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Exploring the geological factors that affect fluid flow has always been a hot topic.
For tight reservoirs, the pore structure and characteristics of different lithofacies
reveal the storage status of fluids in different reservoir environments. The size,
connectivity, and distribution of fillers in different sedimentary environments have
always posed a challenge in studying themicroscopic heterogeneity. In this paper,
six logging curves (gamma-ray, density, acoustic, compensated neutron, shallow
resistivity, and deep resistivity) in two marker wells, namely, J1 and J2, of the
Permian Lucaogou Formation in the Jimsar Basin are tested by using four
reinforcement learning algorithms: LogitBoost, GBM, XGBoost, and KNN. The
total percent correct of training well J2 is 96%, 96%, 96%, and 96%, and the total
percent correct of validation well J1 is 75%, 68%, 72%, and 75%, respectively. Based
on the lithofacies classification obtained by using reinforcement learning
algorithm, micropores, mesopores, and macropores are comprehensively
described by high-pressure mercury injection and low-pressure nitrogen gas
adsorption tests. The multifractal theory servers for the quantitative
characterization of the pore distribution heterogeneity regarding different
lithofacies samples, and as observed, the higher probability measure area of
the generalized fractal spectrum affects the heterogeneity of the local interval
of mesopores and macropores of the estuary dam. In the micropore and
mesopore, the heterogeneity of the evaporation lake showed a large variation
due to the influence of the higher probability measure area, and in the mesopore
and macropore, the heterogeneity of the evaporation lake was controlled by the
lower probability measure area. According to the correlation analysis, the single-
fractal dimension is well related to the multifractal parameters, and the individual
fitting degree reaches up to 99%, which can serve for characterizing the pore size
distribution uniformity. The combination of boosting machine learning and
multifractal can help to better characterize the micro-heterogeneity under
different sedimentary environments and different pore size distribution ranges,
which is helpful in the exploration and development of oil fields.
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1 Introduction

Relative to traditional petroleum reservoirs, tight reservoirs possess
a complicated pore structure. Their pore throats are connected at the
nano and submicron scales, and different types of pores are connected
differently (Garum et al., 2021). In tight reservoirs, pore space and
connectivity take charge of controlling the performance of the reservoir
and the capacity of seepage (Aljaberi et al., 2021). There are similarities
and differences in pore characteristics of various lithofacies in the same
area, which often indicate different sedimentary environments and
characteristics (Tang et al., 2021). Different lithofacies undergo different
diagenetic evolution processes and form different pore structures (Yang
et al., 2022).

Nowadays, relative to other testing technologies, the high-pressure
mercury injection (HPMI) test and the low-pressure nitrogen gas
adsorption (LPN2GA) test can effectively characterize the adsorption
pore structure in porous media (Karayig�;it et al., 2018; Zhang et al.,
2020; Tian et al., 2020). Nevertheless, due to the large diameter of N2

molecules (0.36 nm), the instrument is less accurate and suitable for
micropore and small pore tests, which has limitations in accurately
characterizing the micropore structure (Zhang et al., 2021; Zhao et al.,
2016). In addition, in the HPMI text, mercury is injected into the rock
sample using pressure to establish the relationship between themercury
volume and the pore volume (PV), resulting in the maximum flow of
mercury into the pore, that is, the pore throat size (Wang J. et al., 2018).
The results obtained by experimental experience have large errors in
micropores and small pores.

Linear fitting of the experimental data of the HPMI test and the
LPN2GA test by the 3D capillary model and the Frenkel−Halsey−Hill
(FHH) model can well serve for describing the adsorption pore
heterogeneity (Li et al., 2010; Tang et al., 2003). A large number of
studies have shown that the curve fitted by HPMI data has a cut-off
point when the pore is 50 nm. Macropores have a fractal dimension
DM1 over 50 nm, andmesopores have a fractal dimensionDM2 less than
50 nm, which physically characterizes the heterogeneity of mesopores
andmacropores (Wang X. X. et al., 2018; Li et al., 2010; Lai et al., 2015).
However, the fitting curve of LPN2GA data yielded two fractal
dimensions, namely, DN1 and DN2, and the demarcation point of
the two segments appeared at P0/P of 0.5. Most studies have shown that
both have physical significance, DN1 can serve for the characterization
of adsorption pore surface heterogeneity, and DN2 can serve for the
characterization of the PV heterogeneity (Tang et al., 2003; Cai et al.,
2018; Lu et al., 2018). Obviously, they only apply to pores of diameters
in the range of 2–100 nm and are incapable of characterizing the
micropore heterogeneity (Zhao J. et al., 2019).

However, for tight reservoirs, which exhibit strong
heterogeneity, the pore size distribution (PSD) curve usually
represents a random fluctuation, and the self-similarity is
different with the pore diameter interval (Memon et al., 2020).
Hence, the PSD heterogeneity can be hardly characterized with a
single-fractal dimension (Posadas et al., 2003; Anovitz et al., 2013).
Compared with single-fractal dimensions, it is allowed to separate
multiple-fractal dimensions into a lot of small regions which have
various singularity exponents (Zhang et al., 2020; Liu et al., 2017;
Han et al., 2022). The fractal of various regions can serve for the
examination of the fine structure exhibited by the pore network.
Based on lithofacies division, this paper analyzes the multifractal
characteristics exhibited by micropores (below 2 nm) and

mesopores and macropores (2–100 nm) in different lithofacies by
combining LPN2GA and HPMI tests, studies and confirms the
multifractal parameters of PSD of different pore sizes, and
comprehensively characterizes the pore structure of the tight
reservoir. This paper aims to provide a theoretical basis for
quantitatively assessing PSD heterogeneity in tight reservoirs.

2 Geological setting

For the Permian Lucaogou Formation, the thickness is
approximately 25–350 m (200 m on average) and the burial depth is
4000–4800 m. The total organic carbon (TOC) content is from2 wt% to
15 wt% (6 wt% on average), and the vitrinite reflectance (Ro) of the
specular formation changes from 0.7% to 1.0% (Cao et al., 2017).
Normal rock types include shale, oil shale, and dolomitic shale (Yang
et al., 2019), and the primarymineral types are dolomite, quartz, calcite,
feldspar, and clay (Wu et al., 2016). After the Southern Tianshan Ocean
was closed in the early Permian, the seawater in the Junggar Basin
retreated (Wang X. X. et al., 2018). The Lucaogou Formation mainly
features lake sedimentation, like deep lacustrine, semi-deep lacustrine,
shallow lacustrine to nearshore, and deltaic and beach bar sedimentary
facies (Figure 1) (Liu et al., 2019; Zhang et al., 2019). Water in the
ancient Lucaogou Lake had intermittent salinity, and the ancient lake
that features strong salinity, anoxia, and strong productivity contributes
to a proper environment for OM fugacity. The Lucaogou formation has
two sweet spots, namely, the upper spot (P2l2) and the lower spot (P2l1),
and the OM source and the sedimentary paleoenvironment of the
former present a frequent change relative to the latter (Qiu et al., 2016;
Su et al., 2019).

It is allowed to group facies that are related to genetics or
environment considering the depositional environment
interpretations into the facies associations (Reading et al., 1996). It is
also allowed to sub-group facies considering their data source, like the
lithofacies from data or the electrofacies from well-log clusters (Al-
Mudhafar et al., 2022). Lithofacies can be considered tomore accurately
describe the genetic or environment rocks relative to those from
electrofacies cluster analysis (Kim et al., 2022). Nevertheless, as the
whole-rock cores cannot be well collected and recovered, the vertical
lithofacies distributions of the wellbore-transected reservoir sections can
be hardly obtained (Nauyen et al., 2022). Hence, the association of the
discrete lithofacies distribution with the well-log data records shall be
essentially constructed, for completely explaining the lithofacies
classification. Prior to adopting lithofacies classification, existing
logging data (Table 1), i.e., gamma-ray (GR), density (DEN),
acoustic (AC), compensated neutron (CN), shallow resistivity (RI),
and deep resistivity (RT), were integrated with discrete lithology. As
shown in Figure 2, the characteristics of the logging curve coincide with
the petrophysical values provided by the core analysis.

3 Methods

3.1 Experimental test methods and materials

We obtained the samples from the cores of two wells in the tight
reservoir section of the Lucaogou Formation in Jimusar Sag. Dry
sealing served for preserving the cores. We dissected the surface
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layers in laboratory tests. Thirty horizons with representative depth
and lithological characteristics were selected for the sample.

3.1.1 Porosity and permeability
A PoroPDP-200 overburden pressure meter served for testing

the 30 samples in terms of porosity and permeability (Chinese oil
and gas industry standard SY/T 6385-2016). We installed the core
column samples (diameter: 2.5 cm) in a core holder and connected it
to the control module. The formation overburden pressure was
simulated (70 MPa being the largest) for related testing under the
assistance of a manual hydraulic pump. The non-stationary method
and Boyle’s law served for measuring the permeability
(0.00001–10 mD) and the porosity (0.01%–40%), respectively.

3.1.2 Pore structure parameters
A fully automated analyzer regarding specific surface area (SSA)

and porosity assisted in the N2 adsorption tests on the 30 samples

FIGURE 1
(A) Regional geological map; (B) formation profile of the Lucaogou Formation (including the lithology of predicted well J1 and training well J2).

TABLE 1 Statistics of the variables for the classification of ML models.

J1 Index AC CN DEN GR RI RT Depth

Min 61 12.71 2.18 68.87 0.57 0.56 4340

Median 70.71 21.24 2.44 93.29 13.68 13.71 4363.5

Average 72.6 22.28 2.43 94.51 16.51 16.73 4363.5

Max 98.12 41.09 2.54 141.53 106.7 124.57 4387

Counts 377 377 377 377 377 377 377

J2 Index AC CN DEN GR RI RT Depth

Min 57.78 0.078 2.25 46.82 1.1 1.08 4360

Median 69.47 0.178 2.51 84.57 16.53 17.25 4457.5

Average 71.23 0.19 2.51 85.82 50.42 51.06 4457.5

Max 100.26 0.41 2.66 162.27 1,580.06 1,416 4555

Counts 1,561 1,561 1,561 1,561 1,561 1,561 1,561
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(micro active for ASAP 2460 2.01). The procedures of our
experiments conformed to those of previous ones (Labani et al.,
2013; Liu et al., 2021). Amortar and pestle were used for crushing 1 g
of samples. A 60-mesh sieve served for the screening (Wei et al.,
2016). The obtained samples underwent 24 h of ultra-vacuum
treatment for removing the adsorbed water and volatiles. We
measured 42 relative pressure (P/P0) points in the adsorption/
desorption process, which changed in the range of 0.009–0.990.
The measured pore sizes changed in the range of 1.7–300 nm. Tight
reservoir pore sizes fell into three categories based on the
International Union of Pure and Applied Chemistry (IUPAC)
classification: micropores < 2 nm, mesopores 2–50 nm, and
macropores >50 nm (Rouquerol et al., 1994). The
Brunauer–Emmet–Teller (BET) theory was taken into account

for SSA calculation (Brunauer et al., 1938). The density
functional theory (DFT) was taken into account for the
calculation of pore volume and distribution, which was more
strongly sensitive for micropores and mesopores relative to the
Barrett–Joyner–Halenda model (Adesida et al., 2011; He et al.,
2021). MICP testing (Chinese national standard GB/
T21650.2–2008) served for examining the pore–throat
distribution of 30 samples under the assistance of PoreMaster-60.
Oil on the samples was removed after washing. 2 g of ground
samples received ultra-vacuum drying at 105°C after reaching a
constant weight. With the pressure reaching 60,000 psi, the mercury
slowly entered the sample, and the smallest pore–throat diameter
was approximately 3 nm. After the test was completed, we
conducted a baseline correction for eliminating possible errors

FIGURE 2
(A) Logging curve of predicted well J1. (B) Logging curve of training well J2.
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resulted from incomplete mercury filling. The calculation of the pore
structure parameters was based on Washburn’s equation, which
assumed that the mercury surface tension was 485 dyn/cm and the
contact angle was 130° (Washburn et al., 1921).

3.2 Data analysis methods

3.2.1 Classification methodology of boosting
machine learning

Boosting machine learning (ML) takes into account results
from the decision trees assessed in series for achieving a strong
learner from a lot of weak learners with sequential connectivity,
with the process defined as the ensemble-tree learning (Marc
et al., 2017; Chen et al., 2016; Zong et al., 2017; Sarker et al.,
2021). To be more specific, weak learners stand for trees added in
sequence, with each tree focusing on minimizing the errors made
by the previous one. Also, boosting ML algorithms pays attention
to the identification of stronger classifiers from some initial
weaker classifiers (Al-Mudhafar et al., 2022; Kim et al., 2022;
Sarker et al., 2021). In addition, the sequential training iterations
introduce a larger number of classifiers for reducing the
prediction errors, till achieving a certain limit. Despite the
prolonged training time, the learning process is capable of
achieving effective and reproducible prediction results (Sarker
et al., 2021). The learning rate, which is capable of quantifying the
model learning speed during the addition of new trees, and the
total tree number in each model constitute the primary

hyperparameter in the boosting ML algorithm. It is necessary
to carefully tune the aforementioned two parameters, particularly
the tree number, for lowering the model overfitting risk.

In the study, the adopted method used the supervised ML
boosting algorithm of the Mishrif-cored well for modeling the
identified lithofacies. The distribution of lithofacies in other non-
cored drilled sections was also estimated. The well-log data that can
be applied to the classification of lithofacies include gamma-ray,
density, acoustic, compensated neutron, shallow resistivity, and deep
resistivity curves, which were recorded throughout the reservoir
interval. Evaluation of four established boosting algorithms was
conducted for classifying lithofacies. Figure 3 displays the lithofacies
prediction technical workflow.

Logistic Boosting is a new approach in machine learning under
supervision, which is a method that combines weak misclassified
specimens to generate powerful classifiers. In this study, LogitBoost
was performed with the caTools software, which is existent in computer
coding systems. Generalized Boosting is an efficient method to capture
nonlinear relations between the response variate and a group of seers by
decreasing a specific objective(loss) function. In this research, GBM
assay was carried out with the gbm software, which is existent in the
computer coding system. Extreme Gradient Boosting (XGBoost)
XGBoost is a realization of gradient enhancement that facilitates
grouping and regression forecasting models with accelerated
implementation, modeling properties, and measurability. XGBoost
analysis was carried out with the xgboost software, which is existent
in the computer coding system in this research. K-Nearest Neighbor
(KNN) is a non-parametric learning classifier under supervision, which
is used to interpret the features of a database as spatial points. In this
experiment, KNN analysis was carried out with the e1071 software,
which is existent in computer coding systems.

3.2.2 Single fractal
The 3D capillary model served for calculating the fractal

dimension of the HPMI data. Based on assumption, the

FIGURE 3
Lithofacies classification method workflow diagram.

FIGURE 4
Workflow of the multifractal theory.
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nanopores are constituted by capillary bundles. The fractal
power–law function is taken into account to calculate the
mercury saturation (Eq. 1 (Li et al., 2010)). The
Younge−Laplace law can serve for confirming the association
of the pore radius r with the capillary pressure (Schmitt et al.,
2013; Gao et al., 2014).

SHg � VHg
Vp

� N r( ) · πr2l
Vp

� r−DM · πr2l
Vp

� πl 2σ cos θ
Pc

( )2−DM

Vp

� a · Pc
DM−2, (1)

log SHg( ) � DM − 2( )log Pc( ) + b, (2)

where VHg denotes the total mercury volume; SHg denotes the
mercury saturation level (%); r is the pore radius; l is the core
length; Vp stands for core sample pore volume (%); Pc stands for the
capillary pressure (MPa); DM is the capillary model fractal
dimensions in 3D; σ is the surface tension; θ denotes the contact
angle (deg); and b denotes the coefficient for Eq. 2.

The FHH model can serve for the calculation of the fractal
dimension on the basis of LPN2GA (Tang et al., 2003; Pomonis
et al., 2009). It is possible to directly obtain the fractal dimension
using nitrogen adsorption isotherms. In the multi-layer
adsorption region, the capillary condensation regime is not
considered, and the adsorption volume V and the relative

FIGURE 5
Visualized data distribution of seven wireline logs ((A) prediction well J1; (B) training well J2).

FIGURE 6
Lithofacies distribution in wireline logs (schematic representation of (A) J1 lithofacies and depth, (B) J2 lithofacies and depth, and (C) box plot).
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pressure of the adsorption phase (P0/P) follow the FHH equation
(Zhang et al., 2020; Fu et al., 2017):

ln V/V0
( ) � Kln ln P0/P( )( ) + C, (3)

DN � 3K + 3. (4)
In aforementioned equation, V denotes the adsorbed gas volume

at the equilibrium pressure P; V0 denotes the monolayer adsorption
gas volume; P0 stands for the gas saturation pressure; C is a constant;
K is the linear fitting slope of ln (V/V0) and ln (ln (P0/P)). DN is the
FHH model fractal dimensions.

3.2.3 Multifractal method
Multifractal theory acts as an extended version of conventional

fractal dimensions, capable of describing hidden information
neglected by the latter. For reservoirs that show strong
heterogeneity, the distribution curve of the pore size usually
represents a random fluctuation or jumping. Additionally,
different pore spacing parts present different self-similarity types;
hence, it is difficult to fully characterize the pore size homogeneity
using a single-fractal dimension (Zhao P. et al., 2019). Figure 4
shows the technical workflow of multifractal. The physical meaning
of each parameter is that the parameter Dq can fall into Dmin, Dmax,

FIGURE 7
Evaluationmap of prediction and training wells: (A) evaluationmap of GBM for validation well J1; (B) evaluationmap of LogitBoost for validation well
J1; (C) evaluationmap of KNN for validationwell J1; (D) evaluationmap of XGBoost for validationwell J1; (E) evaluationmap of GBM for trainingwell J2; (F)
evaluation map of LogitBoost for training well J2; (G) evaluation map of KNN for training well J2; and (H) evaluation map of XGBoost for training well J2.

FIGURE 8
Confusion matrices of prediction and training wells: (A) confusion matrix diagram of GBM for validation well J1; (B) confusion matrix diagram of
LogitBoost for validation well J1; (C) confusion matrix diagram of KNN for validation well J1; (D) confusion matrix diagram of XGBoost for validation well
J1; (E) confusion matrix diagram of GBM for training well J2; (F) confusion matrix plot of LogitBoost for training well J2 (G) confusion matrix plot of KNN
for training well J2; and (H) confusion matrix plot of XGBoost for training well J2.
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D0, D1, D2, D0 − D1, D0−D2, Dmin−Dmax, D0−Dmax, and Dmin−D0.
Dq is a sigmoidal-shape monotone decreasing function. When the
distribution of Dq is narrow, the measures in the multifractal set
present a poor heterogeneity. Dmin and Dmax can be impacted by the
measure areas with the lowest and highest probability, respectively.
D1 refers to the information dimension, characterizing the disorder

degree in the PSD. D1 = 1 means that the pore size is distributed
uniformly. D2 refers to the correlation dimension, characterizing the
relationship between the measures in the multifractal set. D0−Dmax

and Dmin−D0 stand for the amplitudes of the right and left branches
of Dq, respectively, representing the heterogeneity of high-
probability and low-probability measure areas (Han et al., 2022;
Yu et al., 2018). The f(α)-related parameters involve αmin, αmax, α0,
α0-αmax, αmin-α0, and A. The variable αmin is the singularity index of
the minimum q that can serve for characterizing the heterogeneity of
the measure area with the lowest probability. In a similar way, αmax

stands for the singularity index regarding the maximum q, capable
of characterizing the heterogeneity of the measure area with the
highest probability. In addition, α0 denotes the singularity index that
corresponds to the peak in the singularity spectrum (Liu K. et al.,
2018; Zheng et al., 2019). Larger width of the right (αmin-α0) and left
branches (α0-αmax) denotes the primary heterogeneity in the
lower probability measure areas (LPMAs) and the higher
probability measure areas (HPMAs), respectively. A = (αmin-α0)/
(α0-αmax) explains the singularity spectrum symmetry. A left-
skewed shape (A > 1) and a right-skewed shape (A < 1) reveal
the impact of large and small fluctuations on the measured
value, respectively. Δf = f (αmin)−f (αmax) explains the ratio of the
largest number of elements to the smallest number of elements in
relation to the physical parameter subset, reflecting the multifractal
spectrum asymmetry (Li et al., 2012; Liu M. et al., 2018).
The multifractal spectrum curve is slanted to the right and left
with Δf < 0 and Δf > 0, respectively (Han et al., 2022; Wang et al.,
2014).

FIGURE 9
Intersection diagram of the porosity and permeability of different
lithofacies.

FIGURE 10
PSD of the three lithofacies. (A) HPMI test of lithofacies 1 and 2; (B) HPMI test of lithofacies 3; (C) LPN2GA test of lithofacies 1 and 2; and (D) LPN2GA
test of lithofacies 3.
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4 Results and discussion

4.1 Boosting ML model training and
validation by cored well data

Through the training of four ML models and the sedimentological
analysis of the core section of the Lucaogou Formation, three main
lithofacies associations were identified. Each lithofacies assemblage
denotes a discrete sedimentary environment.

The total percent correct (TPC) of the classification was
calculated for evaluating the classification accuracy, which was

expressed as a confusion matrix with respect to the core-
interpreted lithofacies and predicted lithofacies. The confusion
matrix can visualize well the matching degree between the actual
and the predicted lithofacies intervals. The correct classification rate
index refers to the percentage of data points correctly estimated from
the total data point number after evaluation, reflecting the accuracy
of each model in different lithofacies. Figure 5 displays the statistical
indices and the pairwise scatter plot regarding independent and
response variables in the study.

Lithofacies prediction regarding each ML model is based on the
performance specific to the whole dataset and the validation subset.

TABLE 2 Fractal dimension and correlation of HPMI and LGN2GA in different lithofacies.

Facies Core no. DM1 R2 DM2 R2 DN1 R2 DN2 R2

1 8 2.305 0.96 3.305 0.9 2.001 0.98 1.68 0.99

1 9 2.715 0.96 2.697 0.98 1.671 0.99 1.527 0.99

1 10 2.522 0.94 2.702 0.86 1.374 0.99 1.179 0.98

1 12 2.388 0.9 2.723 0.99 1.392 0.99 1.431 0.99

1 13 3.091 0.96 2.153 0.78 1.5 0.99 1.074 0.84

1 14 4.505 0.89 2.022 0.84 1.77 0.89 −0.498 0.99

1 15 2.11 0.57 3.83 0.97 1.23 0.99 0.81 0.94

1 30 2.57 0.98 2.6 0.99 1.32 0.99 1.26 0.99

2 26 2.753 0.99 2.822 0.99 1.491 0.99 1.527 0.99

2 29 2.987 0.99 2.844 0.84 1.218 0.99 0.951 0.94

3 1 2.457 0.94 3.275 0.98 1.995 0.99 1.746 0.99

3 2 2.579 0.9 2.8 0.99 1.962 0.98 1.674 0.99

3 3 2.652 0.83 3.241 0.97 1.995 0.99 1.761 0.99

3 4 2.53 0.9 3.234 0.97 1.86 0.99 1.656 0.99

3 5 2.63 0.82 3.152 0.97 1.824 0.99 1.635 0.99

3 6 2.99 0.99 2.66 0.66 1.935 0.99 1.737 0.99

3 7 2.254 0.87 3.532 0.91 2.076 0.99 1.8 0.99

3 11 2.67 0.59 2.04 0.5 1.35 0.99 1.23 0.99

3 16 2.902 0.94 2.186 0.85 1.341 0.99 0.678 0.93

3 17 2.779 0.83 2.066 0.91 1.401 0.96 0.516 0.9

3 18 4.229 0.95 1.485 0.96 0.573 0.89

3 19 4.535 0.98 2.365 0.85 1.314 0.99 1.233 0.99

3 20 2.665 0.88 3.073 0.98 1.179 0.99 1.017 0.95

3 21 2.77 0.84 2.24 0.77 1.29 0.99 1.05 0.94

3 22 2.697 0.92 2.055 0,91 1.377 0.96 0.687 0.9

3 23 2.557 0.84 2.434 0.81 1.287 0.97 0.573 0.9

3 24 2.533 0.93 2.351 0.95 1.473 0.99 0.966 0.96

3 25 2.456 0.93 2.613 0.99 1.293 0.99 0.756 0.91

3 27 2.714 0.96 2.56 0.99 1.377 0.99 1.347 0.99

3 28 3.315 0.93 2.081 0.92 1.695 0.99 0.606 0.88
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The measured lithofacies and predicted lithofacies are displayed in
box and whisker plots, i.e., box plots, representing the algorithm
performance. The box plots give an accurate graphical image of the
lithofacies distribution and dispersion, thereby showing the distance
between the extreme values, i.e., the potential outliers and the
majority of the data. One box plot is composed of five values, the
smallest value, the first quartile (Q1), the median value, the third
quartile (Q3), and the largest value. In the box, the middle line is the
median value, and the lines on either side are the first and the third

quartile. The whiskers reach the smallest and largest value from both
ends of the box. There are fewer triangles outside the whiskers,
which stand for potential outliers with an obvious difference from
most data points. The difference between Q1 and Q3 is the
interquartile range (IQR). The box plot gives a valuable
visualization of the lithofacies variation considering that the data
fall into a lot of quartiles. To be more specific, it illustrates the
number of samples represented in each lithotype. There are only few
triangles outside the box plots, indicating that lithofacies are the

FIGURE 11
Plot of the single-fractal dimension fit for sample 6 ((A) HPMI test; (B) LPN2GA test).

FIGURE 12
Moment (q = 10 to q = 10 at 1 increments) as a function of mass exponent function (τq) of three types of lithofacies PSDs. (A) Generalized fractal
dimension of the HPMI test of lithofacies 1 and 2. (B) Generalized fractal dimension of the HPMI test of lithofacies 3. (C) Generalized fractal dimension of
the LPN2GA test of lithofacies 1 and 2. (D) Generalized fractal dimension of the LPN2GA test of lithofacies 3.
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FIGURE 13
Generalized fractal parameters of the fractal Dq versus index q of three types of lithofacies PSDs. (A) GFP of the HPMI test of lithofacies 1 and 2. (B)
GFP of the HPMI test of lithofacies 3. (C) GFP of the LPN2GA test of lithofacies 1 and 2. (D) GFP of the LPN2GA test of lithofacies 3.

FIGURE 14
Multifractal singularity spectrum of three types of lithofacies PSDs. (A) Singular-fractal parameter of the HPMI test of lithofacies 1 and 2. (B) SFP of the
HPMI test of lithofacies 3. (C) SFP of the LPN2GA test of lithofacies 1 and 2. (D) SFP of the LPN2GA test of lithofacies 3.
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most accurately classified. In this study, as each facies features strong
overlapping, lithofacies cannot be well distinguished by a single
wireline dog. The intersection plot of prediction well J1 and training
well J2 is as shown in Figure 6.

The confusion matrices in Figure 7 and 8 display the model
performance in detail. The confusion matrices regarding the results
give the TPC accuracy measures specific to LogitBoost, GBM,
XGBoost, and KNN. The TPC for training well J2 was 96%, 96%,
96%, and 96%, and the TPC for validation well J1 subsets was 75%,
68%, 72%, and 75%. According to the numerical results, a lower TPC
accuracy measure indicates that one class of algorithms misclassified
some input values, and it is possible to identify these values from the
confusion matrices of the training well and validation well. The

higher the TPC accuracy measures, the higher the accuracy of
lithofacies classification. Traditional cross-plotting methods can
hardly achieve the classification of lithofacies using wireline log
data because the cross-plots are overlapped somewhat;
comparatively, the machine learning model that combines
localized filtering and a logical network is capable of finding the
lithofacies classification criteria by a great deal of computations. In
addition, the ML algorithm in the study can avoid the uncertainty of
bias or accidental errors in the interpretation of human electrical
logging data.

4.2 Pore distribution range and single-fractal
characteristics

According to the overburden pressure tests regarding the
porosity and permeability, the porosity is in the range of 0.3%–
9.2% (3.9% on average; Figure 9). The total porosity of the samples in
lithofacies 1 (1.1%–9%, average 3.7%) is smaller than that of the
samples in lithofacies 3 (0.3%–92%, average 3.9%), which is smaller
than that of the samples in lithofacies 2 (average 4.7%). The porosity
represents a strong linear correlation with the matrix permeability
(R2 = 0.7). The linear relationship of lithofacies 3 samples is poor
(R2 = 0.14). The total permeability (1.8 × 10-4−1.75 × 102 nD, average
48.2 nD) of the samples in lithofacies 3 is smaller than that of the
samples in lithofacies 1 (5.9 × 10-4−1.9 × 102 nD, average 61 nD),
which is smaller than that of the samples in lithofacies 2 (average
70nD).

The pore throat distribution of HPMI showed that the HPMI
test could not fully reflect the micropores less than 2 nm,
highlighting the characterization of mesopores and macropores.
The distribution characteristics of the pore throat of liquid
nitrogen adsorption show that the diameter of the lower pore
throat of all lithofacies is between 50 nm and 100 nm
(Figure 10), while the upper pore throat has an obvious peak at
10 nm. The pores at 50 nm are dominant. In general, lithofacies
1 has fewer micropores, more mesopores, and almost no
macropores. Lithofacies 2 is mostly concentrated in the mesopore
range of 10–50 nm. Lithofacies 3 has more micropores and
mesopores, and the macropores are mostly concentrated around
100 nm.

The statistical table in Table 2 was obtained by linear fitting of
the scatter plot (Figure 11) according to Eqs 1–4. The correlation
between the fractal dimensions of HPMI and LPN2GA shows a high
degree of fitting, which can be used as the basis for the fractal
dimension. Results: The DM1 of facies 1 = 2.92 is larger than that of
facies 2 = 2.87 and that of facies 3 = 2.78. The DM2 of lithofacies 2 =
2.83 is larger than that of lithofacies 3 = 2.77 and that of lithofacies
1 = 2.6. DN1=1.62 of lithofacies 1 is larger than DN1 = 1.6 of
lithofacies 3 and DN1 = 1.35 of lithofacies 2. The DN2 = 1.24 of
lithofacies 2 is larger than the DN2 = 1.16 of lithofacies 3 and the
DN2 = 1.07 of lithofacies 1.

4.3 Multifractal evolution of each lithofacies

To define an object that possesses multifractal characteristics, it
should meet the three conditions: Dq and α (q) present a strict

FIGURE 15
GFPs of mesopores and macropores at 10–250 nm.

FIGURE 16
SFPs of mesopores and macropores at 10–250 nm.

Frontiers in Earth Science frontiersin.org12

Li et al. 10.3389/feart.2023.1200913

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1200913


monotonic decrease with q; τ (q) stands for an ascending convex
function of q; and F (α) denotes a convex function of a. Multifractal
spectra were produced using HPMI data and LPN2GA test data from
representative samples of different lithofacies, and the results proved
that the aforementioned conditions were satisfied (Figure 12) τ (q)
presents a strict monotonic elevation as q increases, indicating the
multiple-fractal features of sample PSD.

Figure 13 confirms the obvious and shows a reverse-shaped
curve regarding the q versus D (q) spectra of all samples that more
clearly confirms the multifractal features of PSD. The spectral curve
is capable of characterizing the PSD complexity at various q values.
Figure 14 displays the obvious parabolic-shaped distribution in the a
versus f (α) spectra regarding all the samples. For promoting the
analysis of the map characteristics of each lithofacies, the

multifractal parameters of three lithofacies are illustrated in the
figures to discuss the fractal characteristics of pores of each
lithofacies.

4.3.1 Characteristics of mesopores and
macropores at 10–250 nm

Figure 15 and Figure 16 show the statistics regarding GFP and
SFP. The physical meaning of the parameters was introduced in the
previous section. Figure 15 reveals the different D0 of all samples,
demonstrating the different PV values in each divided box. The
average value of D-10−D0 in lithofacies 3 is 0.15, which is greater than
the mean value of D-10−D0 in lithofacies 1, which is 0.095, and the
mean value of D-10−D0 in lithofacies 1 and 2 is the same. Thus, the
lithofacies 3 sample group has larger generalized spectral width
relative to the lithofacies 1 sample group, showing the stronger
heterogeneity of the former. Spectral width D−10−D10 conducts a
characterization on the overall change of the heterogeneity exhibited
by mesopores and macropores at 10–250 nm. The mean value of the
lithofacies 3 sample group (0.2) is larger than that of the lithofacies
1 sample group (0.13) and the lithofacies 2 sample group (0.12),
indicating that the distribution of mesopores and macropores in
lithofacies 3 groups is more heterogeneous. The samples of the same
lithofacies have obvious changes in D−10−D10, revealing the impact
of other factors on D−10−D10. The variation of D−10−D0 with respect
to D0−D10 is larger in the lithofacies 3 sample group than in the
lithofacies 2 sample group, and larger than that of the lithofacies
1 sample group, indicating that the heterogeneity of the lithofacies
3 sample group is controlled by LPMA. D−10−D0 and D0−D10 are
different within the lithofacies 3 sample group, which confirms the
obvious change of the pore volume in each pore diameter range. The
lithofacies 2 sample group represents a smaller 0.029 average
variation value of D0−D10 relative to the lithofacies 1 sample
group, even smaller than that of the lithofacies 3 sample group,
demonstrating the larger HPMA heterogeneity variation in the
lithofacies 2 sample group than the latter.

The HPMI multifractal spectrum presents larger generalized
spectral width relative to the LPN2GA multifractal spectrum, which
reveals the stronger heterogeneity of the former. In the HPMI data,
the pore size is more concentrated in larger than 10 nm,
demonstrating the stronger heterogeneity of macropores and the
weak heterogeneity of micropores and mesopores. In addition, the
two maps show that the overall width of lithofacies 3 is larger than
that of lithofacies 1 or 2, indicating that the heterogeneity of
mesopores and macropores of lithofacies 3 is stronger than that
of lithofacies 1 or 2, and the micropores and mesopores of lithofacies
3 are weaker than that of lithofacies 2 or 1.

The spectral width Δα = αmin-αmax is capable of characterizing
PSD complexity, and when the value is high, it means that the
multifractal system presents a large difference. According to
Figure 16, the lithofacies 1 sample group possesses a larger
singular spectrum width relative to the lithofacies 3 sample
group, and the lithofacies 2 sample group has the smallest
singular spectrum width. The left branch in group 1 has the
largest singular spectral width, and the right branch in the three
groups has almost the same singular spectral width, demonstrating
the stronger PSD heterogeneity in the lithofacies 1 sample
group. The average value of αmin for the lithofacies 2 sample
group is 0.2, which is less than that of 0.21 for the lithofacies

FIGURE 17
GFPs of micropores and mesopores from 2 to 50 nm.

FIGURE 18
SFPs of micropores and mesopores from 2 to 50 nm.
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FIGURE 19
Diagram of the relationship among the multiple-fractal parameters and the single-fractal dimension of lithofacies 1 ((A) relationship among D1, D2,
and D10 ofmesopores andmacropores; (B) relationship among a-10, α0, and α10 ofmesopores andmacropores; (C) relationship amongDN2, D-10, and a-10
of micropores and mesopores; and (D) relationship among DN1, D10, and α10 of micropores and mesopores).

FIGURE 20
Diagram of the relationship among the multiple-fractal parameters and the single-fractal dimension of lithofacies 3 ((A) relationship among D0−D2,
D0−D10, and DM2 of mesopores andmacropores; (B) relationship among α0, a-10, and α0–α-10 ofmesopores andmacropores; (C) relationship among D10,
D1, and D2 of micropores and mesopores; and (D) relationship among DN1, DN2, and a-10 of micropores and mesopores).
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3 sample group (the values for groups 1 and 3 are the same).
Accordingly, a minimum pore volume can be observed. The
lithofacies 2 sample group has a smaller 0.06 average αmax value
relative to the lithofacies 3 sample group (the values for lithofacies
1 sample group and 2 are the same). The singularity index α0 denotes
the PSD uniformity degree. As observed, the lithofacies 2 sample

group possesses the smallest average value, the average values for
lithofacies 1 and 3 sample groups are approximately the same.
Nevertheless, the value presents a clear variation for different
samples, which confirms the impact of other factors.

Because different lithofacies correspond to different sedimentary
environments, lithofacies 1 corresponds to the underwater

FIGURE 21
Correlation analysis of GFPs and single-fractal dimensions ((A) correlation analysis of HPMI shows that the upper left part is lithofacies 1 and the
lower right part is lithofacies 3; (B) correlation analysis of LPN2GA shows that the upper left part is lithofacies 1 and the lower right part is lithofacies 3).
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distribution channel, lithofacies 2 corresponds to the estuary dam,
and lithofacies 3 corresponds to the evaporation lake. In general, the
mesopores and macropores of the evaporation lake have strong
heterogeneity and are controlled by LPMA. The heterogeneity of

mesopores and macropores in the estuary dam is controlled by
HPMA. The PSD of the underwater distributary channel is more
complex, with the estuary dam having the most uneven distribution
of mesopores and macropores.

FIGURE 22
Correlation analysis of SFPs and single-fractal dimensions ((A) correlation analysis of HPMI shows that the upper left part is lithofacies 1 and the lower
right part is lithofacies 3; (B) correlation analysis of LPN2GA shows that the upper left part is lithofacies 1 and the lower right part is lithofacies 3).
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4.3.2 Characteristics ofmicropores andmesopores
from 2 to 50 nm

D0 of all samples is 0.11, showing the existence of a value of PV in
each divided box. The average value of D-10−D0 in lithofacies 1 is 0.046,
which is larger than the mean value of D-10−D0 in lithofacies 3, which is
0.041, and the mean value of D-10−D0 in lithofacies 1 and 2 are
approximately the same (Figure 17; Figure 18). Thus, the lithofacies
2 sample group has a larger generalized spectral width relative to the
lithofacies 3 sample group, confirming the stronger heterogeneity of the
former. The distribution of micropores and mesopores in lithofacies
2 groups is more heterogeneous. The variation of D−10−D0 with respect
to D0−D10 is larger in the lithofacies 1 sample group than in the
lithofacies 2 sample group, and greater than that of the lithofacies
3 sample group, indicating that the heterogeneity of the lithofacies
1 sample group is controlled by the LPMA. D−10−D0 and D0−D10 are
obviously different in the lithofacies 1 sample group, revealing the clear
change of the pore volume in the diameter range of pores. The
lithofacies 3 sample group has smaller 0.034 average change value of
D0−D10 relative to the lithofacies 1 sample group and the lithofacies
2 sample group, confirming the greater change of HPMA heterogeneity
in the lithofacies 3 sample group.

Figure 18 shows that, lithofacies 3 sample group possesses the
larger singular spectrum width relative to the lithofacies 2 sample
group, and the lithofacies 1 sample group has the smallest singular
spectrum width. The singular spectral width of the three groups was
almost the same. The average value of αmin for the lithofacies
1 sample group is 0.17, which is less than that of 0.173 for the
lithofacies 3 sample group (the values for groups 1 and 2 are the
same). Hence, the smallest pore volume can be observed. The
lithofacies 3 sample group presents the smaller 0.065 average
αmax value relative to the lithofacies 1 sample group. The
singularity index α0 of the three groups are approximately the same.

In general, the micropores and mesopores of the estuary dam are
highly heterogeneous. The heterogeneity of micropores and mesopores
in the underwater distributary channel is controlled by LPMA, and the
heterogeneity of micropores and mesopores in the evaporation lake is
controlled mostly by HPMA. PSD complexity of the micropores and
mesopores in the underwater distributary channel are basically similar,
and the mesopores and micropores of the evaporated lake are the most
uneven. However, in the same group of lithofacies, the pore radius of
different ranges reflects different characteristics. In order to summarize
these rules, the correlation analysis of each multifractal parameter is
illustrated in the following.

4.3.3 Analysis of the correlation of eachmultifractal
parameter under different pores

The fractal spectrum parameters undergo correlation analysis, with
results shown in Figures 15–18. That is followed by the calculation of
the correlation coefficients (Figure 21; Figure 22). As observed, some
parameters are well correlated. In the mesopore and macropore of the
underwater distributary channel, GFPs show strong positive correlation
with each other, and the individual parameters show weak negative
correlation. The overall correlation between DM1 and GFPs was
negative, and some of them showed weak positive correlation. The
overall correlation between DM2 and GFPs was not obvious, and
individually, DM2 and D0–D2 show a higher positive correlation.
SFPs are strongly and positively correlated. The single-fractal
dimension is poorly related to SFPs, and the rule is not obvious.

In the micropore and mesopore of the underwater distributary
channel, due to the particularity of D0 value, the correlation analysis
aims at the parameter range other than D0. The results show an
obvious correlation between GFPs, and the overall correlation
between DM2 and GFPs is stronger than that between DM1 and
GFPs, but the regularity is not obvious. The features of positive and
negative correlations are quite different. SFPs show strong positive
correlations among themselves and weak negative correlations
individually, but the overall characteristics are stronger than the
correlation between the middle and large pores. DN2 is clearly
negatively correlated with SFPs, and the overall correlation is
stronger than the overall correlation between DN1 Figure 19;
Figure 20 SFPs.

In the mesopore and macropore of the evaporation lake, GFPs are
strongly and positively correlated and individual parameters are weakly
and negatively correlated. DM1 and DM2 are negatively and positively
correlated with GFPs, respectively. An obvious positive correlation exists
between SFPs. DM1 and DM2 are weakly negatively and positively
correlated with SFPs, respectively. Accordingly, GFPs and SFPs in
mesopores and macropores of lithofacies 3 have strong regularity.
When the value is high, the local distribution fluctuates greatly, the
distribution interval is narrower, and pores undergo local agglomeration.

In the micropore and mesopore of the evaporation lake, a strong
correlation can be observed between GFPs, and the overall
correlation is stronger than the correlation between the
micropore and mesopore of the underwater distributary channel
and the correlation between the mesopore and macropore of the
evaporation lake. The single-fractal dimension is strongly correlated
with GFPs, but the regularity is not obvious, and the characteristics
of positive and negative correlation are different. The correlation
between SFPs is also strong, with individual R2 = 0.99, but the overall
law does not meditate. The overall correlation between DN1 and
SFPs is stronger than the overall correlation between DN2 and SFPs,
which is a strong negative correlation. It is shown that SFPs can serve
for characterizing PSD uniformity.

5 Conclusion

(1) Based on the ML algorithm, six kinds of logging curves and
lithofacies of two landmark wells in Lucaogou of Jimusar
Permian are matched and trained. Confusion matrices were
constructed for examining the BML algorithm accuracy,
together with calculating the TPC classifications. These results
indicate that TPC for LogitBoost, GBM, XGBoost, and KNN for
training well J2 was 96%, 96%, 96%, and 96%, while for validation
well J1 subsets, it was 75%, 68%, 72%, and 75%, respectively.
LogitBoost and KNN algorithms are reliable for lithofacies
prediction of the Lucaogou Formation.

(2) Based on the classification of lithofacies, the micropores,
mesopores, and macropores were comprehensively described by
HPMI and LPN2GA tests, and the multifractal theory served for
quantitatively characterizing the heterogeneity of pore distribution
of different lithofacies samples. It is concluded that the distribution
of pores with different pore sizes in the three lithofacies shows
typical multifractal behavior, and the correlation between
multifractal parameters and influencing factors of micropores,
mesopores, and macropores is significantly different.
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(3) PSD map and the generalized fractal spectrum show that there
are fewer micropores, more mesopores, and almost no
macropores in lithofacies 1. Lithofacies 2 is mostly
concentrated in the mesopore range of 10–50 nm. Lithofacies
3 has more micropores and mesopores, and the macropores are
mostly concentrated around 100 nm.

(4) For micropores and mesopores, the PSD of the estuary dam is not
uniform, and the distribution of micropores and mesopores is
more heterogeneous. The heterogeneity of the underwater
distributary channel is controlled by LPMA, while the
heterogeneity of HPMA in the evaporation lake shows a large
variation and the pore volume of the underwater distributary
channel changes significantly. The mesopore and macropore of
the evaporation lake have high heterogeneity, which is controlled
by LPMA. The heterogeneity of HPMA in the estuary dam shows a
large variation.

(5) In the SFP map, the pore volume is approximately the same
under similar parameter characteristics. In the range of
10–250 nm mesopore and macropore, the PSD of the
underwater distributary channel is the most complex, and
the PSD of the underwater distributary channel is highly
heterogeneous. The evaporation lake is the most complex in
the microporous and 2–50 nm range.

(6) Anobvious positive correlation exists between SFPs of the underwater
distributary channel, and an obvious negative correlation exists
between DN2 and SFPs in the range of micropore and mesopore.
SFPs of the evaporation lake are positively correlated with each other.
Inmicropores andmesopores, the single-fractal dimension is strongly
and negatively correlated with SFPs, which can serve for
characterizing PSD uniformity.
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