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Acoustic impedance (AI) inversion is widely used in geophysics and reservoir
prediction. But the traditional impedance inversion method cannot fully exploit
the sparse characteristics of geological attributes. There are problems with
multiplicity and low resolution. To solve this problem, a data-driven acoustic
impedance inversion method with reweighted L1 norm constraints (DRL1) is
proposed. In the inversion process, the reweighted L1 norm and local cross-
correlation analysis are introduced to solve the above problems. The reweighted
L1 norm is introduced as a sparse constraint (RL1) to replace the traditional
inversion method which is constrained by L1 norm. The RL1 method can
describe more sparsity information and improve the resolution of inversion. In
addition, the quality of seismic data plays a decisive role in seismic inversion. We
add local cross-correlation analysis to the inversion process. We evaluated the
rationality of each sampling point in the seismic data by introducing cross-
correlation analysis, controlling for their contribution to the inversion, making
inversion results more stable and accurate. The inversion objective function is
solved by the alternating direction multiplier method (ADMM) algorithm and soft
threshold shrinkage algorithm. Finally, we validate the effectiveness of the
proposed method through model tests and field data. The results show that
our proposed method not only provides a more accurate portrayal of the
stratigraphy, but also yields more accurate inversion results.

KEYWORDS

impedance inversion, cross-correlation, reweight L1 norm, sparse constraint, local
optimization

1 Introduction

Seismic inversion is an important method to obtain the elastic and physical properties of
underground media and the properties of the fluid contained therein (Yin et al., 2015; Zong
et al., 2017). In post-stack seismic inversion, impedance inversion is a common method to
obtain underground impedance information (Hamid and Pidlisecky, 2015; Li et al., 2017;
Wu et al., 2020). At present, there are many kinds of wave impedance inversion algorithms,
such as swarm intelligence optimization algorithm, artificial intelligence algorithm, norm
sparse constraint algorithm and so on. In terms of swarm intelligence optimization
algorithm, Wang et al. (2017) proved the effectiveness of particle swarm optimization
algorithm in wave impedance inversion. In the field of artificial intelligence, Mustafa et al.
(2019) used temporal convolutional neural network models to estimate acoustic impedance
from seismic data. This method can simultaneously extract low frequency and high
frequency information from seismic data. Wang et al. (2019) proposed an end-to-end
deep convolutional neural network inversion method for seismic acoustic wave impedance,
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which eliminated the dependence on wavelet estimation in the
inversion process. However, the above algorithms still have some
problems in the field of seismic impedance inversion, such as low
accuracy and slow convergence rate.

With the continuous development of compressed sensing and
sparse optimization theory, a variety of sparse forms and
reconstruction algorithms have emerged, which have been applied
to seismic inversion by domestic and foreign scholars to further
develop the seismic inversion imaging theory (Wu, 2020). Therefore,
seismic inversion algorithms with norm as sparse regularization
constraint have become the focus of scholars. The Tikhonov
regularization is used at the beginning of inversion, which takes the
minimum L2 norm as the regularization constraint (Bickel and
Martinez, 1983; Velis, 2008). Although this method can solve the
instability problem of seismic inversion well, there are some
problems such as low accuracy and too smooth inversion results
(Berkhout, 1977). And in terms of sparse representation, the
L1 norm is better than the L2 norm (Li et al., 2012; Kong et al.,
2016; Chai et al., 2018). Liu et al. (2015) and Yuan et al. (2015) verify the
validity of the L1 norm in inversion by using 2D model and 3D data
respectively, and both confirm that the inversion method with the
L1 norm as a regularization constraint has higher inversion accuracy.
The L1 norm regularization method, while improving sparsity, is not
the best way to perform sparse representations. On the basis of the
L1 norm, one extends it to the Lp (0<p<1) quasi-norm. In terms of
sparsity regularization, research shows that the Lp quasi-norm gives
better results than the L1 norm (Chartrand and Yin, 2008; Mazumder
et al., 2011; Li et al., 2018; Li, 2019). The Lp quasi-norm ismore accurate
than the L1 norm in characterizing impedance boundaries
(Woodworth and Chartrand, 2016). In describing the reflection
coefficient sparsity, the Lp quasi-norm is proved to be reasonable
(Chen et al., 2019). Although the inversion accuracy and stability can be
improved by using the above regularization constraints, the amplitude
information of impedance boundary is missing, which makes the
inversion result appear pseudolayer phenomenon. We introduced a
reweighted L1 norm regularization inversion method to complement
the impedance boundary amplitude information and thus improve the
sparsity of the sparse constraint.

Despite the introduction of the more sparsity reweighted
L1 norm, the most important factor affecting the inversion
results is the quality of seismic data. Local cross-correlation
analysis is a common way to estimate the quality of seismic data.
The correlation of seismic data consists mainly of noise suppression,
processing, and interpolation (Spitz, 1991; Abma and Claerbout,
1995; Wang, 2002; Liu et al., 2009; Zhang and Alkhalifah, 2019).
Seismic reflection characteristics can be represented by the local
correlation of neighboring seismic traces (Ma et al., 2020; Yu et al.,
2020). Based on the local correlation constraint, a new inversion
method is proposed, which can effectively improve the convergence
and multi-solution of geophysical inversion (Yin et al., 2018). Yin
et al. (2020) performed local cross-correlation analysis on seismic
data, discards unreasonable seismic data sampling points, and the
inversion parameters at the abandoned points are corrected by
neighboring seismic traces.

In this paper, a data-driven acoustic impedance inversion method
is raised by combining two methods of reweighted L1 norm
regularization and local cross-correlation analysis. The algorithm is
implemented in 3D field-data. First, in sparse constraint terms, we use

the reweighted L1 norm with better sparsity to replace the traditional
L1 norm constraint, which improves the resolution of inversion
results. Secondly, considering the impact of seismic data quality on
the inversion results, we evaluate the reliability of each sampling point
through local correlation analysis to control their contribution to the
inversion, resulting in more stable and accurate inversion results.
Then, the alternating direction multiplier method (ADMM)
algorithm is introduced to decompose the multi-parameter
inversion problem into multiple single-parameter sub-problems
that are easy to solve (Esser, 2009; Boyd et al., 2011; Ghadimi
et al., 2014). The soft threshold shrinkage algorithm is introduced
to solve the mixed norm optimization problem. Finally, in this paper,
the inversion results of the method are compared with the traditional
L1 norm constraint method by model tests and field-data. The results
indicate that the presented method has higher stability and resolution,
and provides a more accurate portrayal of the strata.

2 Methodology

2.1 Traditional inversion objective function

Under the assumption of linear system, seismic records can be
written into the form of seismic wavelet and formation reflection
coefficient convolution (Robinson, 1967):

S � W*R + n (1)
where S,W, n and R denote the seismic data, the wavelet, the random
noise and the reflection coefficient, respectively.

The linear relationship between the impedance and the
reflection coefficient can be written as:

Ri � Zi+1 − Zi

Zi+1 + Zi
≈
1
2
Δ lnZi � 1

2
Δ lnZi+1 − lnZi( ) (2)

whereZi is the impedance value between ith layer and (i + 1)th layer.
△ shows the increment.
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Let L � lnZ. So, the simplified form is as follows:

S � WDL + n (4)
where Si is the seismic record at the ith sampling point of a seismic
track. D represents the matrix of difference. L represents the
logarithmic acoustic impedance.

In inversion, the relationship is described between impedance
and seismic data by the fidelity term (Li et al., 2018):

J L( ) � min
L

S −WDL‖ ‖22 (5)

where ‖‖22 represents the L2 norm. W represents the wavelet kernel
matrix. D denotes the matrix of difference. L represents the
logarithmic form of acoustic impedance.
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The inversion efficiency can be improved by introducing the
initial model constraint. And since DL is sparse, we can constrain it
with the L1 norm:

J L( ) � min
L

S −WDL‖ ‖22 + λ DL‖ ‖11 + α L − L0‖ ‖22 (6)

where α and λ, respectively, represent the weight coefficient of the
reflection coefficient and the initial model. L0 represents the initial
model, ‖‖11 represents the L1 norm.

2.2 Reweighted L1 norm inversion (RL1)

The reweighted L1 norm is a generalization of the L1 norm,
Candes et al. (2008) verified that the reweighted L1 norm is better
than the L1 norm in terms of sparsity representation. Both are
defined as follows:

r‖ ‖11 � ∑n−1
i�1

ri| | (7)

Mr‖ ‖11 � ∑n−1
i�1

miri| | (8)

where mi and ri represent the weighting factor and the reflection
coefficient, respectively.M represents the reweighted matrix, and the
expressed is:

M �

m1 0 / / 0

0 1 1 1 ..
.

..

.
1 mi 1 ..

.

..

.
1 1 1 0

0 / / 0 mn−1
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The relation between reflection coefficient r and mi is:

mi � 1
ri| | + ε

(10)

where ε represents the adjustment factor to ensure the stability
of mi .

Here, we use reflection coefficient optimization problem to
quantitatively evaluate the sparsity of reweighted L1 norm and
L1 norm:

J r( ) � min
r

r‖ ‖11 s.t. r − r0‖ ‖22 <Err2 (11)
J r( ) � min

r
Mr‖ ‖11 s.t. r − r0‖ ‖22 <Err2 (12)

where r0 denotes the true reflection coefficient. Where Err denotes
positive numbers close to zero.

Figure 1 presents the results of the optimization problems,
where red circle represents ‖r − r0‖22, the blue rectangle
represents the sparse term, and the intersection of the first
two represents the reflection coefficient solution. From Figure 1,
We can see clearly, the reweighted L1 norm than L1 norm has
better sparse. It is therefore concluded that the reweighted
L1 norm is a good description of the sparsity of the
reflection coefficients.

We introduce the reweighted L1 norm into the objective
function, then (6) can be written as:

J L, R( ) � min
L,R

S −WDL‖ ‖22 + λ R‖ ‖11 + α L − L0‖ ‖22 s.t. R � MDL.

(13)

2.3 Data-driven Reweighted L1 norm
inversion (DRL1)

In seismic inversion, the most important factor affecting the
inversion results is the quality of seismic data, which immediately
affects accuracy and resolution of inversion. So, on the basis of
the reweighted sparse constraint, we add the correlation analysis
of seismic data. The correlation analysis formula is:

Ci,j �
∑w

τ�−w
s i − τ, j( )s i − τ + u, j′( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣������������������������∑w

τ�−w
s2 i − τ, j( )s2 i − τ + u, j′( )√ (14)

FIGURE 1
The sparsity test results. (A) L1 norm; (B) Reweighted L1 norm.
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where s represents the seismic data. C denotes the local correlation
coefficient. i and j denote the number of sampling point and the
number of traces respectively. j′ is the neighboring seismic trace of j.
The w denotes the time window used for the calculation of the
correlation coefficient. U denotes the upward and downward drift
times of the sampling and analysis points used for correlation
analysis within adjacent seismic traces, let u ∈ [−2 2] in this
paper. Correlation analysis of adjacent seismic tracks is shown in
Figure 2. As shown in Figure 2, the yellow analysis point can be
represented as s(i, j), the time window for correlation analysis
w � 3, the relative position relationship between grey point
s(i − 2, j − 1) and analysis points can be represented by u � −2,
and the relative position relationship between green point
s(i + 2, j + 1) and analysis points can be represented by u � 2.

We calculate the number of cross-correlation coefficient for each
u and use the biggest value for that point to be the correlation
coefficient. Usually, we discard sample points with low local cross-
correlation coefficient, which are thought unreasonable. The
representation is as follows:

Hi,j � 0, Ci,j <C0

Ci,j, Ci,j >C0
{ (15)

whereHi,j is the local optimization operator, which serves to reduce
the contribution of less correlated regions of the seismic data to the
inversion results or to discard them directly. C0 is the threshold
related to the local cross-correlation coefficient.

H is introduced into the objective function, thus controlling the
contribution of each sampled point in the seismic data to the
inversion. The reconstruction of the seismic record is as follows:

S′ � Ho S( ) (16)
where the symbol “o" represents the “Hadamard product” operator,”
which denotes the multiplications of the corresponding points of
two matrices with the identical rows and columns. S′ represents the
reconstructed synthetic seismic records.

The objective function of the presented methods is:

J L, R, Sr( ) � min
L,R,sr

Ho S − Sr( )‖ ‖22 + λ R‖ ‖11 + α L − L0‖ ‖22
s.t. Sr � WDL,R � MDL.

(17)

To solve the objective function, we use ADMM to transform it
into several linear sub-problems to solve. Further, the dual term is
introduced to transform the constrained objective function Eq. 17
into an unconstrained objective function, and the following is
obtained:

J L, R, C1, C2, Sr( ) � min
L,R,C1 ,C2 ,Sr

Ho S − Sr( )‖ ‖22 + λ R‖ ‖11 + α L − L0‖ ‖22
+ μ R −MDL − C1‖ ‖22 + γ Sr −WDL − C2‖ ‖22

s.t. Sr � WDL, R � MDL.

(18)
where γ and μ represents the weighting factor of the dual variable.

The sub-problems associated with L are represented as follows:

J L( ) � min
L

α L − L0‖ ‖22 + μ R −MDL − C1‖ ‖22 + γ Sr −WDL − C2‖ ‖22
(19)

Eq. 19 contains only L2 norm, which is a convex optimization
problem. Therefore, taking the gradient of L and simplifying it, we
can get:

Li+1 � γGTG + αE + μDTMiTMiD( )−1 αL0 + μDTMiT Ri − C1( )[
+γGT Sir − C2( )] (20)

Where i + 1 shows the (i + 1)th iteration. G represents G � WD.
E represents the identity matrix.

The sub-problem of R is expressed as:

J R( ) � min
R

λ R‖ ‖11 + μ R −MDL − C1‖ ‖22 (21)

For the above sub-problem, the soft threshold shrinkage
algorithm (Chartrand and Yin, 2016) is adopted to solve it:

Ri+1 � max MiDLi+1 + Ci
∣∣∣∣ ∣∣∣∣ − λ/μ, 0( )*sign MiDLi+1 + Ci( ) (22)

where sign can be expressed as:

sign x( ) �
−1, x< 0
0, x � 0
1, x> 0

⎧⎪⎨⎪⎩ (23)

The sub-problems associated with Sr are represented as follows:

J Sr( ) � min
Sr

Ho S − Sr( )‖ ‖22 + γ Sr −WDL − C2‖ ‖22 (24)

Expand the above formula and compute the gradient of Sr to
obtain:

Si+1r � HoHoS + γGLi+1 + γCi
2( )./ HoH + γE1( ) (25)

where E1 represents the identity matrix. ./ represents the division the
corresponding points of two matrices with the identical rows and
columns.

The sub-problems associated with C1, C2 are represented as
follows:

J C1( ) � min
C1

μ R −MDL − C1‖ ‖22 (26)

FIGURE 2
Correlation analysis diagram of neighboring seismic traces.
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J C2( ) � min
C2

γ Sr −WDL − C2‖ ‖22 (27)

After the expansion of these two sub-problems, the gradient of
C1 and C2 is obtained:

Ci+1
1 � Ci

1 + MiDLi+1 − Ri+1( ) (28)
Ci+1

2 � Ci
2 + GLi+1 − Si+1r( ) (29)

Finally, update the reweight matrix with Li+1:

Mi+1
j � 1

ni+1j

∣∣∣∣∣ ∣∣∣∣∣ + ε
s.t. n � DL. (30)

We summarized the above inversion steps and obtained the seismic
acoustic impedance inversion framework based on DRL1 as follows:

1. Initialize: L0 � L0, S0
r � GL0, R0 � 0, C0

1 � 0, C0
2 � 0,

M0 � E, the threshold value ε0.

2. while: ‖Li+1 − Li‖2/‖Li‖2 > ε0 do.

3. Update Li+1 according to Eq. 20

4. Update Ri+1 according to Eq. 22

5. Update Si+1
r according to Eq. 25

6. Update Ci+1
1 , Ci+1

2 according to Eqs 28, 29

7. Update Mi+1 according to Eq. 30

8. i � i + 1.

9. end

Output: AI � exp(Li+1).

Algorithm 1 Seismic acoustic impedance inversion method based on DRL1

FIGURE 3
(A) The true AI model (B) The initial AI model.

FIGURE 4
(A) The results based on L1 norm constraint method. (B) The absolute error based on L1 norm constraint method. (C) The result based on
RL1 method. (D) The absolute error based on RL1 method.
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3 Model testing

3.1 Noiseless model testing

Here, we introduce the Marmousi2 model to test the
feasibility of the methods in this paper. In Figure 3A, the AI
model size is 500 traces with 380 points per trace. Beyond that,
Figure 3B show the initial model, which is obtained by Gaussian
filtering. The RL1 method and the L1 method are tested
separately under the condition of noiseless. Figures 4A, C
respectively show the inversion results of the two methods
under optimal parameters. The inversion results of the two
methods are close to the real model, and the difference cannot
be directly seen. Therefore, the absolute errors of the two
inversion results were obtained respectively (Figures 4B, D).
The results show that the reweighted L1 norm has a good
inhibition effect on the pseudo-layer phenomenon. Moreover,
from the perspective of inversion precision, the reweighted
L1 norm constraint has higher accuracy than the L1 norm
constraint.

To quantitatively analyze the inversion effects of the two
methods, the inversion results of the 125th and the 325th traces
are extracted (Figure 5). Where, black line represents the true
impedance value, red line represents the reweighted L1 norm
constrained inversion results, green line represents the L1 norm
constrained inversion results, and the dotted line represents the
initial model. Both the blue line and the green line are close to the
black line, but the blue line is closer to the change trend of the true
impedance, indicating that the reweighted L1 norm has better
inversion effect. By enlarging part of the single trace inversion
results (at the black arrow), it can be seen that the pseudo-layer
phenomenon exists in the inversion results constrained by L1 norm.

However, the stratigraphic characterization of the inversion results
of the reweighted L1 norm is clear, which can suppress the pseudo-
layer phenomenon strongly.

3.2 Noise model testing

The quality of seismic data is still the basic factor affecting
inversion. The contribution of unreasonable seismic data is reduced
or abandoned by local cross-correlation analysis and the
contribution of seismic data from each sampling point is
controlled. Finally, adjacent seismic tracks are used to correct or
recover the inversion parameters at the points where contributions
are reduced or dropped. Therefore, the stability of inversion results
can be improved by local cross-correlation analysis in the seismic
data area which is seriously disturbed by noise. As shown in
Figure 6A, the synthetic seismic record was obtained by
combining reflection coefficient and wavelet. And the dominant
frequency of the wavelet is 30 Hz. Figure 6B is the zoomed-in view of
the dashed box in Figure 6A. In Figure 6C, 10%Gaussian white noise
is added to obtain the synthetic seismic record containing noise.
Figure 6D is the zoomed-in view of the dashed box in Figure 6C. We
can see that the seismic traces are heavily influenced by noise
interference. Through local cross-correlation analysis of seismic
data, we use Eq. 16 to obtain the reconstructed synthetic seismic
records (Figure 6E). We can see from Figure 6F that the
reconstructed synthetic seismic record reduces the influence of
low correlation regions, such as those subject to noise
interference, on the inversion result.

The C0 in Eq. 15 is very important for local cross-correlation
analysis of synthetic seismic records. Too small C0 cannot effectively
reduce the influence of low correlation areas in seismic data, such as

FIGURE 5
The single trace result: (A) trace 125. (B) trace 325.
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severe noise interference and extreme discontinuity, on the
inversion results. If C0 is too large, valid information cannot be
retained. Therefore, in order to achieve the optimal inversion result,

a suitable threshold C0 should be found. After obtaining the
reconstructed synthetic seismograms with different thresholds C0,
we use SNR (Signal Noise Ratio) and RMSE (Root Mean Square

FIGURE 6
The seismic data: (A) Synthetic seismic recordings without noise. (B) Zoomed-in display at the dotted box of the without noise-containing seismic
record. (C) Synthetic seismic recordings with noise. (D) Zoomed-in display at the dotted box of the noise-containing seismic record. (E) Synthetic seismic
recordings after the cross-correlation processing. (F) Zoomed-in display at the dashed box after the cross-correlation processing.

FIGURE 7
Quantitative analysis of C0: (A) RMSE. (B) SNR.
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Error) to quantitatively analyze the reconstructed results. As shown
in Figure 7, with the increase of C0, SNR gradually increases and
RMSE gradually decreases. When C0>0.6, SNR began to decrease
and RMSE began to increase. Therefore, when C0=0.6, the
reconstructed synthetic seismic record reaches the optimum. We
apply the reconstruction results when C0 = 0.6 to the subsequent
inversion.

In Figure 8, we take the inversion method based on L1 norm
constraint as a conventional method and compare it with the
RL1 method and the DRL1 method proposed. Because of the
addition of 10% noise, three method shows the phenomenon of “
vertical striping.” The inversion results show that the DRL1 method is
less affected by noise than the conventional method and the
RL1 method, and the inversion section boundary is clearer and the
inversion results are more accurate. To show the effect of the different
methods more clearly, we combine the inversion result of the three
method and the theoretical model, and get the absolute error. By
comparing Figures 8B, D, F, we can see that the inversion effect of the
three inversion methods is not good at the interlace position. But the
absolute error of the method in this paper is smaller, which indicates
that the introduction of local cross-correlation analysis can reduce the
inversion instability at the interlace position and thus improve the

inversion accuracy. However, there are still some problems in Figure 8F,
including transverse discontinuities. We will address these questions
later in our research. And we show in Table 1 the optimal parameters
for the different inversion methods.

In addition, we obtained histograms of the residual distribution
corresponding to the inversion results for the three inversion
methods (Figure 9), so as to quantitatively evaluate the
advantages and disadvantages of the methods. In Figure 9, black
represents the error curve of the L1 norm constrained method, blue
represents the error curve of the RL1 norm constrained method, and
red represents the error curve of the proposed method. By
comparing the three curves, it can be seen that the area covered

FIGURE 8
(A) The results based on L1 norm constraint method; (B) The absolute error based on L1 norm constraint method; (C) The result based on RL1 norm
constraint method; (D) The absolute error based on RL1 norm constraint method; (E) The result based on our proposed method; (F) The absolute error
based on our proposed method.

TABLE 1 Optimal parameter set for model data.

Methods Parameters

L1 α=4×10−3 μ=2×10−2 λ=5×10−3

RL1 α=5×10−3 μ=2×10−5 λ=3×10−5 ε=1×10−4

DRL1 α=3×10−3 μ=1×10−5 γ=4×10−1 λ=2×10−6 ε=1×10−4
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under the red curve is smaller than the black curve and the blue
curve, indicating that the inversion error of the proposed method is
smaller and the accuracy is higher.

In order to compare the gaps of the inversion results in more
detail, we extracted the single-trace data of the inversion results for
comparison, which is shown in Figure 10. The results show that the
red and blue lines can better restore the stratigraphic information
and suppress the pseudo-layer phenomenon compared with the
green line (Figure 10 black arrows indicated). Further comparing the
results of the red and blue lines, we find that the red line is closer to
the real impedance, indicating that the local cross-correlation
analysis can indeed improve the accuracy and stability of the
inversion. Therefore, it is verified that our method can reduce

the multiple solutions of the inversion problem and enhance the
inversion precision.

To give the readers a clearer understanding of the role of each
parameter in the proposed method. We quantitatively evaluated the
signal-to-noise ratio (SNR) of different parameter inversion results.
The SNR is defined as follows:

SNR � 10*lg
Zt − �Z
���� ����22
Zinv − �Z
���� ����22 (31)

where Zt represents the model of acoustic impedance. �Z represents
mean value of model acoustic impedance. Zinv represents the
estimated acoustic impedance result.

We analyzed the performance of the parameters (α, γ, μ, λ) of the
proposed method. α is the weight coefficient of the initial model,
which determines the similarity between the inversion results and
the initial model. However, the weight of the initial model in the
inversion should not be too large, otherwise the inversion results will
be close to the initial model. We selected five points for each
parameter and calculated their SNR. From Table 2, we can see
that when α=3×10−3, we can get the best inversion result.

The μ, γ denote the degree of fitting of the reflection coefficient R
to the MDL and the degree of fitting of the seismic record Sr to the
WDL, respectively. From Tables 3, 4, we can see that we can get the
best inversion results when μ=1 × 10−5 and γ=4 × 10−1.

FIGURE 9
Histogram of residual distribution.

FIGURE 10
The single trace result: (A) trace 125. (B) trace 325.

TABLE 2 Quantitative comparison of different α.

α 1×10−3 3×10−3 5×10−3 7×10−3 9×10−3

SNR 13.033 16.806 16.229 16.118 15.059

The meaning of bold value are SNRS of optimal parameters.
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The λ denotes the weight of sparse constraint terms of the
reweighted L1 norm in the objective function. As can be seen from
Table 5, the SNR increases first and then decreases with the increase
of λ. The best result is obtained when λ=2 × 10−6.

3.3 Field-data example

Similarly, the proposed method is applied to real seismic data.
Field-data are obtained from the southern Sichuan Basin.
Figure 11A shows a seismic profile of the actual data, with a size
of 300 traces, 190 points per trace, and a sampling interval of 2 ms.
And the black line in the diagram shows the location of well A. The
initial model of AI is shown in Figure 11B.

We take the method based on L1 norm constraint as a
conventional method and compare it with the RL1 method
and DRL1 method in this paper, as shown in Figures 12A–C.
From the black boxes and arrows, the proposed DRL1 method
has a stronger sense of layering and higher resolution compared
with the traditional method and RL1 method. And the whole

impedance profile has a better lateral continuity. Second, by
comparing the matching degree of well curve in section, it can
be seen that the three methods can well match well curve on the
whole, but in some small and thin layers, the matching degree of
inversion section and well curve of the proposed method is better.
Therefore, it is verified that the reweighted L1 norm can better
describe the sparse information than the L1 norm, and the
stratigraphic characterization is more clearly. Based on the
RL1 method, the inversion results are more continuous and
accurate after further local correlation analysis.

As shown in Figure 13, in order to compare the inversion
results of the three methods more visually, we extracted the well
bypass seismic traces obtained from the inversion results of the
three methods respectively and compared them with the AI
calculated from the logging curves. In Figure 13, the black line is
the wave impedance data, the green line is the inversion result of
L1 norm method, the blue line is the inversion result of
RL1 norm method, and the red line is the inversion result of
DRL1 method. The red line in Figure 13A is closest to the black
line, and the red line is closer to the zero value of 0 in Figure 13B,
which verifies that our proposed method yields smaller errors
and higher inversion accuracy compared to the other two
methods.

In the previous part, we verified the good applicability of the
proposed method in real data by two-dimensional profile.
Therefore, we extend the method to 3D space to further verify
its applicability. Figure 14A shows the 3D distribution of the real
post-stack seismic data set. Figures 14B–D shows the 3D
distribution of the inversion result of the conventional
method, RL1 method and the DRL1 method. As per the
obtained results, when compared with the conventional
method and RL1 method, the DRL1 method improves the
robustness of the inversion results and makes them more
continuous in space. In Figures 14B–D, it is clear from the
black arrow mark that the DRL1 method is more precise in
depicting thin layers and has better continuity in 3D space.

4 Discussion

The inverse problem is a painful ordeal for the impatient, but
for those who love it, it is a thrilling challenge. This is because the

TABLE 3 Quantitative comparison of different μ.

μ 1×10−5 2×10−5 4×10−5 6×10−5 8×10−5

SNR 16.806 15.239 14.461 14.128 13.854

The meaning of bold value are SNRS of optimal parameters.

TABLE 4 Quantitative comparison of different γ.

γ 1×10−1 2×10−1 4×10−1 6×10−1 8×10−1

SNR 14.763 15.097 16.806 16.498 16.021

The meaning of bold value are SNRS of optimal parameters.

TABLE 5 Quantitative comparison of different λ.

λ 2×10−4 2×10−5 2×10−6 2×10−7 2×10−8

SNR 16.338 16.572 16.806 16.365 16.123

The meaning of bold value are SNRS of optimal parameters.

FIGURE 11
Original data: (A) Field seismic profiles. (B) The initial AI model.
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process of getting to the final result is tedious and requires
repeated testing. For example, the inversion objective function
in Eq. 18 has many parameters that affect the inversion result,
and we need to make them get the optimal parameters so as to get
the best inversion result. The following is a brief discussion of
each parameter. First, the degree of similarity between the
inversion results and the initial model is determined by α. The

more credible the initial model, the larger α can be set. The degree
of fitting between the reflection coefficient R and MDL depends
on the parameter μ, the larger μ, the higher the degree of fitting.
The parameter γ is used to define the fitting relationship between
the seismic record Sr andWDL, and the fitting degree depends on
the size of γ. The λ determines the weight of the reweighted L1-
norm sparse constraint term in the objective function. The larger

FIGURE 12
Comparison of inversion results of different methods: (A) The results based on L1 norm constraint method. (B) The results based on reweighted
L1 norm constraint method. (C) The results based on our proposed method.

FIGURE 13
Comparison of well bypass: (A) The inversion results. (B) The residual of impedance.
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the noise in seismic data, the larger the value of λ should be.
However, if the value is too large, the inversion result will deviate
from the real value. In general, in inverse problems, the optimal
parameters are not unique, but knowing the role of each
parameter will help us get better inversion results faster.

5 Conclusion

In this paper, a data-driven acoustic impedance inversion way is
introduced. The RL1 algorithm applies the reweighted L1 norm with
good sparsity as the sparsity constraint, which improves the
precision of inversion results and makes the characterization of
stratigraphic horizon clearer. On the basis of RL1 algorithm,
DRL1 algorithm is further proposed to reconstruct seismic data
through local cross-correlation analysis, so as to control the
proportion of each point in the inversion process and decrease
the influence of unreasonable points on the inversion results.
ADMM algorithm and soft threshold shrinkage algorithm are
used to solve the inversion problem. Finally, through model tests
and field data examples, it is verified that the proposed method has
higher inversion precision than the general methods. In particularly,
in seismic data with severe noise interference, the proposed method
can achieve better inversion results than conventional methods. So,
the proposed method has high stability and resolution, and can
provide more accurate stratigraphic characteristics and inversion
results.
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constraint method. (C) The results based on reweighted L1 norm constraint method. (D) The results based on our proposed method.
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