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Introduction: A design flood is a hypothetical flood used for the design of reservoirs
and other hydrologic engineering infrastructures. Amongmany hydrological properties
of a design flood, flood volume and peak can significantly affect the safety of reservoir
operation. However, the uncertainty of flood volume and peak has rarely been
considered in the risk analysis of reservoir operation regarding floodwater utilization.

Methods: In this paper, a general risk analysis framework that integrates theMonte
Carlo samplingmethod and themost likely event selectionmethod is proposed to
calculate the risk of operating a single reservoir. By generating a large amount of
stochastic bivariate flood data, the most likely design values were selected for a
given return period. The probability of the maximum water level exceeding the
current design flood level was calculated based on the simulation of flood control
operation under various floodwater utilization schemes.

Results: The model is applied to the Shagou reservoir in the Shuhe River basin,
China. The results show that the design flood volume and flood peak obtained by
the bivariate joint return are 7.59% and 8.22% higher than those from univariate
frequency analysis, respectively; the joint return period of bivariate design value
spans from 10a to 1000a compared to the historical data; and the flood control
risk at Shagou reservoir is 0.29 under current flood control operations based on
the uncertainty of flood volume and peak.

Discussion:Moreover, themarginal benefitmay containfloodwater utilization and a
transmission risk effect between different node projects in the flood control system.
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1 Introduction

With continuous economic development and population growth, the demand for water
resources is becoming increasingly intense, and scarcity of water resources is among the major
factors restricting social progress (Chen et al., 2016; Chang et al., 2017). To alleviate water
resource shortages, various floodwater utilization models have been recently developed and
demonstrated to be effective in many studies (Ding et al., 2017; Meng et al., 2018; Liu et al.,
2019; Wang et al., 2019). According to the floodwater utilization concept (Wallington and Cai,
2020; Wang et al., 2020), floodwater utilization strategies can only be implemented if the risks
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are controlled within an acceptable range. As one of the major and
effective engineering measures for floodwater utilization, reservoirs
are built for multiple purposes, including flood control, water supply,
and other functions. Moreover, floods are among the most frequent,
widespread, and devastating natural disasters in the context of climate
change and human activities (Wu et al., 2020); thus, flood control risks
are particularly important for reservoir flood control operations.
Therefore, the scientific assessment of flood control risk in
floodwater utilization operations is important for flood
management in reservoirs.

The risk analysis of floodwater utilization is a fundamental issue in
flood management, engineering design, and area planning. Because the
uncertainty factors lead to deviations between the calculated deterministic
results and the actual occurrence and the risks involved in flood control
decision making (Xiong and Qi, 2010; Delenne et al., 2012; Simonovic
and Arunkumar, 2016; Ocio et al., 2017; Chen et al., 2019), various
uncertainties have been discussed in the estimations of floodwater
utilization in past years, including meteorological and hydrological
forecast uncertainties, hydraulic uncertainties and human operation
uncertainty (Melching, 1992; Cloke and Pappenberger, 2009; Dong,
2009; Diao and Wang, 2010; Wu et al., 2011; Kriauciuniene et al.,
2013; Tung and Wong, 2014; Yan et al., 2014; Ocio et al., 2017). Due
to significant concerns regarding design flood estimation under a specific
return period for reservoir floodmanagement, the study of its uncertainty
has received much research attention from hydrologists (Parkes and
Demeritt, 2016; Nakamura and Oki, 2018; Brunner and Sikorska-
Senoner, 2019; Guo et al., 2020). Notably, design floods are generally
defined by several features that are correlated with uncertainty (Dung
et al., 2015; Daneshkhah et al., 2016; Guo et al., 2020), such as flood peak,
flood volume, and regional flood composition. Hence, analysis of
bivariate design floods characterized by correlated flood volumes and
peaks reveals its advantage over traditional analysis of univariate design
floods. In recent years, numerous frameworks have been developed to
estimate uncertainties in bivariate design floods in various flood control
systems (Zhang and Singh, 2007c; Yan et al., 2014; Fan et al., 2016; Ozga-
Zielinski et al., 2016; Yin et al., 2018b; Xiong et al., 2019; Guo et al., 2020;
Huang et al., 2020). The application of the copula-basedmethodology has
been of growing interest in bivariate design floods. Various uncertainties
in copula-based design flood estimation are discussed
(Malekmohammadi et al., 2009; Serinaldi, 2013; Michailidi and
Bacchi, 2017; Liu et al., 2018; Guan et al., 2022), including model
uncertainty, parameter uncertainty, and sampling uncertainty. In
particular, the sampling uncertainty of flood volume and peak is high
in bivariate design floods, influencing the selection ofmodel structure and
parameters. The floodwater utilization approach is devised based on the
analysis of flood control risk caused by various uncertainties. Analyzing
the frequency curve of flood control reservoir capacity is necessary to
balance risks and benefits considering the uncertainty of flood volume
and peaks in the selection of floodwater utilization schemes.

However, to the best of our knowledge, there are few studies on
the flood control risk of floodwater utilization from a sampling
uncertainty perspective. More importantly, apart from a few papers,
flood volume and peak and their impacts on flood control risk have
not been systematically estimated in the literature. Towards this
goal, here we propose an integrated model that employs the Monte
Carlo sampling method and the most likely event selection method
to estimate the probability of the maximumwater level exceeding the
current design flood level.

The remainder of this paper is structured as follows. Section 2
describes the Shagou reservoir of the Shuhe River in the Huaihe
River Basin in China, which is chosen as the study domain. Section 3
introduces the research framework. Section 4 presents the
computational process and the results. Section 5 discusses the
impacts of flood control operations on flood control risk. Section
6 provides the conclusions of this study.

2 Case study

2.1 Study area

The Shagou reservoir is located upstream of the Shuhe River in the
Huaihe River Basin in China, with a control basin area of 164 km2, as
shown in Figure 1. The average annual precipitation is 745 mm, and
flood season (from June to September) accounts for approximately 74%
of the annual precipitation. In the current flood control operation, the
flood-limited water level of the Shagou reservoir is 231.5 m, and the
maximum control outflow is 500 m3/s under the given return period
T =20a. In this paper, the Shagou reservoir is taken as the research
object to discuss the flood control risk in floodwater utilization
considering the uncertainty of flood volume and peak.

2.2 Data

The annual maximum 72 h flood volume and corresponding
flood peak observed in 1964–2013 are utilized to represent the flood
characterization in the Shagou reservoir. The data are provided by
the Yi-Shu-Si River Basin Administration, which is responsible for
the unified management of major rivers (including the Shuhe River),
lakes, hubs and other projects in the Yishusi Basin. The statistical
results of flood volume and flood peak are shown in Table 1.

According to the statistics of historical flood data, the highest
annual maximum flood volume is 3.115 m3#107 m3, which is
approximately 3.5 times the multiyear average, and the lowest
annual maximum is 70.4 m3#104 m3. Similarly, the highest annual
maximum flood peak is 1,190 m3/s, which is approximately 3.7 times
the multiyear average, and the lowest annual maximum is 3.92 m3/s.
The annual flood change is dramatic, and floodwater utilization is
necessary for local regional water management. When the range of
flood volume is [2,070, 2,204] #104 m3, the flood peak range is [315,
994] m3/s. Obvious uncertainty exists between flood volume and peak,
which may have an adverse effect on flood control operation.
Estimating the flood control risk caused by the flood volume and
peak uncertainty in the Shagou reservoir is important for flood control
operation decision making in floodwater utilization management.

3 Materials and methods

3.1 Joint distribution of flood variables based
on copulas

Multivariate distribution construction using copulas has been
well developed in the past years (Sklar, 1959; Shaked and Joe, 1998;
Sancetta and Satchell, 2004). A bivariate joint distribution can be
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expressed by a copula function and its corresponding marginal
distributions. A copula is a function that links two marginal
distribution functions to construct a multivariate distribution
function. Sklar’s theorem states that if FXY(x, y) is a bivariate
distribution function of 2 correlated random variables X and Y
the respective marginal distributions FX(x) and FY(y), it is possible
to write a cumulative distribution function (CDF) with two single
marginal distributions as follows:

FXY x, y( ) � Cθ FX x( ), FY y( )[ ] (1)
where θ is the copula parameter. If these marginal distributions are
continuous, a unique copula function C(·) exists (Sraj et al., 2015).

There are many classes of copula functions, such as
Archimedean copulas, elliptical copulas and Plackett copulas
(Plackett, 1965; Fang et al., 2002). Archimedean copulas are

popular because they can be easily constructed and are capable
of capturing a wide range of dependence structures with several
desirable properties, such as symmetry and associativity (Nelson,
2006; Hofert, 2008). The widely used bivariate Archimedean family
copulas include the Clayton Copula, Frank Copula, and Gumbel-
Hougaard (GH) Copula, with a parameter θ, as shown in Table 2.
The copula parameter θ is usually estimated by the maximum
likelihood method (Strupczewski et al., 2001). Therefore, the joint
distribution function based on the copula method can be derived
when the marginal distribution functions of variables are
determined (Zhang and Singh, 2007a).

In current studies, root mean square error (RMSE) (Zhang and
Singh, 2006), Akaike’s information criterion (AIC) (Zhang and Singh,
2007b) and Nash-Sutcliffe efficiency (Ens) (Xu et al., 2017) are usually
employed to measure the goodness of fit of the joint distribution.

3.2 Joint return period

In conventional univariate analysis, the return period is usually
used to represent the average time interval of a specific design flood,

FIGURE 1
Sketch map of the Shagou reservoir in the Shu River basin, China.

TABLE 1 Statistical features of flood variables from 1964 to 2013.

Flood variables Mean Standard deviation Skewness

Volume (104 m3) 911.8 652.1 1.1287

Peak (m3/s) 315.1 258.5 1.4355
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which is also a method used to measure the magnitude of floods.
Within the copula-based framework, various definitions of the joint
return period have been proposed, such as OR, AND, Kendall,
dynamic, and structure-based return periods (Shiau, 2003; De
Michele et al., 2005; Salvadori et al., 2011; Yin et al., 2018a). In
this paper, the OR case (Tor) is adopted to describe the flood
occurrence and can be expressed as follows:

Tor � μ

1 − F q, w( ) �
μ

1 − Cθ FQ q( ), FW w( )[ ] (2)

where μ is the mean interarrival time between two consecutive
events (in the case of annual maxima μ =1 year), and F(q, w) �
P(q≥Q,w≥W) is depicted by a copula function
Cθ[FQ(q), FW(w)]; FQ(q) and FW(w) denote the marginal
distribution functions Q and W, respectively.

3.3 Most-likely event selection

According to Eq. 2, in the bivariate case, infinite possible
combinations of Q and W can be selected for a given joint
return period Tor, which have the same joint probability. The
different likelihood of each combination must be considered to
select appropriate design scenarios (Salvadori et al., 2011; Xiong
et al., 2020). Based on Sklar’s theorem, all the possible compositions
of flood volume and peak differ in terms of their probability of
occurrence, which can be measured by the value of the joint PDF
(Salvadori et al., 2011; Gräler et al., 2013; Guo et al., 2018). The most
likely flood event [q*(t), w*(t)] of all possible events at a given joint
return period Tor can be obtained by the following formula:

q* t( ), w* t( )[ ] � argmaxf q, w( ) � cθ FQ q( ), FW w( )[ ] · fQ q( ) · fW w( )
Cθ FQ q( ), FW w( )[ ] � 1 − 1

Tor

⎧⎪⎪⎨
⎪⎪⎩

(3)

where f(q, w) is a nonstationary joint PDF of q and w; C(·) is the
density function of the copula for nonstationary data series; and
fQ(q) and fW(w) are the marginal PDFs.

3.4 Flood control risk

Generally, the risk is simplified and defined as the probability of
occurrence of a risk event (Sun et al., 2018; Li et al., 2022). In this
paper, the flood control risk for the reservoir is defined as the
probability of the highest level over the design flood level and can be
expressed as follows:

R � P Hm >Hd( ) � m

n
(4)

where Hm is the highest reservoir level in the flood control
operation, Hd is the design flood level of the reservoir, m is
the number of times that the highest water level exceeds the
design water level in stochastic simulations, and n is the total
number of stochastic simulations.

3.5 General framework of risk estimation

In this research, the framework of estimating flood control risk
with the flood uncertainty of flood volume and peak is proposed
based on the Monte Carlo sampling method and the most likely
event selection method. It can be divided into three steps, which are
shown in Figure 2.

Step 1: Establish the joint distribution function. Based on the
observed flood volume and peak data with k-samples, the marginal
distributions FX(x) and FY(y) and the probability density
functions fX(x) and fY(y) are established, respectively. The
copula functions can be estimated by using the historical flood
series. According to the goodness of fit of the joint distribution, the
optimal copula function is selected to construct the joint distribution
function of flood volume and peak.

Step 2: Stochastic simulation of the flood. Based on the
multilevel Monte Carlo method (Giles, 2008; Brodie, 2013;
Clare et al., 2022), n sets of bivariate data with k-samples are
randomly generated. Based on the generated flood series, the
joint distribution function is constructed for each set. The most
likely method is employed to select the appropriate (q, w) under
the given Tor.

Step 3: Calculate the risk. According to the engineering and
hydrological characteristics, various design floodwater utilization
schemes have been developed. The design flood hydrograph can
be obtained by n sets of (q, w) and typical floods. Taking n sets of
flood hydrographs as input data, the simulation of flood control
operation is carried out, and the flood control risk can be
calculated by Eq. 4.

4 Results

4.1 Parameter estimation for the marginal
distributions

In this paper, the Pearson type III (P-III) distribution, which
is recommended by the Chinese Ministry of Water Resources
(Wang et al., 2015; Peng et al., 2017; Gao et al., 2018), was
employed to obtain the single marginal distribution of flood
volume and flood peak. The parameters of the P-III
distribution were estimated by the moment method (Hosking,
1990) and are shown in Table 3. The K-S test (Dn) is employed to
describe how well the distributions fit the flood data. With K-S’s
critical value D0.05 � 1.36



50
√ � 0.1923, the Dn of flood volume and

peak are both 0.0980. Therefore, flood volume data and flood
peak data both failed to reject the P-III distribution.

TABLE 2 Types of Clayton, Frank and GH copulas.

Archimedean
copula

Cθ Range
of θ

Clayton (FX(x)−θ + FY(y)−θ − 1)−1/θ θ > 0

Frank −1
θ ln[1 + (e−θFX (x)−1)(e−θFY(y)−1)

e−θ−1 ] −∞< θ <∞

G-H exp[−((−lnFX(x))θ + (−lnFY(y))θ)1/θ] θ ≥ 1
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4.2 Joint distribution function based on the
copula function

For the flood data, Clayton, Frank and G-H Copula were used
to establish the joint distribution. RMSE, AIC and Ens were
obtained to measure the goodness of joint distribution as
shown in Table 4. The empirical joint probabilities were
estimated for the flood data by using the Gringorten formula
(Gringorten, 1963; Du et al., 2019). The smaller the RMSE and
AIC are, the better the joint distribution is. The larger Ens is, the
better the joint distribution is. Based on the above measurement
principles, the results indicated that the best-fitted joint
distribution is the G-H copula function with the parameter
1.8890 in the Shagou reservoir flood volume and peak. Then,

the structure of the joint distribution function of the historical
flood volume and peak was determined.

4.3 Most-likely design values

According to the bivariate joint distribution of historical flood
data, the most likely method was employed to obtain the bivariate
flood volume and peak for a given joint return period Tor. The
comparison of design flood values under the bivariate joint return
period and univariate return period is shown in Table 5.

The results show that the flood volume and peak obtained by the
bivariate joint return for a given joint return period Tor are larger
than the values obtained by the univariate return period. As shown

FIGURE 2
Flowchart of the proposed framework.

TABLE 3 Parameters of P-III in flood volume and peak.

Flood variables α β δ Cv Cs �x

Volume 0.95 0.0013 182 0.82 2.05 911.8

Peak 0.76 0.0030 63 0.92 2.30 315.1

TABLE 4 Results of copula parameter and goodness of fit.

Objects Clayton copula Frank copula G-H copula

θ 0.1835 7.5897 1.8890

RMSE 0.0738 0.0424 0.0361

AIC −258.5977 −313.9757 −330.2635

Ens 0.9288 0.9763 0.9829

Frontiers in Earth Science frontiersin.org05

Du et al. 10.3389/feart.2023.1196903

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1196903


in Table 5, the design flood volume for the univariate return period is
7.59% more than that for the bivariate joint return period, and the
design flood peak for the univariate return period is 8.22% more
than that for the bivariate joint return period. The value of flood
volume and peak for joint return period Tor � 100a will make a

larger return period in the respective univariate frequency analysis,
which is nearly 144 a. Considering the correlation between flood
volume and peak, multivariable flood events can be described more
reasonably and may demonstrate a new theoretical basis for flood
control operations.

TABLE 5 Design flood values under different return periods.

T Univariate return period Bivariate joint return period

Volume (104m3) Peak (m3/s) Volume (104m3) Peak (m3/s)

1,000 5,378 2,140 5,657 2,258

500 4,850 1917 5,129 2,035

200 4,153 1,624 4,431 1,741

100 3,626 1,403 3,904 1,519

50 3,100 1,184 3,377 1,299

20 2,406 897 2,678 1,009

FIGURE 3
Design flood values under different stochastic simulations (the black point indicates that the value was obtained by historical data): (A) T = 20a; (B)
T =50a; (C) T =100a; (D) T=200a.
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4.4 Stochastic flood simulation

Based on the joint distribution function of flood volume and
peak, the multilevel Monte Carlo method was employed to generate
bivariate design data. Considering the number of historical flood
data, 50 samples are randomly generated in each set. In the same
way, the joint distribution was constructed, and the most likely
design values were obtained. The number of stochastic simulation
sets is 10,000 in this paper and the design flood values based on the
stochastically simulated flood for given Tor are shown in Figure 3.
The statistics of bivariate design data under different bivariate joint
return periods are shown in Figure 4.

The results reveal that the generated design flood values are
scattered around the most likely design value calculated based on
historical flood data. As the bivariate joint return period increases,
the generated design values also increase. For the Tor � 20a, the
range of flood volume and flood peak is [1,412, 4,476] #104 m3 and
[509, 1,692] m3/s, respectively. And for the Tor � 200a the range of
flood volume and flood peak is [1990, 7,036] #104 m3 and [721,
2,788] m3/s, respectively. The Shagou reservoir is designed with the
univariate return period T=100a, and the joint return period of the
simulated joint design value spans from 10a to 1000a compared to
the historical data under the same bivariate joint return period
Tor � 100a. The joint design value is related to the economy of
engineering construction and the reliability of flood control
operation for reservoirs. If a small joint design value is adopted,
the scale of the reservoir will be small, which is not conducive to
providing its own benefits and may lead to a huge loss of life and
property in flood control. The uncertainty of flood volume and peak
should be given more attention in the field of floodwater utilization.

4.5 Flood control risk of reservoir

As mentioned in Section 2.1, the Shagou reservoir was designed
with the standard T=100a, and the corresponding design flood water
level is 233.13 m, which was obtained by univariate flood volume
frequency analysis. In the current scheduling rules, the water level is

limited to 231.5 m in the flood season. The essence of floodwater
utilization is transferring more floodwater into ordinary water
resources in the flood season for use in the non-flood season,
where the flood-limited water level plays an important role. In
recent years, numerous studies have been carried out to scientifically
raise the flood-limited water level in the flood season without
decreasing flood control standards or damaging the ecological
environment of rivers (Li et al., 2010; Liu et al., 2015; Chang
et al., 2017; Xie et al., 2018; Ye et al., 2019; Wang et al., 2020).
In this paper, according to the current operation, the flood-limited
water level is designed to be from 231.5 m to 232.0 m with an
interval of 0.1 m to indicate various floodwater utilization schemes.

The flood in August 1974 was selected as a typical flood, and
various flood hydrographs were obtained by using the design
bivariate design value in Section 4.4. By simulating the current
flood control operation, the maximum water level (Hs), the count
of the maximum water level exceeding the current design water
level (ms), and the flood control risk (Rs) were calculated under
different flood-limited water levels (Hc), which are shown in
Table 6. The statistical results of the maximum water level are
shown in Figure 5 under different flood-limited water levels.

In the flood control operation of a reservoir, the flood-limited
water level is considered to be the initial water level in a flooding
process. With the initial water level rise, the maximum water level in

FIGURE 4
Box-plots of bivariate design data under different bivariate joint return periods.

TABLE 6 Flood control risk statistics under different flood-limited water levels.

Hc (m) Hs (m) ms Rs

231.5 236.42 2,960 0.29

231.6 236.47 3,387 0.34

231.7 236.51 3,902 0.39

231.8 236.55 4,446 0.44

231.9 236.59 5,070 0.50

232.0 236.64 5,682 0.57
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the flood control operation process will also increase accordingly.
According to the statistical results, the averages of the maximum
water levels are all less than the design water level of 233.13 m under
flood utilization with flood-limited water levels of 231.5, 231.6,
231.7 and 231.8 m. With the increase in flood-limited water level,
the counts of the maximum water level exceeding the current design

water level similarly increased. When the flood-limited water level
increased from 231.5 m to 232, Hc and Rs nearly doubled. The flood
control risk increased with the rising flood-limited water level, and
the benefit of floodwater utilization grew correspondingly.
Assuming that the water level of the reservoir can be kept at the
flood-limited water level when the flood season ends, the benefit

FIGURE 5
Statistical results of the maximum water level under various flood-limited water levels.

FIGURE 6
Increased water resources and flood control risk under various floodwater utilization schemes.

TABLE 7 Flood control risk under different maximum control outflows.

Qc (m3/s) Hs (m) Rs

450 236.50 0.40

500 236.42 0.29

550 236.25 0.15
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growth rate and risk growth rate can be calculated quantitatively
compared to the current operation and are shown in Figure 6.

The results reveal that different increased rates occurred
between benefit and risk with the same increased flood-limited
water level. In particular, the growth rates of benefit and risk are
0.08% and 91% with Hc =232.0 compared to the current operation,
respectively. Achieving a lower benefit increment brings a greater
risk increment to water management, which shows that the marginal
benefit may be contained in floodwater utilization.

5 Discussion

Flood control operations have a certain impact on reservoir
flood control risk. As an important indicator of flood control
operation, the maximum control outflow (Qc) and the maximum
water level in the flooding process are directly related (Ding et al.,
2015; Moridi and Yazdi, 2017; Zhao et al., 2017). In this section,
different maximum control outflows of the reservoir were set,
representing the corresponding flood control operation, and the
corresponding flood control risk was calculated based on the steps in
Section 3. According to the current maximum control outflow of
500 m3/s, flood control operations with maximum control outflows
of 450 and 500 m3/s were set, and the simulation of reservoir flood
control was carried out with the design bivariate value in Section 4.4.
Based on various flood control operations, the maximum water level
of the reservoir was calculated, and the flood control risk was
obtained, as shown in Table 7.

In flood operations, with the increase in the maximum control
outflow of the reservoir, more floods are released downstream. For the
upstream reservoir, the less flood control storage is needed, the lower
the flood control risk is in flood control operation. In this paper, the
maximum control outflow has a strong impact on flood control risk.
In particular, with the maximum control outflow increasing to
550 from 500 m3/s, the reduction in flood control risk will be 48%.
In the field of floodwater utilization,many studies aim at risk decision-
making for transforming some amount of floodwater into ordinary
water resources without decreasing flood control standards (Li et al.,
2010; Ye et al., 2019;Wang et al., 2022). The reduction of flood control
risk is favorable for floodwater utilization, however, the flood control
risk of the upstream reservoir affects the flood control risk of the
downstream reservoir through changes in discharge control. In the
flood control system, there is a risk transmission effect in different
flood control projects.

6 Conclusion

Considering the influence of the uncertainty of flood volume
and peak, the estimation of flood control risk is discussed in this
paper. Taking the reservoir as the study object, the Monte Carlo
sampling method and the most likely event selection method were
employed to develop a general framework and then applied to the
Shagou reservoir in the Shuhe River basin, China. The main
conclusions can be summarized as follows:

(1) The proposed framework can estimate the flood control risk
considering the uncertainty of flood volume and peak. For flood
control risk with an uncertain distribution of random variables,
the stochastic simulation has certain advantages. At present, the
framework can be used with a single reservoir in the flood
control risk of flood control systems. The calculation of flood
control risk under cascade reservoirs and parallel reservoirs will
continue to be studied in future work.

(2) The application of the framework to the Shagou reservoir in the
Shuhe River basin showed that the flood control risk caused by
the uncertainty of flood volume and peak is 0.29, which
indicates that the design value obtained by the bivariate joint
return is much greater than the value from univariate frequency
analysis. Multivariable flood events can be described more
reasonably and may provide a new theoretical basis for flood
control operations.

(3) The flood control risk and the benefit of floodwater
utilization increased with the rising flood-limited water
level, and different rate increases occurred between the
benefit and risk. The marginal benefit may be in
floodwater utilization. The flood operation function, such
as different maximum control outflows, also has a
considerable impact on the flood control risk and may
play an important role in floodwater utilization. The
transmission effect of flood control risk is not
quantitatively evaluated, which will be improved in future
research.
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