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Introduction: The North Qilian orogenic belt, as the Northern branch of the
original Tethys tectonic domain, is important for reconstructing the tectonic
evolution of the ancient Tethys. However, the tectonic history of the North
Qilian orogenic belt remains controversial. This study addresses this issue from
a geochemical perspective.

Methods: In this study, a comprehensive analysis of the geochronology, whole-
rock geochemistry, clinopyroxene mineral geochemistry, zircon Ti crystallization
temperature, and gabbromagma temperature and pressure in the Yushigou
ophiolite of the North Qilian orogenic belt was conducted to provide
constraints on its tectonic evolution.

Results and Discussion: Laser ablation inductively coupled plasma mass
spectrometry zircon U-Pb dating results reveal that the gabbros have ages of
519 ± 3 Ma and 495 ± 4 Ma, belonging to the Cambrian period. Most of the studied
gabbros exhibited geochemical characteristics of tholeiitic basaltic rocks with
normal mid-ocean ridge basalt and island arc tholeiite dual geochemical affinities.
The gabbros are interpreted to have formed by a high degree of partial melting of
the depleted mantle spinel lherzolite. These results suggest that the back-arc
basin of the North Qilian tectonic belt may have evolved to a relatively mature
stage from 519 to 495 Ma. Overall, this study contributes to our understanding of
the tectonic evolution of the North Qilian orogenic belt through geochemical
analyses.

KEYWORDS

mid-ocean ridge basalt, geochemistry, gabbros, back-arc basin, North Qilian

Introduction

Ophiolite fragments of ancient oceanic crust play an irreplaceable role in the
identification and reconstruction of ancient oceans, such as their formation and closure,
the development of subduction, and the formation of large orogenic belts, and are the most
important symbols for identifying converging plate boundaries in collisional and
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accretionary orogenies (Dilek, 2003; Dilek et al., 2007; Lister and
Forster, 2009; Dilek and Furnes, 2011; Song et al., 2015; Wu et al.,
2018; Yang et al., 2022).

The North Qilian orogenic belt is a typical Early Paleozoic
accretionary orogenic belt. The study of the ophiolite suite in the
North Qilian orogenic belt, one of the earliest orogenic belts in
China, began in the mid-1970s (Xiao et al., 1978). It is located in
central and western China, transecting the boundary of the southern
margin of the North China and Qaidam plates between the Alashan
Block and the Qilian-Qaidam Micro-Block. The belt stretches E-W
for over 1,000 km (Yang et al., 2001). Among the ophiolite suite
fragments in the North Qilian orogenic belt, the Yushigou ophiolite
has been favored by scholars because of its relatively complete rock
assemblage. Scholars began to study ophiolites early; however,
ophiolites are complex rock assemblages that involve the
interaction between mantle materials and oceanic crust materials,
which has always been a difficult point in scientific research (Feng
and He, 1995; Zhang et al., 1998; Shi et al., 2004; Tseng et al., 2007;
Song et al., 2010).

The most important aspect is the delineation of the ophiolite
formation age, which remains controversial (Shi et al., 2004).
Previous studies have suggested that the Yushigou ophiolites
formed during the Cambrian, Late Cambrian-Early Ordovician,
and Precambrian (Xiao et al., 1978; xia et al., 1996; Shi et al., 2004).
The tectonic environment of the North Qilian orogenic belt also
remains controversial. It is believed to be a mid-ocean ridge, back-
arc basin, or subduction environment (Hou et al., 2006; Tseng
et al., 2007; Xia et al., 2012; Song et al., 2014). Previous studies on
the siliceous rocks in the area suggest that they formed in a
continental margin basin or tectonic environment (Du et al.,
2006a; b; Zhu and Du, 2007). Previous researchers have also

studied the geochemistry of siliceous rocks in the North Qilian
orogenic belt and concluded that the tectonic environment of these
siliceous rocks, which are associated with volcanic rocks in the rift
valley, oceanic crust, island arc, and back-arc basin, was not an
oceanic basin or mid-ocean ridge environment, but rather a poly
oceanic island or continental margin environment (Du et al., 2007;
Yan et al., 2008). In this study, a field geological survey,
petrography, zircon U-Pb chronology, and whole-rock
geochemistry of the Yushigou ophiolite were conducted in
detail. Combined with previously published geological data, the
formation age, petrogenesis, and tectonic evolution of the North
Qilian orogenic belt were discussed.

Geological background and Petrology

The Qilian orogenic belt (Figure 1A) is part of the Qinling-
Qilian-Kunlun fold system (Li et al., 1978), also known as the
Central China orogenic belt. It is located in a joint region among
the three major blocks in China, namely, the North China Craton in
the Northeast, the Yangtze Craton in the southeast, and the Tarim
Craton in the northwest (Song et al., 2013a). This study focused on
the North Qilian belt and its surrounding areas. At the northeastern
margin of the Tibetan Plateau, the North Qilian orogenic belt is an
Early Paleozoic suture zone composed of three subunits: the North,
Central, and South Qilian belts (Figure 1B; Chen et al., 2014).
Furthermore, it is divided into two E-W segments and most
ophiolites are distributed in the eastern segment. The ophiolite in
the Eastern section of the North Qilian orogenic belt is divided from
north to south into the Jiugequan, Dachadaban, Bianmagou, and
Yushigou ophiolites.

FIGURE 1
(A,B) Geological map of the Qilian orogenic belt (after Fu et al., 2018).
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FIGURE 2
Geological map of the Yushigou ophiolite (after Song et al., 2013a).

FIGURE 3
(A,B) Field survey photos and (C,D) gabbro microscopic photos; Cpx: Clinopyroxene; Pl: Plagioclase.
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The Yushigou ophiolite (Figure 2) is found in the middle of
the North Qilian belt and represents the boundary between the
Alashan Block and the Qilian-Qaidam Micro-Block (Shi et al.,
2004; Hou et al., 2006; Song et al., 2013a). The Yushigou
ophiolite is 5.0–5.5 km wide from North to South and
approximately 14.5 km long from east to west, occurring as a
nappe thrust over the Precambrian crystalline basement of the
Central Qilian block, in which an ophiolitic mélange appears on
both sides (Song et al., 2013a). Carbonatite dykes and carbonated
serpentinite blocks are widely observed in the Yushigou mantle
complex and have been interpreted as syn-exhumation products
formed after serpentinization (Rao, 2015). From North to South,
the Yushigou ophiolite consists of peridotites, ultra-mafic to
mafic (gabbroic) cumulates, pillow basalts, and sedimentary
rocks, including marl and reddish radiolarian chert, in fault
contact with each other (Shi et al., 2004; Hou et al., 2006).
This set of rock assemblages is an important indicator of the
horizontal motion of the plate and represents the remnants of the
ancient oceanic crust. In this study, samples from the gabbro in
the Yushigou ophiolite were analyzed.

The dominant mineral phase in the Yushigou gabbro is
clinopyroxene (40–50 vol%), plagioclase (30–45 vol%), and minor
amounts of hornblende (~5 vol%) and olivine (~1 vol%) (Figure 3).
The studied gabbro displayed a texture of clinopyroxene and
plagioclase reaching 0.5–1 mm in size. A small amount of
clinopyroxene exhibited a good euhedral degree. Part of the
plagioclase was altered, and another part was gray and
translucent under plane-polarized light; the other parts were
short, columnar, or plate-shaped.

Analytical methods

Zircon U–Pb geochronology, whole-rock and mineral major
and trace element geochemistry, and zircon Hf isotope analyses were
conducted at the Guangxi Key Laboratory of Hidden Metallic Ore
Deposit Exploration, Guilin University of Technology, China
(Zhang et al., 2019; Liu et al., 2020).

Zircon U-Pb dating and Hf isotope

Zircon crystals were extracted from rock samples using
conventional crushing, heavy liquid, and magnetic separation
techniques and then handpicked. Cathodoluminescence (CL)
images of the crystals were used to assess the internal zircon
structures and select sites for U–Pb dating. The U–Pb isotopic
compositions of the zircons were analyzed using an Agilent
7,500 laser ablation inductively coupled plasma mass
spectrometer (LA–ICP–MS). Laser ablation was performed at a
constant energy of 80 mJ, with a repetition rate of 6 Hz and spot
size of 32 μm. Helium was used to carry the ablated material to the
ICP–MS. Elemental corrections were determined relative to the
standard glass National Institute of Standards and Technology 610
(Pearce et al., 1997). During our analysis, the Plešovice zircon
standard yielded a weighted mean 206Pb/238U age of 337.1 ± 0.6 Ma
(2σ; mean square weighted deviation (MSWD) = 0.10; n = 52),
which is within the error of the suggested value of 337.1 ± 0.4 Ma

(Sláma et al., 2008). Age calculations were completed using ICP-
MS DataCal (version 8.4; (Liu et al., 2008), and Concordia plots
were constructed using Isoplot 3.75 (Ludwig, 2012).

The analyses were performed at a laser beam diameter of 40 μm,
repetition rate of 10 Hz, laser power of 100 mJ/pulse, and ablation time
of 30 s. GJ-l zircon was analyzed to check the reliability and stability of
the instrument. Detailed analytical conditions and procedures were
described by Griffin et al. (2000, 2002). Two to four samples were
analyzed using the JG-1 standard analyses, and 206Pb/207Pb and 206Pb/
238U values were time-corrected. The raw data were processed offline
and reduced using an Excel worksheet (Bühn et al., 2009).

Mineral chemistry

Themajor elemental compositions of theminerals weremeasured
using a JEOL JXA-8230 electron probe microanalyzer at an
accelerating voltage of 15 kV, beam current of 20 nA, and 1–2 μm
spot diameter. The dwell time was 10 s for the element peaks and 5 s
for the backgrounds adjacent to the peaks. Data were reduced using
the atomic number absorption fluorescence correction procedure.
The trace elements in the Yushigou clinopyroxene were determined
using LA-ICP-MS. The analysis was performed using an Agilent
7500cx ICP-MS and an NWR-193 excimer LA system from
Elementary Scientific Company. To determine the clinopyroxene
content, we used helium as the carrier gas, and each analysis was
performed at 8 Hz, 4 J/cm2 energy, 30 μm spot diameter, over 40 s.
Standard reference glasses SRM 610, SRM 612, and BCR-2G were
used as external standards to correct the mass discrimination and
time-dependent drift. The analytical accuracy and precision of major
and trace elements were better than 10%.

Major and trace element analyses

Fresh samples were collected and crushed, and the chips were
soaked in 4 N hydrochloric acid for 30 min to remove any altered
material. Rock chips were powdered using an alumina ceramic
shatterbox. Prior to major element analyses, loss-on-ignition
values were measured using a muffle furnace at a constant
temperature of 1,000°C. The baked samples were then formed
into glass disks with Na2B4O7 10H2O at 1,150°C. ZSX Primus II
X-ray fluorescence was used to determine the composition of major
elements. The trace element compositions were measured using an
Agilent 7500cx ICP-MS. The precision of the major and trace
element measurements was 2%–5%. Standardization was
performed using United States Geological Survey (USGS)
standards BHVO, AGV, W-2, and G-2 and national rock
standards GSR-1, GSR-2, and GSR-3 (Zhang et al., 2019).

Analytical results

Zircon U-Pb geochronology and Lu-Hf isotope
The Zircon U-Pb dating results are listed in Supplementary

Table S1. The zircons are mostly euhedral and reveal long to short
prismatic forms, with average crystal lengths of 150–300 μm and
length-to-width ratios from 2:1 to 3:1. Most zircons were
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transparent and colorless or pale brown. In the CL images, the zircon
crystals are internally homogeneous with weak, broad zoning and
without complex internal structures, as is typical of zircons formed
in gabbroic magmas (Corfu et al., 2003). All zircon rare Earth
element (REE) partition curves show depletion of light rare Earth
elements (LREE) and enrichment of heavy rare Earth elements
(HREE), with positive Ce anomalies and negative Pr and Eu
anomalies. In addition, no overgrowths, mineral or fluid
inclusions, or metamictization were observed in the analyzed
zircons, suggesting that the zircons were not affected by post-
magmatic processes. Thus, the interpretation of the zircon U-Pb
isotopic results is simple (Figure 4), and the obtained ages represent
the formation time of the gabbro. The Th/U value of the analyzed
spots varies from 0.31 to 2.72, suggesting the zircons are of
magmatic origin (Williams, 2001; Rubatto, 2002). U-Pb isotopic
analyses yielded disparate zircon 206Pb/238U ages of 495.3 ± 3.6 Ma
(mean square weighted deviation (MSWD) = 2.6) and 519.2 ±
2.9 Ma (MSWD = 0.24), respectively.

The Lu-Hf isotopes were analyzed on selected zircon grains from
two different samples that were previously systematically analyzed
with U-Pb. Lu-Hf analysis was performed on 41 representative
zircon grains dated using the LA-ICP-MS U-Pb method. The
results are shown in Supplementary Table S2. The initial Hf
composition of zircon represents the 176Hf/177Hf value calculated

at the time of zircon crystallization, namely, the U-Pb age, likely
concordant with that previously obtained for the same crystal. The
two-stage depleted mantle Hf model ages (TDM Hf) were calculated
using 176Lu/177Hf = 0.0384 and 176Hf/177Hf = 0.28325 for the depleted
mantle (Chauvel and Blichert-Toft, 2001). The resulting 176Lu/177Hf
values ranged from 0.282,809 to 0.282,973 with a mean of 0.282,877,
indicating that the zircons were weak in radiogenic Hf. The initial
zircon 176Hf/177Hf value varies with age. Zircons from sample 21-
YSG335 had a high εHf(t) between +6.54 and +17.34, with an average
of 14.28. The TDM values were restricted to the narrow range from
0.41 to 0.86 Ga. Zircons from sample 21-YSG341 were characterized
by positive εHf(t), ranging between +12.13 and +15.8, and TDM

values ranging between 0.44 and 0.67 Ga. Their εHf(t) values were
close to that of the depleted mantle evolution curve, suggesting that
these zircons crystallized from magma with a juvenile signature.

Geochemistry of the major elements
Supplementary Table S3 shows that the SiO2 contents of the

12 samples range from 45.40 wt% to 57.20 wt%, and the rocks are
characterized by low TiO2 (0.24–1.78 wt%), K2O (0.01–0.57 wt%)
and high Na2O (0.45–5.15 wt%) contents. The high loss of ignition
of rocks (1.62–6.03 wt%) indicates that the samples are slightly
altered. The K2O and Na2O contents of the rocks may be related
to alteration by K- and Na-rich fluids (such as seawater) after

FIGURE 4
(A,C)U-Pb Concordia diagram, weightedmean ages, and mean square weighted deviation (MSWD); (B,D) chondrite-normalized rare Earth element
(REE) patterns and cathodoluminescence (CL) images for zircons from the Yushigou gabbro. Normalizing values are from Sun and McDonough (1989).
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formation. The gabbros are enriched inMgO (4.09–25.22 wt%), Mg#

(46.9–82.0), and CaO (3.95–12.92 wt%). This reflects the combined
plagioclase and clinopyroxene compositions of the initially formed
basic rocks.

The samples collected in this study were greyish-black with
medium-to coarse-grained structures. They were mainly composed
of clinopyroxene and plagioclase in nearly equal amounts. The
secondary mineral is amphibole, which contains small amounts of
quartz. Under a single polarized electron microscope, the entire thin
section of the sample was dark green, showing a gabbro structure, and
the contents of clinopyroxene and feldspar were almost equal. Field
and electron microscope observations indicated that the samples
collected were gabbro. The results shown in the total alkali-silica
diagram are consistent with field observations and electron
microscopy (Figure 5A). As the samples were likely altered by K-
and Na-rich fluids, the increase in the total alkali content and loss of
ignition caused a shift in the rock composition. To further determine
the rock type, immobile high-field-strength elements were used for
discrimination (Figure 5B), showing that all samples fell into the
basalt field. Regarding the relationship between FeOT, MgO, and
Na2O+K2O (Figure 5C), most of the rocks were of the tholeiitic series,
and the rest were of the calc-alkaline series. In the Al2O3-CaO-MgO
diagram (Figure 5D), almost all samples were distributed within the

mafic cumulative rock fields, and one of the samples fell within the
ultramafic cumulative rock fields.

Rare earth elements and trace element
geochemistry

Yushigou gabbros have low ΣREE content ranging from 8.36 to
75.60 ppm, with low to slight enrichment in LREE in the chondrite-
normalized REE distribution patterns (Figure 6A). The (La/Yb)N
values range from 0.80 to 1.66, while the (La/Sm)N values vary from
0.54 to 1.61. The parallel REE distribution lines indicate that all
samples were derived from the same magma source. In addition, the
gabbro samples displayed mid-ocean ridge basalt (MORB)-like trace-
element characteristics. Notably, two samples exhibited Nb and Ta
depletion (Figure 6B).

Clinopyroxene characteristics
The major and trace element data for clinopyroxenes in the

Yushigou gabbro are presented in Supplementary Tables S4, S5.
The analyzed clinopyroxene grains from the Yushigou gabbro were
augmented (Figure 7A). Clinopyroxene analysis of the Yushigou
gabbro showed relatively high MgO (14.28–16.09 wt%) contents,
with Mg# (100 × Mg/[Mg + Fe2+]) values ranging from 61 to 65.
The grains are characterized by relatively low Al2O3 (3.46–8.61 wt

FIGURE 5
(A) Total alkali silica diagram (Le Bas et al., 1986); (B) Zr/TiO2*0.0001-Nb/Y diagram (after Pearce, 1996); (C) Al2O3-FeOT-MgO composition diagram;
and (D) Al2O3-CaO-MgO composition diagram (Coleman R G, 1977).
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%) and Na2O (0.40–1.18 wt%) contents and high Cr2O3

(0.27–2.37 wt%) content. These results suggest that the
clinopyroxenes of the Yushigou gabbro were subalkaline and
crystallized under medium- and low-pressure conditions
(Figures 7B, C). The clinopyroxenes exhibit low total REE
contents (9.49–38.36 ppm). The REEs in the Yushigou
clinopyroxene samples had characteristics of normal (N-)MORB
with a relatively flat trend (Figure 7D). Compared to HREEs,
LREEs were slightly depleted.

Discussion

Formation age

Based on previous studies of the North Qilian orogenic belt,
we collected the ages of the ophiolites in Yushigou and adjacent
areas, which can be divided into three major stages according to
their formation time. The first stage occurred at ~550 Ma, and its
lithology was mainly composed of gabbro (566–516 Ma),

FIGURE 6
(A) Chondrite-normalized REEs; (B) Primitive-mantle-normalized trace elements. Normalization values are from Sun and McDonough (1989);
N-MORB, normal mid-ocean ridge basalt.

FIGURE 7
Clinopyroxene compositions diagrams; (A) Wo-En-Fs diagram modified after Mahoney et al. (1998); (B) Cr2O3 vs. Mg# in clinopyroxenes (Elthon,
1987), (C) SiO2 vs. Al2O3 diagram (after Le Bas, 1962), and (D) Chondrite-normalized REEs. Normalization values are from Sun and McDonough. (1989).
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volcanic rock (593 Ma), amphibolite (534 Ma), and a subduction
complex (545 Ma) (Xia et al., 1995; Shi et al., 2004; Song et al.,
2019; Yan et al., 2019). The second stage was from 520 to 490 Ma;
the lithology of this stage was mainly volcanic rock (495 Ma),
gabbro (513–490 Ma), and ophiolites (504–495 Ma) (Xia et al.,
1995; Xiang et al., 2007; Zeng et al., 2007; Xia and Song, 2010;
Song et al., 2019). The third stage occurred at ~450 Ma, and its
main lithology was gabbro (479–448 Ma) (Song et al., 2007;
2013a).

Shi et al. (2004) found that the complementarity
between cumulative gabbro and lharzolite in the
Yushigou ophiolite was stronger than that between the
upper pillow lava and lharzolite, indicating that
gabbro represents the melting products of the
primitive mantle during the formation of the Yushigou
ophiolite. Based on this, zircon U-Pb dating of two gabbro
samples from the Yushigou ophiolite was conducted, showing
weighted mean ages of 495.3 ± 3.6 Ma and 519.2 ± 2.9 Ma,
respectively. This indicates that they formed during the
second stage (520–490 Ma). Combined with the results of
previous studies and our age determination, we suggest that
the ophiolite in the North Qilian belt first formed in the
Cambrian period.

Petrogenesis

Magmatic evolution
For a basic–ultrabasic rock series resulting from separation

crystallization, the projection points on the La/Sm vs. La
elemental covariant map form a horizontal line (Allegre and
Minster, 1978; Yang and Gu, 1990). In the La/Sm-La diagram
(Figure 8A), the horizontal and linear relationship indicates that
separation crystallization is the main factor controlling magma
evolution rather than partial melting. The general trends of CaO
and MgO in the Yushiguo gabbros indicated significant
fractionation of olivine and clinopyroxene (Figure 8B).
Moreover, the increase in Sr content with increasing Al2O3

content (Figure 8C) suggests the removal of plagioclase.
However, the Yushigou gabbros do not show a significant
negative Eu anomaly, indicating that plagioclase may not have
been significantly fractionated during magma evolution.

Temperature is a key variable controlling magmatic phase
equilibria (Neave and Putirka, 2017). In addition to composition,
crystallinity, and oxygen fugacity, pressure is another primary
variable that affects magmatic phase equilibria (Yoder and Tilley,
1962). Understanding the distribution of the magma storage
depth within the lithosphere provides information on both

FIGURE 8
(A) La/Sm vs. La diagram; (B) CaO (wt%) vs. MgO (wt%) diagram; (C) Sr (ppm) vs. Al2O3 (wt%) diagram; (D) Relationship between temperature,
pressure, and depth (Lee et al., 2009).

Frontiers in Earth Science frontiersin.org08

Tian et al. 10.3389/feart.2023.1192997

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1192997


oceanic and continental crustal formation mechanisms
(Henstock et al., 1993; Kelemen et al., 1997; Annen et al.,
2006). Therefore, it is essential to determine magma storage
pressures and depths.

In this study, the clinopyroxene thermometer proposed by
Putirka (2008) was used to calculate the temperature and
pressure of the gabbro in the Yushigou ophiolite. The
formation temperature of clinopyroxene is
1,221.3°C–1,376.6°C, and the pressure at this temperature is
4.5–15.0 kbar. The temperature range of the Yushigou
ophiolite was 1,174°C–1,402°C, and the mineral phase
equilibrium temperature was approximately 1,230°C, which is
consistent with the temperature measured in this study. The
consolidation equilibrium temperature of mantle magmatic
rocks in the Yushigou ophiolite is speculated to be
approximately 1,200°C (Yan, 2014). In this study,
temperature, pressure, and depth models (Lee et al., 2009)
were used to estimate the mantle magmatic depth of the
Yushigou ophiolite. The simulation estimated the depth of the
clinopyroxene crystals, indicating that the mantle magmatic
rocks in the Yushigou ophiolite began to consolidate at
approximately 60 km (Figure 8D).

Magma source
The Yushigou gabbro is a magmatic rock of the tholeiitic series,

featuring mild large-ion lithophile elements and high-field strength
elements, which are typical geochemical characteristics of MORB.
The geochemical characteristics of the trace elements show that the
gabbro formed in the depleted mantle. The rare Earth distribution
curve and trace element multi-element diagram of the Yushigou
gabbro are nearly parallel to those of N-MORB (Figure 6), and the
Th/Ta, Th/Yb, and Zr/Nb values of trace elements in the Yushigou
gabbros are similar to those of the depleted mantle (Th/Ta=2.2, Th/
Yb=0.25, Zr/Nb=18, fromCondie (1989)). As shown in the Nb vs. Zr
diagrams (Figure 9A), the Yushigou gabbros fall near the primitive
mantle line, which is close to the depletion type. In addition, the Hf
isotopes of the zircons reflect the characteristics of the source area.
No inherited or captured zircon was found in the gabbro-zircon CL
image or in situ micro-survey of the Yushigou ophiolite, indicating
that the zircon crystallized in a homogeneous, unmixed magmatic
source. The relatively high εHf(t) values of the Yushigou gabbros
indicate that they primarily originated from depleted mantle
(Figure 9B).

Ba is a fluid-active element (Kessel et al., 2005), which easily
enters the mantle via fluid migration during subduction (Morris and

FIGURE 9
(A)Nb vs. Zr diagram (Le Roex et al., 1983); (B) εHf(t) vs. Age diagram (Matteini et al., 2010); (C) Ba/Th vs. Th/Nb diagram; (D) Th/Yb vs. Nb/Yb diagram
(after Pearce, 2008); N-MORB, normal or depleted mid-ocean basalt ridge; T-MORB, transitional MORB; P-MORB, plume enriched MORB; CHUR,
chondritic uniform reservoir.
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Ryan, 2003). Because of the significant difference in the Ba content
between the crust and mantle, Ba can be used to trace the
recirculation-related processes of subducting materials (Elliott
et al., 1997; Murphy et al., 2002; Pearce and Stern, 2006; Kuritani
et al., 2011). A high Ba/Th value indicates aqueous fluid from the

dehydrated ocean crust or sediment, and a high Th/Nb value
indicates the addition of partially melted material from
subducted sediments. The studied samples showed high Ba/Th
and Th/Nb values, indicating that they were affected by two
subduction components (Figure 9C), and the additional

FIGURE 10
(A) (Dy/Yb)N vs. (Ce/Yb)N diagram (Saccani, 2015); (B) Sm/Yb vs. Sm diagram (Aldanmaz et al., 2000); (C) Th/Yb vs. Ta/Yb diagram (Pearce, 1982); (D)
Si vs. Al diagram; (E) Ti vs. Al (IV) diagrams (Beccaluva et al., 1989) of clinopyroxene composition (atomic proportion); and (F) Zircon U/Yb vs. Nb/Yb
diagram (Grimes et al., 2015);. OI, ocean-island; MOR, mid-ocean ridge; MORB, mid-ocean ridge basalt.; G-MORB, garnet source basalts; N-MORB,
normal mid-ocean basalt ridge; Arc, continental arc; BA-A, back-arc andesite; IAT, island-arc tholeiite.
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subduction components comprised 1%–3% of the total composition
(Figure 9D).

Recent research has shown that, in contrast to N-MORB, garnet
source basalts (G-MORB) exhibit a significant garnet signature (e.g.,
Montanini et al., 2008; Saccani et al., 2008; 2013). This garnet
signature can be highlighted using LREE/HREE and middle rare
Earth elements (MREE) to HREE ratios, such as Ce/Yb and Dy/Yb.
In the chondrite-standardized (Ce/Yb)N vs. (Dy/Yb)N diagram, all
sample sites are located on the N-MORB side (Figure 10A), which is
significantly different from the G-MORB and depleted of HREE.
This indicates that the Yushigou gabbro was derived from a mantle
source of non-garnet peridotite (Saccani, 2015). The Ce/Yb values of
gabbros ranged from 2.18 to 4.63, which indicates that the gabbros
were sourced from the stable zone of spinel less than 70 km deep
(Xiao et al., 2003). This is consistent with the formation depth of
clinopyroxene in the simulation, where spinel lherzolite partial
melts, mantle residues, and melts have similar Sm/Yb values, and
Sm values decrease with an increase in the partial melting degree
(Aldanmaz et al., 2000). Therefore, the Yushigou gabbro falls within
the spinel lherzolite region, and the Sm values vary widely, whereas
the Sm/Yb values are relatively constant (Figure 10B).

Geodynamic interpretations
Active elements (Cs, Rb, Sr, and Na) migrate under the influence

of alteration and are not effective indicators of tectonic
environments; however, most high-field elements (Ta, Nb, Zr, Hf,
Ti, Th, and REE) are unaffected (Mullen, 1983). In this study, high-
field elements were used to identify the tectonic environment of the
Yushigou ophiolite suite gabbro. Studies have demonstrated that
both Th and Ta are closely related to subduction. Both are highly
incompatible elements, and their elemental ratios remain relatively
stable during mantle melting or crystallization differentiation.
However, during subduction magmatism, the sediments are rich
in Th and depleted in Ta. The addition of a small amount of
sediment melt can lead to an increase in the Th content of the
magma, and an increase in the Th/Yb value can reflect the
contribution of sediment melt in the source region (Elliott et al.,
1997; Class et al., 2000; Singer et al., 2007). In contrast, the Ta
content is sensitive to subduction fluids. The covariant relationship
between the Th/Yb and Ta/Yb values suggests that the components
(including sediments and fluids) derived from subduction
contributed to the generation of the Yushigou gabbros (Figure 10C).

Tectonic discrimination diagrams of the elemental
distributions of Si, Al, and Ti in the clinopyroxene compositions
provide a distinct classification of magma types (Beccaluva et al.,
1989). In the clinopyroxene Si versus Al diagram (Figure 10D), the
sample fell into and near the MORB field. However, in the
clinopyroxene Ti versus AlⅣ diagram (Figure 10E), the sample
falls within the island arc tholeiite (IAT) field. Grimes et al. (2007)
used U, Th, Hf, Y, and Yb (as a monitor for HREEs) to discriminate
crystallized zircons from the MORB mantle from those formed in
continental magmatic settings. During subduction, easily migrated
incompatible elements (such as large ion lithophile elements,
LREEs, and U) are separated from non-migrated high-field
strength elements (such as Nb, Y, and HREEs). These easily
migrated incompatible elements are mobilized by plate-derived
fluids to increase the U/Yb value in the magma (Grimes et al.,
2015). Zircons from the Yushigou gabbros were mostly within the

90% confidence interval of the MORB zircons, as presented in
Figure 10F, although several overlapped with primitive magmatic
arc zircons. This suggests that zircons from the Yushigou gabbro
formed in a subduction-related environment.

Three explanations have been proposed for the tectonic
evolution of the North Qilian orogenic belt. The first suggests
that the ancient ocean was a part of the Proto-Tethys and that the
tectonic evolution of the North Qilian orogenic belt can be
regarded as a portion of the Tethyan tectonic domain (Wang
and Liu, 1976). The second hypothesis proposes that the ancient
ocean represented a limited extensional oceanic basin developed
on the southern margin of the North China Craton. The
continental margin rifted and expanded to form this basin,
which then closed to form an orogenic belt (Feng and He,
1996; Xia et al., 1996; 1998). The final explanation emphasizes
that the ancient ocean in the North Qilian orogenic belt was part
of the Paleo-Asian Ocean (Zhang et al., 1997). After several years
of discussion, most scholars agree with the second hypothesis
(Feng and He, 1994; Qian et al., 2001; Du et al., 2006a; 2006b;
2007; Zhu and Du, 2007).

After the division of the Rodinia supercontinent, the Qilian
Ocean opened and expanded as part of the Iapetus Ocean from
approximately 710–520 Ma (Song et al., 2013b). Basic rocks with
mid-ocean ridge or back-arc basin characteristics have been
identified in the Yushigou area with ages ranging from 550 to
521 Ma (Xia et al., 1998; Shi et al., 2004; Hou et al., 2006). Initial
ocean subduction and infant arc magmatism occurred from
520 to 490 Ma, which caused partial melting of the mantle
wedge and formed infant arc basalts from 517 to 505 Ma
(Song et al., 2013b). Wu et al. (2010) identified arc volcanic
granites with an age of 512 Ma. Song et al. (2013a) reported that
the magmatic zircon age of the Chaidanuo intrusion was 516 ±
4 Ma, recording the oldest arc magmatic activity in the North
Qilian Orogenic Belt. A report on the Dachadaban boninite
(505 Ma) also suggested a pre-arc environment related to the
inner oceanic island arc in the North Qilian orogenic belt (Chen
et al., 1995; Meng et al., 2010). This implies the formation of
back-arc basins (Song et al., 2013b). The study from Hou et al.
(2006) of isotope means indicated that the Yushigou ophiolite
most likely formed in a mid-ocean ridge or mature back-arc
basin. Combined with previous data and this study, the back-arc
basin of the North Qilian orogenic belt may have evolved to a
relatively mature stage from 519 to 495 Ma.

Conclusion

1) The zircon U-Pb chronology shows that the gabbro in the
Yushigou ophiolite from the North Qilian orogenic belt was
formed from 519 to 495 Ma as a product of Cambrian
magmatism.

2) The gabbro in the Yushigou ophiolite in the North Qilian
orogenic belt belongs to the tholeiite series and exhibits
typical N-MORB geochemical characteristics. The source area
features characteristics of mantle source materials, and 1%–3% of
subduction materials were added. When clinopyroxene minerals
were formed, the magma temperature ranged from 1,221.3°C to
1,376.6°C, and the pressure ranged from 4.5 to 15 kbar. The
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origin of the rocks may include a high degree of partial melting in
the spinel lherzolite source area.

3) Whole-rock geochemistry and mineral analysis of gabbro in the
Yushigou ophiolite in the North Qilian belt show the dual
characteristics of MORB and IAT, suggesting that it may have
formed in a back-arc basin environment.
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