-salinity S/‰	Corrected paleo-salinity S/‰	Paleo-water temperature/°C
20-7004m	118	25	32	28.6
21-7005m	120	25.9	32.9	24.3
23-7007m	120	25.6	32.6	25.7
24-7008m	120	25.3	32.3	27.2
25-7009m	120	24.8	31.8	29.6
38-7022m	120	24.8	31.8	29.6
40-7024m	120	25.6	32.6	25.7
41-7025m	120	26.4	33.4	22
42-7026m	120	25.5	32.5	26.2
43-7027m	120	26.6	33.6	21.1
44-7028m	119	25.8	32.8	24.8
46-7030m	120	26	33	23.9
48-7032m	118	25.6	32.6	25.7
50-7034m	120	25.8	32.8	24.8
52-7036m	118	25.3	32.3	27.2
53-7037m	120	26.1	33.1	23.4
55-7039m	118	24.8	31.8	29.6

TABLE 3 (Continued) Date of paleotemperature and paleo-salinity of the first member of Canglangpu Formation of the Cambrian Series 2 from Well JT1 in central Sichuan Basin (Ma at el., 2022).

