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Risk analysis of dam slopes is crucial for ensuring the safety and stability of
hydraulic engineering. To improve the accuracy and reliability of risk analysis,
we adopt the cloud theory approach and conduct a study on the distribution types
of soil shear strength indicators based on indoor geotechnical tests. We propose a
“cloudmodel-Monte Carlo” couplingmodel that uses the cloudmodel to describe
the uncertainty of risk factors and determine the probability distribution types of
shear strength parameters, while the Monte Carlo method is used to simulate
random variables in the model. The effectiveness of the proposed model is
validated through a risk analysis of a slope of an earth-rock dam, with results
showing significantly greater accuracy and reliability compared to traditional
methods. The calculation results show that the risk probability corresponding
to the design flood level of the dam is 9.01×10-6, exceeding its allowable risk
standard of 0.5×10-6, hence the need for reinforcement treatment. The proposed
model can accurately evaluate the risk of dams and provide the scientific basis for
decision-making in dam safety management.
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1 Introduction

In recent years, with the continuous acceleration of urbanization and the
development of engineering construction, geological disasters have posed a serious
threat to people’s life and property safety (Tu et al., 2023). Among them, the slope
stability problem has been a hot issue of great concern in geological engineering (Wen
et al., 2022). In slope control, the soil shear strength parameter is one of the most
important parameters for evaluating the safety of slope engineering. To analyze the
risk of dam landslides, Monte Carlo simulation is a widely used method for dam slope
risk analysis (Lu et al., 2022), which involves generating random samples of uncertain
variables and simulating the dam behavior under different scenarios. However,
traditional Monte Carlo simulations assume that the uncertain variables follow a
specific probability distribution (Chorol and Gupta, 2023). In contrast, cloud
modeling is a novel uncertainty modeling approach (Cheng et al., 2022) that
captures the stochasticity and ambiguity in uncertain variables. Therefore, we
propose a new approach combining cloud models and Monte Carlo simulations to
analyze dam landslide risk. Specifically, we use the cloud model for solving
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uncertainty problems and Monte Carlo simulation for
generating stochastic samples and simulating dam behavior.

In previous studies, conventional methods (Rouzéa and Dattaa,
2016; Wang-Wang et al., 2018; Zhang et al., 2022a) have faced
uncertainty issues in parameter selection under limited data
conditions, leading to the simultaneous fitting of multiple
distribution functions. In contrast, cloud theory can address the
uncertainty problem in distribution types. Cloud theory was
proposed by Professor Li (Li et al., 2009), which can effectively
convert quantitative and qualitative information and visualize it
through cloud maps (Ma and Zhang, 2020). Among them, the
normal cloud model is the most important type of cloud model
and has been widely used in prediction, comprehensive evaluation,
data mining, intelligent control, and other fields (Liu et al., 2021;
Ruan et al., 2021). Cloud theory has also been extensively applied in
the assessment field (Chen et al., 2023; Guojiao et al., 2023). Monte
Carlo simulation, as a classic random number simulation method,
has been extended to various fields such as medicine (Santos et al.,
2022), water conservancy (Vihola et al., 2020), and science and
technology materials (Wang et al., 2020). Considering the scalability
and reliability of cloud models in fuzzy decision-making fields (Mao
et al., 2018; Mao et al., 2022; Yang et al., 2023), we developed a
“cloud model-Monte Carlo” coupling model to calculate slope
failure probability and perform risk assessment.

Risk analysis originated in the United States (Xie and Sun, 2009)
and was first applied in nuclear power plant risk assessment. Risk
analysis includes identifying potential hazards (Ge et al., 2020a),
assessing their likelihood and consequences, and formulating
mitigation measures to reduce risks (Wu et al., 2021; Zhang
et al., 2022b). In terms of dam safety, hazardous situations
include natural disasters such as floods or earthquakes, as well as
human errors or equipment malfunctions. The consequences of
these hazards can range from property and economic losses to loss of
life and environmental degradation (Ge et al., 2020b;Wu et al., 2020;
Ge et al., 2022; Zhang et al., 2023). Various methods such as
probabilistic risk assessment and quantitative risk analysis (Li
et al., 2018; Wang et al., 2022) can be used for risk assessment.
These methods involve collecting design, location, and operation
data of the dam, as well as external factors such as weather patterns
and geological conditions. Based on these data, mathematical
models are established to simulate the performance of the dam
under different hazardous situations and estimate associated risks
(Li et al., 2021; Wang et al., 2023).

In the past few decades, many studies have focused on
developing probabilistic methods to analyze slope stability
(Cai et al., 2021; Chakraborty and Dey, 2022) and have
demonstrated their superiority in risk assessment. However,
many factors need to be considered when evaluating slope
stability (Raghuvanshi, 2019; Yang et al., 2021), and simple
deterministic methods may not satisfy complex practical
situations. This article aims to introduce a probabilistic-
based method, where we propose a new approach for slope
stability analysis based on the “cloud model-Monte Carlo”. We
demonstrate the effectiveness of this method by applying it to a
case study of earth-rockfill dams. The proposed method
provides an assessment of dam landslide risk and can
provide a reference for decision-makers to formulate
effective risk management strategies.

2 Materials and methods

2.1 Indoor tests

The experimental parameters employed in this study were
derived exclusively from indoor geotechnical tests utilizing
remolded soil samples. Sampling was conducted within a
rectangular area located in the northeast of Tianshuihu,
Pingyu County, China, with dimensions of approximately
500 m in length and 150 m in width. According to the
geological profile of the region, the geological structure of
the Tianshuihu area is characterized by homogeneous
cohesive soils, mainly composed of fourth-quaternary loamy
soil and clay. To mitigate uncertainties arising from spatial and
temporal factors, sampling depth was limited between half a
meter to 1 m, with the obtained soil samples being plastic
loamy soil. After the sifting of soil samples, direct shear
testing was performed, following the specific steps outlined
in Figure 1.

In this study, 26 sets of powdered clay test data obtained
from indoor direct shear tests were selected for the study,
including the shear strength index c and the internal friction
angle index φ. The specific values are shown in Table 1.

2.2 Research overview

The earth-rockfill dam (Yong, 2004) is a rolled clay core
wall dam with a maximum dam height of 70 m, a crest width of
12 m, and a base width of 465 m. The normal water level is
185 m, the dead water level is 167 m, the total storage capacity is
1.13 billion m³, and the effective storage capacity is 570 million
m³. The upstream slope is from bottom to top at a ratio of 1:4.0,
1:3.5, 1:3.0, 1:2.0, and the downstream slope is from bottom to
top at a ratio of 1:4.0, 1:3.0, 1:2.0. Approximately 144 m below
the dam base is a thick clay core wall, and the slope is 1:4.0, 1:
0.5. Above 144 m, the slope is 1:0.1–1:0.2. The river length
above the hub dam site is 120 km, the controlled drainage area
is 2,000 square kilometers, the annual average flow rate is
37.8 m³/s, and the annual average runoff volume is
1.2 billion m³. The design flood peak flow rate
corresponding to a once-in-a-millennium event is 6,640 m³/s,
and the corresponding flood level is 188.1 m. The verification
flood peak flow rate corresponding to a once-in-a-ten-
thousand-years event is 8,700 m³/s, and the corresponding
flood level is 189.5 m.

The analysis object is the unreinforced earth-rockfill dam
with an upstream water level of 188.1 m, a downstream water
level of 132.0 m, and a dam base elevation of 120.0 m. The non-
stochastic mechanical parameters of the dam body are shown in
Table 2. In recent years, the reservoir has had many safety
hazards: the core wall narrows above the elevation of 144 m,
and the slope decreases from the original ratio of 1:0.5 to 1:0.1;
starting from an elevation of 150 m, gravelly soil has been used
in the core wall, resulting in severe seepage of the dam body, the
infiltration line overflows the dam slope, and large-scale
mortification occurs on the downstream slope, which affects
the stability and safety of the dam body.
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2.3 Model construction

The “cloud theory-Monte Carlo” approach to analyzing the risk
of earth and rock dams is shown in Figure 2.

The method proposed in this paper is a cloud model used to
determine the type of probability distribution of shear strength
parameters. Monte Carlo methods are used to simulate the random
variables in the cloud model and to calculate the probability of dam

slope failure based on the probability distribution of the random
variables.

2.3.1 Basic principles of cloud model
The cloud model, based on fuzzy mathematics and statistical

theory, is a powerful tool for describing the randomness and
fuzziness between uncertain language and precise numerical
values. It has been applied to several uncertain problems and

FIGURE 1
Shear test steps.

TABLE 1 Record sheet of direct shear test for soil samples (No. 1–26 soil).

Group Cohesion (kPa) Internal friction angle φ (°) Group Cohesion (kPa) Internal friction angle φ (°)

1 12.2 10.4 14 18.9 15.8

2 15 11.6 15 16.3 16.8

3 15 12.2 16 16.4 17

4 15 12.4 17 17.2 17.2

5 19.7 13.5 18 17.3 17.2

6 15 14 19 17.3 18.8

7 15.5 14 20 21 18.8

8 21.8 14.6 21 17.7 19.5

9 15.8 15.1 22 17.7 19.5

10 15.8 15.4 23 18.3 20.9

11 15.8 15.6 24 18.3 21.5

12 18.8 15.6 25 18.3 24.6

13 16 15.7 26 18.4 25.9

TABLE 2 Non-random mechanical parameters of earth and rock dams.

Physical properties Wet capacity Dry capacity Saturated capacity Floating capacity

Unit t/m3 t/m3 t/m3 t/m3

Quantity 1.995 1.730 2.090 1.090
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owing to its superiority in handling uncertainty issues, we have
incorporated it into our study of inferred soil shear strength
distribution indices.

Let U be a quantified domain represented by precise numerical
values, and C be a qualitative concept defined on the domain U. If
the quantitative value x∈U is a random realization of the qualitative
concept C, and satisfies x ~ N(Ex, En′2), where En′ ~ N(En,He2),
and the degree of certainty of x for C satisfies μ, then the distribution
of x on the domain U is known as the normal cloud.

μ � e
− x−Ex( )2
2 En′( )2 (1)

The cloud model no longer emphasizes precise function
representation (Yangping et al., 2019), but instead employs three
numerical features to represent the uncertainty of concepts:
expectation “Ex”, entropy “En”, and hyper-entropy “He”. “Ex”
represents the central position of the concept in the domain and
is the value that best represents this qualitative concept. “En”
describes the level of discreteness of the qualitative concept,
characterizing its randomness and fuzziness. The greater the
entropy, the larger the range of acceptable numerical values for
the concept, making the concept more macroscopic. “He” is a
measure of uncertainty in entropy and is generally determined
empirically. According to the 3“En” rule of statistics, the cloud
droplets contributing to the concept are typically situated within the
interval [Ex-3En, Ex+3En].

2.3.2 Inverse cloud algorithm optimization
The radiation fitting algorithm of the inverse cloud generator is based

on the radiative digital characteristics of clouds and their corresponding
radiative expectation functions. It expresses the probability distribution
characteristics of cloud droplets’ energy radiation over the entire
numerical domain space. By following data radiation and improving
the inverse cloud generator algorithm based on its fitting, the specific
description of the algorithm is as follows:

Input: The coordinates li of each cloud droplet in the numerical
domain space along with their respective degree of certainty CT(l)
representing the concept.

Output: The values of Ex, En, and He for the concept, and the
number of cloud droplets N.

The estimated value Êx(l) of Ex is obtained by fitting the known
cloud droplets using the cloud expectation curve CT(l).

CT l( ) � 1

f̂ l( )e
− f̂ l( ) l−Êx( )[ ]2

2 En l( )[ ]2 (2)

Êx l( ) � ∑n
i�1f̂ li( )li∑n
i�1f̂ li( ) (3)

The cloud droplets with CT(l)> 0.999 are removed, leaving m
droplets. We then calculate Ên(li); as well as Ên(l) and Ĥe(l), the
estimated values of En and He respectively.

Ên li( ) � f li( ) li − Êx( )∣∣∣∣∣ ∣∣∣∣∣���������������
−2 ln f li( )CT li( )( )√ (4)

Ên l( ) �

������������������∑m
i�1 f̂ En li( )( )En li( )[ ]∑m

i�1 f̂ En li( )( )[ ]
√√

(5)

Ĥe l( ) �

�������������������������������∑n
i�1 f̂ En li( )( )(En li( ) − Ên En li( )( )[ ]2∑n

i�1f̂ En li( )( )

√√
(6)

2.3.3 Cloud model pervasiveness
The geometric shape of the normal cloud has distinct

characteristics, with its expectation curve reflecting the shape of
the normal cloud. It can be deduced that for any 0<μ≤1, as
determined by μ.

X � Ex ±
������
−2 ln μ

√
En′ (7)

FIGURE 2
Flow chart of the “cloud theory—Monte Carlo” based dam slope instability calculation.
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As En′ is a random variable, and x is a symmetrical random
variable located on both sides of Ex. Therefore, it is sufficient to
analyze only X1, as the analysis of X2 is entirely analogous.

X1 � Ex +
������
−2 ln μ

√
En′ (8)

X2 � Ex −
������
−2 ln μ

√
En′ (9)

From En′ ~ N(En,He2), it can be deduced that X follows a
normal distribution with an expectation of EX and a standard
deviation of B. Therefore, according to this formula, the
discreteness of cloud droplets is directly proportional to He and
inversely proportional to y. This implies that asHe increases, so does
the discreteness of cloud droplets, while decreasing y
(i.e., approaching the foot of the mountain) leads to more
dispersed cloud droplets.

EX � Ex +
������
−2 ln μ

√
En′ (10)

B � ����
DX

√ �
������
−2 ln μ

√
He (11)

By solving for μ from EX, the expectation curve y of the normal
cloud can be obtained.

μ � e
− EX−Ex( )2

2En2 (12)
y � e

− x−Ex( )2
2En2 (13)

2.3.4 Calculation of the coefficient of safety for
dam slope stability

Because most slope stability analysis problems are super-
stationary, SL274-2001(SL274-2001, DAMS, 2002) (Chinese
Standards) states that the equations of ultimate equilibrium must
be established using the simplified Bishop bar method the Swedish
bar method, and the Spencer method.

According to the simplified Bishop’s bar method, the following
limiting equation of state is established.

G X( ) � 1
cos αi + tan φi sin αi

cili + wi − uibi( ) tan φi[ ] − wi sin αi

(14)
Where, αi is the angle between the gravity line of the soil strip

and the radius in the bottom surface passing through this line; ci is
the cohesive force at the bottom surface of the strip and φi is the
angle of internal friction at the bottom surface of the strip; wi is the
self-weight of the strip; bi is the width of the strip; and ui is the pore
water stress.

2.3.5 Calculation of the risk level of the dam slope
2.3.5.1 Calculation of ΔF0(hi)

The number of levels upstream of an earth and rock dam is
considered a random variable. Its calculation can be statistically
analyzed on a long series of observations of the reservoir water level,
which in turn leads to a probability plot of the probability
distribution characteristics of the water level. Given a certain
water as Zm, the value of ΔF0(hi) is calculated from the
corresponding frequency value. Alternatively, the value of
ΔF0(hi) can be found by applying the probabilistic algorithm for

reservoir regulation calculations concerning the literature (Yaowu
and Dongwei, 1994).

2.3.5.2 Calculation of FL
− (hi)

According to the previous description, FL

− (hi) represents the
average probability that the sliding moment is greater than the anti-
slip moment at a certain water level ℎi. The expressions are.

FL

−
hi( ) � ∫∞

r
f l/h( )dl (15)

The specific condition probability density function for the
sliding moment L of a dam under a certain water level H,
denoted as (l /ℎ) in the formula, is extremely complex, and its
solution is very difficult to obtain. Nevertheless, using the Monte
Carlo method can yield high results. The solution process for FL

− (hi)
is related to the form of the slip surface, and different slip surfaces
will produce different values. Therefore, it is necessary to determine
the maximum value of FL

− (hi). However, directly seeking the
maximum value is not practical. Hence, we first calculate the
minimum safety factor Kmin (Zhang et al., 2006) for the landside
dam slope and then use the corresponding most dangerous slip arc
to obtain the maximum value of FL

− (hi).

2.3.6 Coupled “cloud model-Monte Carlo” model
for dam slope instability risk analysis

The relationship between the sliding moment S and the anti-slip
moment R is a key factor affecting the stability of the dam slope.
When S>R, the dam slope becomes unstable, according to which, the
following mathematical model of the risk of instability of the slope of
an earth and rock dam can be established, setting the functional
function as

g ·( ) � g L, R( ) � R − L (16)
Pf � P L>R( ) � ∫∫

g ·( )< 0
fR,L r, l( )drdl (17)

Where, fR,L(r, l) is the joint probability density distribution
function of the sliding moment L and the anti-slip moment R of the
earth and rock dam.

Due to the great difficulties in the practical application of the
above equation, it is transformed into

Pf � ∫∞

−∞
∫ l

0
fR r( )drfL l( )dl � ∫∞

−∞
FR l( )fLdl (18)

The problem of using probabilistic combinations to estimate Pf
indirectly exists and can be solved perfectly. Thus, let the joint
probability density function of the sliding moment L and the water
level upstream of the dam H be

fHL h, l( ) � f l/h( )fo h( ) (19)
Where, (l/ℎ) is the conditional probability density function of

the water level H for the sliding moment L under the given
conditions and the probability density function fo(h) is for the
water level upstream of the dam.

The probability density function for the sliding moment L of an
earth and rock dam slope can be calculated by the full probability
density formula, expressed as follows:
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f l( ) � ∫∞

−∞
f l/h( )f0 h( )dh (20)

Combining Eq. 18 with Eq. 19 yields

Pf � P L>R( ) � ∫∞

r
∫∞

−∞
f l/h( )f0 h( )dh[ ]dl

� ∫∞

0
∫∞

−∞
f l/h( )dl[ ]f0 h( )dh

(21)

If

Fl h( ) � ∫∞

r
f l/h( )dl (22)

What about there

Pf � P L>R( ) � ∫h2

h1

Fl h( )f0 h( )dh (23)

where, ℎ1 is the minimum water level specified in the risk of
instability calculation for the earth and rock dam slopes and ℎ2 is
the maximum water level specified in the risk of instability
calculation for the earth and rock dam slopes.

Eq. 23 is the formula for calculating the risk of instability in the
slope of an earth and rock dam, but it is very difficult to solve the
formula directly by integration. Therefore, in the actual calculation,
it is necessary to apply the method of discrete numerical integration
to solve it. After dividing the part of the load probability density
distribution curve on L≤ℎ2 into N segments, the solution is given by
the following equation.

Pf � P L>R( ) � ∫h2

h1

Fl h( )f0 h( )dh � ∑N

i�1ΔF0 hi( )FL

−
hi( ) (24)

Where, Fl(h) is the probability that the sliding moment
corresponding to a certain water level ℎ is greater than the anti-
slip moment; N is the calculated number of segments of the
water level frequency curve upstream of the earth and rock
dam; ΔF0(hi) is the probability of the ith segment of the water
level frequency curve upstream of the earth and rock dam;
FL

− (hi) is the i-th segment of the sliding moment L is the mean
value of the probability that L is greater than the anti-slip
moment R.

In the process of slope risk analysis, the shear strength parameter
cohesion and the internal friction coefficient f � tanφ of the
landslide material are analyzed as random variables and it is
assumed that c and φ are statistically independent of each other
and obey lognormal cloud distributions of
D(μc � Exc, σc � Enc), D(μf � Exf, σf � Enf) respectively. N
cloud drops are generated for c and f to obtain a cloud
distribution plot of the two.

When using the Monte Carlo method of calculation, the cloud
distribution of the shear strength parameter is allowed to replace the
distribution histogram, and the standard deviation of the factor of
safety and the mean of the distribution are obtained from the cloud
distribution as in Eqs. 25–(26).

En � σY � ln 1 + V2
X( )[ ] 1

2 (25)

Ex � μY � ln μX − 1
2
σ2ln x � ln

μX������
1 + V2

X

√( ) (26)

xi � eyi (27)

Where, X is the lognormal cloud distribution (its mean is the
expectation of the cloud Ex, the standard deviation is the entropy of
the cloud En; and the coefficient of variation is Vx; Y = lnx is the
normal distribution (mean μY and standard deviation σY); xi is the
random number of variables X.

2.3.7 Steps for calculating the “cloud
model—Monte Carlo” model

The “cloud model-Monte Carlo” model used in the calculation
process of the failure probability Pf of the earth-rock dam slope can
be summarized into several steps.

1) Input each random statistical characteristic and distribution
model.

2) The uncertainty cloud model is used to generate cloud drops and
sample uncertain quantities such as cohesion c and internal
friction angle φ.

3) The random set of uniformly distributed random numbers is
generated and the corresponding parameters are generated
according to the distribution law of each variable.

4) Generated random numbers and parameters are substituted into
the function of the Swedish strip division method for multiple
calculations, the number of failures is recorded, and the failure
probability Pf is calculated.

5) Solve for the risk of dam slope instability based on the failure
probability Pf.

3 Results

3.1 Cloud distribution model for shear
strength index

Based on the small sample data, the three numerical features of
the shear strength parameter c were derived by the inverse cloud
generator, and then the cloud distribution map was obtained by the
forward cloud generator (φ values, c values log cloud distribution
map of the same analysis path), and the basic parameters of the
cloud model are shown in Table 3.

Through multiple cycles of the forward and reverse cloud
generators, 1000 cloud drops were simulated, generating the
cloud distribution shown in Figure 3.

According to Figure 3, it can be seen that the generalized normal
distribution of clouds can effectively model the discrete nature of
finite sample data. The cloud droplets generated based on the three
characteristic figures are mainly distributed in the intervals [12,22]
[0.75,1.75] [12.5,20], and [1.1,1.3], by the ‘3 days′ rule in cloud
theory. This indicates that the cohesion and internal friction angles
obey both normal and lognormal cloud distributions. In order to
determine the optimal probability distribution model for the shear
strength index of the soil, a comparison was made. The results show
that the tail cloud drops of the lognormal cloud distribution for
cohesion and internal friction angle are ‘lighter’ than the normal
cloud distribution and that the drops fluctuate less around the
desired curve. This indicates that the variability between the
sample data is reduced and the data is more concentrated after
the logarithmic transformation. The log-transformed coefficient of
variation for the soil parameters is calculated to be 0.043, which is
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much smaller than the untransformed coefficient of 0.121 and is
consistent with the inferred results for the cloud distribution.
Therefore, the log-normal cloud distribution is considered to be
the optimal probability distribution model for cohesion and internal
friction angle.

In order to make full use of the sample information without
over-relying on the sample data, this study adopts a cloud
theory-based method for studying the distribution types of
soil shear strength indicators. As can be seen from Figure 3,

the thickness of the clouds is not strictly normally distributed
but is a generalized normal cloud distribution. In contrast to the
distribution histogram and its fitted curve, the pan-normal
distribution of clouds describes the uncertainty of finite data
by introducing the super entropy He. As shown in Figure 3C, the
cloud thickness is large and the cloud droplet distribution is
discrete appearing fogged in the internal friction angle cloud
distribution plot, indicating a large uncertainty in the sample
data for the internal friction angle, a property that is not

TABLE 3 Basic parameters of the Cloud model.

Mechanical index Possibility type Ex En He A first-order sample center
distance

Variance Coefficient of
variation

cohesion normal 17.116 2.075 0.317 1.656 4.404 0.121

lognormal 1.230 0.053 0.008 0.042 0.029 0.043

internal friction angle φ normal 16.677 3.623 1.037 2.89 14.201 0.226

lognormal 1.209 0.090 0.016 0.071 0.024 0.128

FIGURE 3
Sample parameter cloud distribution.
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represented in the histogram of the internal friction angle
distribution.

3.2 “Cloud Model-Monte Carlo” based slope
stability risk analysis

3.2.1 Cloud simulation of shear strength
parameters

The cohesive force c and the coefficient of internal friction
f=tanφ of the landslide soil are considered random variables and
are assumed to follow a log-normal cloud distribution.
After 1000 simulations, the cloud distribution of the
coefficient of safety is shown in Figure 4. The expected
value Ex and variance En of the safety factor are shown in
Table 4.

3.2.2 Determination of the minimum safety factor
3.2.2.1 Calculation assumptions

This calculation assumes a starting elevation of 160 m. The
infiltration line of the earth and rock dam body is determined using
the finite element method, which is not limited by irregular
geometry and inhomogeneous materials, and the calculation
results are highly reliable.

3.2.2.2 Calculation method
During the period of steady seepage, the Swedish strip division

method was used to carry out the downstream slope stability analysis
of the earth and rock dam, and the minimum safety factor and the

location of the most dangerous slip surface were obtained through
the calculation.

3.2.2.3 Calculation results
The minimum safety factors obtained using the Swedish arc

method at each water level, together with the values specified in the
code, are shown in Table 5 below.

3.2.3 Calculation of slope failure probability
3.2.3.1 Probability of failure FL

− (hi) calculation
After obtaining the minimum safety coefficient from the slope

stability analysis, the calculation was carried out using the Monte
Carlo method and the relevant electro-computing procedures. In
general, the probability of failure was under 0.1% according to the
number of solutions N > 100

Pf
, and to meet the requirements of

calculation accuracy, the number of solutions was set to
200,000 times to calculate the probability of failure of the
downstream dam slope, and the calculation results are shown in
Table 6.

3.2.3.2 Calculation of the interval frequency ΔF0(hi)
Based on the upstream flood level frequency curve of the earth

and rock dam Figure 5, the interval frequency value ΔF0(hi) can be
found as shown in Table 7.

3.2.4 Coupled “cloud Model-Monte Carlo” model
for dam slope risk calculation

The degree of risk R
−
can be calculated by the following equation.

R
− � Pf � P L>R( ) � ∫h2

h1

FL h( )f0 h( )dh � ∑N

i�1ΔF0 hi( )FL hi( )
(28)

The results of the calculation are shown in Table 8.
For a parameter F that fits the lognormal cloud distribution, let y

fit the normal cloud distribution and have

y � lnF (29)
or

F � ey (30)
Then F can be transformed into a normal cloud distribution.
The following transformation relationship exists between the

expectation and entropy of F and y, i.e.,

Eny � ln 1 + V2
F( )[ ] 1

2 (31)

Exy � ln
Exx������
1 + V2

F

√( ) (32)

In the above equation: μY and σY are the standard deviation and
mean of y respectively.

The coefficient of variation is obtained from Eqs. 31–(32) as

FIGURE 4
Cloud distribution of mean slope calculation results.

TABLE 4 Characteristic values of random mechanical parameters of earth and rock dams.

Variable name Symbol Distribution type Mean Variance Coefficient of variation

Cohesion c log-normal cloud 3 0.29 0.5

Internal friction angle coefficient f log-normal cloud 0.5095 0.,24 0.2
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TABLE 5 Calculation of the slope stability factor of safety for the earth and rock dams.

Dam slope Upstream water level/m Coefficient of safety Kmin Range of specified values

Downstream

188.1 1.29

1.24

186.0 1.32

185.0 1.34

184.0 1.36

182.0 1.40

180.0 1.49

178.0 1.54

176.0 1.60

174.0 1.67

172.0 1.68

170.0 1.70

168.0 1.76

166.0 1.76

164.0 1.85

162.0 1.89

160.0 1.92

TABLE 6 Calculation of slope failure probability FL
− (hi) for earth and rock dams.

Dam slope Safety factor Kmin Probability of failure FL

− (hi)/%

Downstream

1.29 0.15101

1.32 0.13526

1.34 0.19311

1.36 0.11174

1.40 0.11876

1.49 0.08711

1.54 0.08701

1.60 0.07515

1.67 0.05250

1.68 0.03825

1.70 0.03450

1.76 0.02525

1.76 0.03350

1.85 0.01920

1.89 0.01635

1.92 0.01715
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VF � σF
μF

� EnF
ExF

(33)

Since y less than 0 is equivalent to F less than 0, the reliability
index β = Exy/Eny not only reflects the probability that Y < 0, but also
represents the probability that probability of F < 1. For a normal
cloud distribution, the variables y and β alike can be expressed in
terms of ExF, EnF.

β � μy
σy

� Exy

Eny
�

ln Exx����
1+V2

F

√( )
ln 1 + V2

F( )[ ] 1
2

(34)

According to the above equation, for μF= Exy= 3, VF= 9.7%, a
review of the data shows that the probability of F > 1 is 99% and can
be obtained by the following equation.

Eny � ln 1 + 0.0972( )[ ] 1
2 � 0.109 (35)

Exy � ln
3���������

1 + 0.0972
√( ) � 0.252 (36)

β � 0.251
0.109

� 2.204 (37)

The improved risk analysis method based on cloud theory yields
a risk level of 879.01 × 10−6, which is smaller and more accurate than
the traditional method of 929.25 × 10−6, proving that this method is
more reliable.

3.2.5 Risk evaluation
In recent years, the main method of risk analysis has been based

on parameters following a normal distribution. However, this may
lead to negative values for certain parameters, particularly when
analyzing slope engineering parameters such as cohesion. This can
result in lower reliability as cohesion may have negative values. To
address this issue, this paper analyzes parameters following a
logarithmic normal cloud distribution, aligning the stability
measurement standard of slope instability with the traditional
analysis method of functional functions less than zero.

Traditional slope stability analysis uses deterministic models to
obtain the safety factor F. However, risk analysis based on cloud
theory uses two indicators, the expectation Ep and entropy En, to
determine the failure probability of the slope by analyzing the
variability characteristics of influencing factors, which is more
reasonable. Studies have shown that the probability of dam
collapse due to landslides in earth-rock dams is on the order of
10−5 per dam per year, therefore, we set the landslide probability of
earth-rock dams at 10−5 per dam per year. Taking into account the
safety factors, the statistical probability of landslides for each dam
per year is set at 1×10−5. Therefore, the safety reliability of earth-rock
dams against landslides is above 99.999%.

However, determining the value of landslide risk for earth-rock
dams is influenced by many factors. The process of determining risk
standards requires repeated weighing between economic benefits,
political risks, environmental assessments, and dam safety. Referring
to relevant risk standards, this paper sets the allowable landslide risk
standard at 0.5×10-6, resulting in a safety reliability indicator of over
99.9995.

The calculation results show that the risk probability
corresponding to the design flood level of the dam is 9.01×10-6,
exceeding the allowable risk standard of 0.5×10-6, thus
reinforcement treatment is necessary.

4 Discussion

This study proposes a “cloud model-Monte Carlo” coupling
model and applies it to evaluate the risk of specific earth-rock dam
landslides. The results show that the proposed model is effective in
analyzing the risk of dam slope failure and provides a
comprehensive assessment of potential risks related to the dam.
The cloud model is used to determine the probability distribution

FIGURE 5
Water level frequency graph for earth and rock dams.

TABLE 7 Flood level frequency relationships upstream of earth and rock dams.

Water level/m Frequency F0(hi)% ΔF0(hi)/%
164.0 99.999

166.0 99.98 0.019

168.0 99.85 0.13

170.0 99.3 0.55

172.0 97.5 1.8

174.0 93 4.5

176.0 83 10

178.0 65 15

180.0 46 22

182.0 22 24

184.0 7 15

185.0 3 4

186.0 1.2 1.8

188.1 0.15 1.05
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type of uncertain shear strength parameters. Then, the Monte Carlo
method is used to generate a large number of random samples based
on the cloud model for simulating the probability of dam slope
failure. In addition, the results of the risk assessment indicate that
under normal conditions, the risk of dam slope failure is relatively
low, but it significantly increases under extreme weather conditions
(such as heavy rain). This suggests the need to take appropriate
measures to reduce the risk of dam slope failure under extreme
weather conditions, such as strengthening the dam structure or
implementing emergency response plans.

Overall, the cloud model-Monte Carlo coupling model provides
an effective approach for evaluating the risk of dam slope failure.
The results of this study can provide valuable information to dam
managers and decision-makers to make informed decisions under
different weather conditions and ensure dam safety.

5 Conclusion

Firstly, this paper employs a research method based on cloud
theory to study the distribution types of soil shear strength
indicators. The optimal probability distribution model for
cohesion and internal friction angle is found to be the
logarithmic normal cloud distribution. Moreover, we propose a
“cloud model-Monte Carlo” coupling model, which can
effectively evaluate the risk of dam landslides. The cloud model
can handle the uncertainty of shear strength parameters and
determine their probability distribution models. The Monte Carlo
method can simulate the random behavior of input variables and
calculate the probability of output variables. The combination of
these two methods can provide more accurate risk assessment

results. In slope risk analysis, the “cloud theory-Monte Carlo”
model can calculate failure probability and risk degree more
accurately and reliably compared to traditional methods.

Secondly, referring to relevant risk standards, this paper sets the
allowable landslide risk standard for earth-rock dams at 0.5×10-6,
with a safety reliability indicator of over 99.9995%. The calculation
results show that the risk probability corresponding to the design
flood level of the dam is 9.01×10-6, exceeding the allowable risk
standard. Therefore, it is necessary to reinforce the earth-rock dam
to reduce the risk of failure.

Finally, the proposed cloud model-Monte Carlo coupling
model has broad application prospects in the field of dam risk
assessment. It can be used to analyze the risks of various types
of dams and provide accurate risk assessment results. In future
research, the model can be further improved to enhance its
accuracy and applicability, while being more widely applied and
validated.
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TABLE 8 Calculation of the risk of dam slope instability for earth and rock dams.

Water level/m The factor of safety Kmin FL(ℎ)/% FL

− (hi)/% F0(hi)/% ΔF0(hi)/% Degree of risk R

164.0 1.85 0.151 99.999

166.0 1.76 0.13525 0.0265 99.98 0.019 0.05

168.0 1.76 0.1931 0.0294 99.85 0.13 0.38

170.0 1.70 0.11175 0.0294 99.3 0.55 1.62

172.0 1.68 0.11875 0.0359 97.5 1.8 6.646

174.0 1.67 0.0871 0.0454 93 4.5 20.43

176.0 1.60 0.087 0.0634 83 10 62.4

178.0 1.54 0.07525 0.0807 65 15 121.05

180.0 1.49 0.0525 0.087 46 22 191.4

182.0 1.40 0.03825 0.1029 22 24 246.96

184.0 1.36 0.0345 0.1148 7 15 172.2

185.0 1.34 0.02525 0.1519 3 4 60.76

186.0 1.32 0.0335 0.1642 1.2 1.8 25.56

188.1 1.29 0.0192 0.1427 0.15 1.05 14.98∑ 879.11
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