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Monitoring groundwater quality in economically important and other aquifers is
carried out regularly as part of regulatory processes for water and other resource
development. Many water quality parameters are measured as part of baseline
monitoring around mining and onshore gas resource development regions to
develop improved understanding of the hydrogeological system as well as to
inform managerial decisions to assess and manage contamination risks and
health hazards. Water quality distribution in an aquifer is most often inferred
from point measurements from limited number of bores drilled at arbitrary
locations. Estimating the distribution of water quality parameters in the aquifer
based on these point measurements is often a challenging task and results in high
uncertainty in the estimates due to limited data availability. Minimizing
uncertainty can be achieved by drilling more bores to collect water quality
data and several approaches are available to identify optimal bore hole
locations to minimize estimation uncertainty. However, optimization of
borehole locations is difficult when multiple water quality parameters are of
interest and have different spatial distributions in the aquifer. In this study we use
geostatistical kriging to interpolate a large number of groundwater quality
parameters. Then we integrate these predicted values and use the Differential
Evolution algorithm to determine optimal locations for bores that would
simultaneously reduce spatial prediction uncertainty of all parameters. The
method is applied for designing a groundwater monitoring network in the
Namoi region of Australia for monitoring groundwater quality in an
economically important aquifer of the Great Artesian Basin. Optimal locations
for 10 new monitoring bores are identified using this approach.
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1 Introduction

Optimization of groundwater quality monitoring network has been of interest for
groundwater managers and researchers for a long period of time (Loaiciga, 1989;
Wagner, 1995; Zhang et al., 2005; Sreekanth et al., 2017). Monitoring network designs
often aspire tomaximize the worth of the data collected from a network of bores for inference
of spatial distribution of water quality parameters or a contaminant plume in an aquifer and
inform management decisions pertaining to aquifer management and/or remediation and
clean up.
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Mathematical optimization approaches have been proposed in
the past to optimize the design of monitoring networks. Such
studies have considered different design objectives. Several studies
have used geostatistical approaches to inform the design by
considering the objective of minimization of prediction error
and variance in the water quality parameters of interest or
contaminant plume (McKinney and Loucks, 1992; Rizzo et al.,
2000; Asefa et al., 2004; Numes et al., 2004; Asefa et al., 2005;
Heerera and Pinder, 2005; Ammar et al., 2008; Chadalavada and
Datta, 2008; Dokou and Pinder, 2009; Ruiz-Cardenas et al., 2010;
Luo et al., 2016). Minimization of monitoring cost has been the
objective of several monitoring network design studies (Reed et al.,
2000; Reed and Minsker, 2003; Nunes et al., 2004; Reed and
Minsker, 2004; Wu et al., 2006; Kollat and Reed, 2007; Kollat
et al., 2008; Kollat et al., 2011). Other optimization studies
focussed on the objective of contaminant detection (Massman
and Freeze, 1987; Meyer and Brill, 1988; Hudak and Loaiciga,
1992; Datta and Dhiman, 1996; Mahar and Datta, 1997; Storck
et al., 1997; Montas et al., 2000; Reed et al., 2000; Reed and
Minsker, 2004; Dhar and Datta, 2007; Kollat et al., 2008) and
minimization of mass estimation error (Montas et al., 2000; Reed
and Minsker, 2004; Wu et al., 2005; Wu et al., 2006; Kollat and
Reed, 2007).

Most of the above studies focussed on addressing optimization
of monitoring design to address contamination risks from point or
non-point source contaminants in aquifers (Ammar et al., 2008;
Chadalavada and Datta, 2008; Kollat et al., 2011; Sreekanth et al.,
2017). Other studies have also considered network design to
monitor groundwater levels (Hosseini and Kerachian, 2017;
Mirzaie-Nodoushan et al., 2017; Sreekanth et al., 2021). Fewer
studies have also focussed on optimizing a network to monitor
baseline water quality parameters (Ayvaz and Elci, 2018).
Designing monitoring networks for baseline water quality
monitoring has its own unique challenges. Practical
requirements often warrant design or optimization of a network
to monitor multiple parameters including water levels and different
water quality parameters. Applying optimization approaches for
such monitoring network design would need including of several
variable types in simulation and optimization analysis and often
require multi-objective optimization approaches when objectives
are mutually conflicting in nature (Kollat and Reed, 2006; Reed
et al., 2007; Luo et al., 2016; Bode et al., 2018; Song et al., 2019; Fan
et al., 2020).

Including large number of independent monitoring
parameters in a monitoring network optimization problem
can potentially increase the computational needs of the
optimization model. Some studies have used a composite
Water Quality Index obtained using a combination of
multiple water quality parameters for monitoring network
optimization. Ayvaz and Elci (2018) used Water Quality
Index obtained as a weighted sum of 17 water quality
parameters in a genetic algorithm-base optimization approach
for designing optimum groundwater quality monitoring
network. The WQI is obtained using a weighted sum of
normalized values of different water quality parameters with
the weights being determined by the risk posed by different
groups of parameters. The use of weighted sum on parameters
introduces some level of subjectivity in the design, the effects of

which will be non-trivial if many water quality parameters are to
be considered in the design.

In this study we develop a new approach that is useful to
determine optimal locations for new groundwater quality
monitoring bores that will reduce prediction uncertainty in many
water quality parameters. This would help to prioritize drilling
monitoring bores at locations that can return the most data-
worth in estimating many water quality parameters across the
area. This in turn will be enable better use of water quality
information for analysis and interpretation of geological and
hydrogeological influences on aquifer connectivity, mixing, etc.,
at regional and areal scales.

The remaining section of this paper is organized as follows:
Section 2 describes the development of the method for
optimization of groundwater quality monitoring network using
the case study from the Namoi region of Australia. Section 3
describes the key results of the study and conclusions are
presented in Section 4.

2 Methods

We develop our methodology with the goal of monitoring
baseline water quality indicators in spatially continuous aquifers in
sedimentary basins. Specifically, we focus on the part of the Great
Artesian Basin in northern New South Wales, Australia where
Pilliga Sandstone is an economically important aquifer. The GAB
aquifer, Pilliga Sandstone, is a major source of fresh groundwater.
It is used for irrigation, stock and domestic water uses and provides
valuable ecosystem services. It is a regional aquifer extending large
areas and water quality measurements are available from sparsely
distributed monitoring bores. Understanding baseline water
quality indicators in the Pilliga Sandstone aquifer is critical, but
prediction of such indicators at the aquifer scale is difficult,
particularly resulting in high levels of uncertainty. Our method
therefore focuses on a procedure with the goal of determining
optimal locations for future observational boreholes that will
minimize uncertainty in the spatial prediction of water quality
parameters when used in conjunction with existing
observation data.

This section outlines the available data used for our analysis, the
geostatistical kriging methods used to model the available baseline
water quality parameters, and the differential optimization
algorithm used to determine potential supplementary monitoring
locations that would offer reduction in prediction uncertainty across
all baseline water quality variables.

2.1 Data and study area

Our focus is on the Cadna-owie Hooray Sandstone and Pilliga
Sandstone hydrostratigraphic unit located within the geological
Surat Basin that forms part of the hydrogeological Great Artesian
Basin. In this study we used the hydrostratigraphic
conceptualization of the Pilliga Sandstone unit as represented
in Aryal et al. (2017) as part of the Namoi Bioregional
Assessments. The Cadna-owie Hooray Sandstone and Pilliga
Sandstone are two names for the same Sandstone unit within
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different geographical extent. In the remainder of this study, the
unit is referred to as the Pilliga Sandstone. Groundwater is
extensively used from the alluvial aquifers of the Namoi
region for irrigation and other purposes. The Pilliga Sandstone
aquifer underlies the Namoi Alluvium and is believed to
exchange flows with the alluvial aquifer. Coal mining projects
are present in the region and development of coal seam gas is also
expected in future in this area. Developing an understanding of
the baseline water quality is important to evaluate any potential
changes due to resource development. A recent study was
performed to evaluate the effects of coal seam gas on the
groundwater pressures in the Namoi region. The details of the
hydrogeology of the region and hydrostatrigraphy is reported in
Sreekanth et al. (2018). In this study we focussed on identifying
optimal locations for new monitoring bore for the Pilliga
Sandstone aquifer within the 30-km buffer area of potential
coal seam gas development. Coal seam gas development
occurs from the Gunnedah Basin underlying the Surat Basin.
As the gas wells are drilled through the aquifers of the Surat Basin
including the Pilliga Sandstone, it is important to develop
improved understanding of the Pilliga Sandstone baseline
water quality in the area. Figure 1A shows the broader region
of the Great Artesian Basin in eastern Australia and the
sedimentary basins including the Surat Basin that holds the

Pilliga Sandstone unit and the underlying Gunnedah Basin
from which coal seam gas development is planned. Figure 1B
shows the extend of the coal seam gas project and the buffer zone
in which water quality monitoring is intended.

Regional extent of the aquifer with limited monitoring data
makes spatial prediction of water quality parameters difficult. Fine
spatial resolution of water quality data is not available, particularly
due to the fact that this is a composite unit comprising of different
hydrostratigraphic units of the GAB sequence. Interpolation from
available limited data can cause significant errors in prediction in
such cases.

In order to adequately estimate the kriging models
(described below), a sufficient number of observations are
needed for each baseline water quality variable. We make the
choice to limit our analysis only to baseline water quality
variables where at least five unique spatial observations were
available in the study region. This resulted in 41 different water
quality variables from 60 different spatial locations. Primarily,
these variables focus on concentrations of ions, alkalinity, total
dissolved solids, pH, and other water quality indicators. The
associated baseline water quality variables used are found in
Table 1. The locations of the observations used are found in
Figure 2. Note that sometimes only one water quality variable
was observed at a spatial location.

FIGURE 1
Maps showing (A) the study area within the regional extents of Surat and Gunnedah basins and the Great Artesian Basin (B).
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2.2 Geostatistical kriging model

We developed individual kriging models for each of the
41 baseline water quality variables found in Table 1. Kriging
models incorporate Gaussian Processes to account for the spatial
variability (Cressie, 1993). The Kriging models were developed to
create an optimal spatial interpolation between observations,
achieved via a spatially defined mean and covariance structure
used to account for spatial variability. Due to the sparse nature of
our observations, and for simplicity, we make the assumption that
the data are continuous and stationary across space. These
assumptions are reasonable for sedimentary aquifers where
significant geological structures or other features don’t cause
discontinuities in groundwater flow. That is, we assume the
underlying spatial processes of each water quality variable is
invariant with respect to translations in space and defined at
all spatial locations in the region of interest. Formally, we
define the

yl s( ) � μl s( ) + ϵl s( ) (1)
where yl(s) represents a baseline water quality variable l (l �
1, . . . , 41) at location s ∈ Ds (where Ds is the spatial domain of
interest), μl(s) the unknown mean function and ϵl(s) the spatial
random error. For convenience, we drop the subscript l for the time
being. We consider a linear model for μ(s). That is,

μ s( ) � x s( )Tβ, (2)
where x(s) is a vector of known covariates at spatial location s,
and β the associated regression parameters. We consider two
forms of x(s): 1) when the covariate vector only contains a term
for the intercept (e.g., ordinary kriging), and 2) when we include
the depth to the midpoint of the hydrostratigraphic unit (e.g.,
universal kriging). These depths are shown in Figure 3.
Additionally, we also need to estimate the spatial dependence
using a variogram. The variogram is a model-based covariance
function, c(·), that defines the spatial dependence, which we
estimate.

2.2.1 Interpolation
Importantly, we want to interpolate each water quality variable

at some unknown locations s0. That is, we want to obtain an estimate
of y(s0). Define c0 to be the vector of covariances between the
unobserved location, s0, and n observed locations, s1, . . . , sn,
obtained via covariance function c(·). Further define
y ≡ (y(s1), . . . , y(sn))′ and μ ≡ (μ(s1), . . . , μ(sn))′ as the vectors
of water quality variables and mean vector values from Eq. 2 at the
observed locations. Define C � Var(y), the covariance matrix of all

TABLE 1 Baseline water quality variables with at least 5 observations in the
study region with mean and standard deviation.

Variable Unit Mean Std. Dev

pH (field) 7.46 0.71

pH (lab) 7.67 1.07

Alkalinity (Bicarbonate as CaCO3) mg/L 319.83 255.12

Alkalinity (Bicarbonate) mg/L 214.28 167.84

Alkalinity (total) mg/L 443.6 94.48

Alkalinity (total) as CaCO3 mg/L 290.63 265.15

Aluminium mg/L 0.41 1.22

Barium mg/L 0.29 0.89

Bromide μg/L 224.31 161.41

Calcium mg/L 7.53 16.77

Chloride mg/L 51.96 26.31

Copper mg/L 0.062 0.19

Dissolved Oxygen mg/L 0.47 0.63

Electrical conductivity mg/L 669.47 499.99

Fluoride mg/L 0.53 0.39

Hydrogen mg/L 0.073 0.037

Helium mg/L 0.18 0.31

Iodide mg/L 0.063 0.036

Iron mg/L 1.99 5.77

Lead mg/L 0.0028 0.0022

Lithium mg/L 0.018 0.018

Magnesium mg/L 2.58 5.43

Manganese mg/L 0.045 0.055

Nitrate (as NO3-) mg/L 3.45 3.95

PhoSphericalate μg/L 195.63 206.3

Potassium mg/L 4.38 4.22

Silica μg/L 10,424.83 9508.55

Sodium mg/L 176.51 130.081

Strontium mg/L 0.16 0.28

Sulphate mg/L 3.73 6.072

Uranium 0.19 0.37

Zinc μg/L 0.29 0.85

Hardness mg/L 12.47 31.64

d13C pptPDB −14.01 6.35

Chromium 0.0055 0.011

Total Organic Carbon 3.079 2.62

Cobalt 0.0019 0.001

Dissolved Organic Carbon 3.45 2.93

(Continued in next column)

TABLE 1 (Continued) Baseline water quality variables with at least
5 observations in the study region with mean and standard deviation.

Variable Unit Mean Std. Dev

Heterotrophic Plate Count (22°C) 27,833.85 29,517.97

Nickel 0.0033 0.0021

Total Dissolved Solids at 180°C 210.26 202.97
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observed locations. Then, we can obtain the expected value and
variance of the interpolated water quality values conditioned on the
observed values as:

E y s0( )∣∣∣∣y( ) � μ s0( ) + c0
TC−1 y − μ( ), (3)

Var y s0( )∣∣∣∣y( ) � c s0( ) − c0
TC−1c0. (4)

Interpolating over the area shown in Figure 2 requires
decisions to be made about the resolution of each unobserved
spatial location. For our purposes, we preferred as fine a spatial
resolution while still allowing for reasonable computational
expense for the optimization algorithm. We settled at
20,000 pixels in the 30-km buffer zone pictured in Figure 2,
resulting in a 487-m resolution.

2.2.2 Covariance functions
In order to interpolate water quality variables using Eqs 3, 4, we

must first determine what covariance function is appropriate for
each of the l � 1, . . . , 41 variables. That is, for each water quality
variable, we estimate the empirical variogram. This is an estimate of
the spatial variance at set distances by taking the average of the
squared differences of yl(·) within a tolerance region of a specific
distance (Cressie, 1993). We then fit different covariance functions

to the empirical variogram, choosing which one that gives the
minimum sum of squared residuals between the fitted covariance
function and empirical variogram. We estimate the parameters
using weighted least squares. We limit our focus to 4 different
covariance functions common to geostatistical processes: 1)
exponential; 2) spherical; 3) Gaussian; and 4) Matérn. In general,
these functions have the form:

c h( ) � σ20I h‖ ‖ � 0( ) + σ21ρ h, θ( ), (5)

where σ20 represents the nugget parameter, σ21 the sill parameter, and
θ a vector parameter containing the range and (in the case of the
Matérn covariance function) scale parameters. For the scale
parameter, we only consider value of 0.05, 0.2 to 2 by
0.1 increments, 5, and 10. Further, h is the spatial lag, and ρ(·)
defines the spatial correlation. For details of these covariance
functions, see Cressie (1993) and Cressie and Wikle (2011).

For each of the l � 1, . . . , 41 water quality variables, we fit a
total of 8 different kriging models, considering depth as a
covariate or not (e.g., universal or ordinary kriging model) and
each of the 4 different covariance functions. We then choose the
specific form of xl(·) and cl(·) that gives the minimum sum of
squared residuals.

FIGURE 2
Locations with at least one water quality observation (blue) in the Pilliga Sandstone unit. The shaded region indicates the 30-km buffer region of
interest.
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2.3 Optimal monitoring design using
differential evolution

In order to determine the optimal locations for monitoring that
will reduce prediction uncertainty, we use the results of the
41 kriging models developed in Section 2.2. We used the
Differential Evolution algorithm (Storn and Price, 1997; Mullen
et al., 2011) to identify the optimal locations. Sreekanth et al. (2017)
demonstrated the applicability of the algorithm for groundwater
monitoring network designs.

Specifically, we seek to find the set of m borehole locations,
denoted as W � w1,w2, . . . ,wm|wi ∈ Ds; i � 1, . . . , m{ }, subject to
minimizing some defined objective function f(·). Define
yl ≡ (yl(s1), . . . , yl(snl))′ as the vector of water quality indicator
variable l at observed locations s1, . . . , snl, where nl are the number of
observations. Define ŷl ≡ (ŷl(w1), . . . , ŷl(wm))′ as the vector of
interpolated values for that water quality variable at locations
w1,w2, . . . ,wm. Our approach chooses a set of W potential
locations and obtains the interpolated values ŷl. We treat ŷl as
potentially new observed values and refit the same kriging model for
indicator l, and compare the resulting prediction uncertainties
across the buffer region. Define σ2lj ≡ Var(yl(sj)|yl) to be the
associated prediction variance at interpolated location sj for water
quality indicator variable l, as defined by Eq. 4. Define further
~σ2lj ≡ Var(yl(sj)|(yl, ŷl)) as the prediction variance at that same

location should the interpolated values of ŷl be used in fitting the
model. We then define the objective function as:

f w|Y( ) � − 1
20000 41( )∑

20000

j�1 ∑41

l�1
σ lj − ~σ lj
∣∣∣∣

∣∣∣∣
σ lj

, (6)

where σ lj and ~σ lj are the standard deviations derived from the
variance definitions above, and Y is the collection of interpolated
values over the buffer region, across 20,000 pixels, using the
kriging models as developed in Section 2.2. In other words, we
determine the mean relative reduction in uncertainty across the
30-km buffer zone across all water quality variables. By dividing
by σ lj, we ensure equal weight is applied to all water quality
variables and locations.

The optimization algorithm then searchers for optimal
borehole locations that minimize Eq. 6. This is done by using
Differential Evolution via the DEoptim package in the R statistical
computing language (Mullen et al., 2011; R Core Team, 2022). For
our purposes, we seek an optimization of m � 10 borehole
locations. Ideally an optimization problem could be designed
for identifying the number and locations of boreholes required
for achieving a target prediction variance. However, in most
practical circumstances budget considerations determine the
number of monitoring wells that can be drilled. Hence, in this
study we illustrate the optimization problem by assuming that the

FIGURE 3
Depth to the mid-point of the Pilliga Sandstone unit used as potential covariates in kriging models. The red outline shows the 30-km buffer zone.
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TABLE 2 Covariance function and parameter estimates and inclusion of depth as a covariate for all baseline water quality variables.

Variable Inc. Depth Model Nugget Sill Range (KM) Scale

pH (field) Yes Matérn 0.00 0.01 82.0 0.5

pH (lab) No Spherical 0.03 0.00 11.0 0

Alkalinity (Bicarbonate as CaCO3) Yes Matérn 0.15 1.82 31.8 10

Alkalinity (Bicarbonate) Yes Spherical 0.28 0.02 9.8 0

Alkalinity (total) No Spherical 0.10 1.00 8.2 0

Alkalinity (total) as CaCO3 No Matérn 0.25 2.92 35.5 10

Aluminium No Matérn 0.00 3.65 0.7 0.3

Barium No Matérn 0.07 3.50 148.6 0.3

Bromide Yes Matérn 0.00 7.34 2.1 2

Calcium Yes Gaussian 0.44 0.88 17.7 0

Chloride Yes Matérn 0.01 0.16 34.0 0.3

Copper Yes Matérn 2.45 1.81 41.6 10

Dissolved Oxygen No Matérn 0.00 0.29 3.3 2

Electrical conductivity No Matérn 0.13 0.79 37.3 10

Fluoride No Matérn 0.08 1.37 51.7 10

Hydrogen No Spherical 0.01 1.00 6.9 0

Helium No Spherical 1.40 1.00 10.1 0

Iodide No Matérn 0.00 0.18 2.8 1.1

Iron No Matérn 0.00 3.26 1.6 0.3

Lead No Matérn 0.50 1.12 73.6 0.2

Lithium Yes Gaussian 0.05 1.59 21.9 0

Magnesium No Matérn 0.10 1.31 18.2 10

Manganese No Gaussian 1.11 1.21 22.6 0

Nitrate (as NO3-) Yes Matérn 2.60 5.32 242.8 10

PhoSphericalate Yes Matérn 0.00 8.36 2.0 1.9

Potassium No Gaussian 0.00 0.33 2.0 0

Silica Yes Matérn 1.11 7.88 57.3 10

Sodium No Matérn 0.03 1.66 60.0 5

Strontium No Gaussian 0.16 1.33 20.2 0

Sulphate No Matérn 0.09 6.19 795.9 0.4

Uranium No Matérn 1.14 11.27 66.3 10

Zinc Yes Matérn 0.00 4.22 1.4 0.5

Hardness Yes Gaussian 0.34 0.24 1.7 0

d13C pptPDB Yes Exp 60.53 25.26 9.4 0

Chromium Yes Matérn 1.14 0.51 4.5 0.05

Total Organic Carbon Yes Matérn 0.57 0.52 1.7 5

Cobalt No Matérn 0.00 0.35 1.2 0.7

Dissolved Organic Carbon Yes Spherical 0.22 1.12 2.0 0

(Continued on following page)
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budget considerations permit the drilling of 10 wells. We refer the
reader to Mullen et al. (2011) and Sreekanth et al. (2017) for the
complete details of the implementation of the Differential
Evolution algorithm. We evaluate the performance of the
optimal bore network by comparing the prediction variances
for all water quality parameters of interest obtained using the
optimal network against the variances obtained from a random
choice of 10 wells.

3 Results

We developed kriging models for each of the 41 baseline
water quality indicators described in Section 2. We first do this by
estimating the covariance functions from the empirical
variograms for each water quality variable, considering

whether we include depth as a covariate or not. This resulted
in depth being included in 18 of the 41 kriging models, with a
mean reduction in error of 35.5% (minimum 0.3%, maximum
99.9%). Further, the majority of the water quality variables used
the Matérn covariance function, used in 27 of the kriging models,
with the spherical covariance function having 7, Gaussian having
6, and only 1 for the Exponential covariance function. Table 2
shows whether depth was included, the covariance function used,
and the estimates of the parameters for all 41 water quality
variables.

Once we determined the best kriging models, we used the
Differential Evolution algorithm with the objective function
described in Section 2.3 to identify 10 potential borehole
locations that will reduce prediction uncertainty in baseline water
quality indicators in the 30-km buffer zone. Figure 4 shows the
optimal locations of these borehole locations in the 30-km
buffer zone.

These optimal locations reduce prediction uncertainty
across all potential water quality variables. We inspect the
resulting interpolation before and after establishing optimal
locations of the boreholes in the buffer region. For brevity,
we present 3 examples: pH field, electrical conductivity, and
alkalinity as bicarbonate. The variable pH field did not have any
observations in the buffer region while electrical conductivity
and alkalinity as bicarbonate did. Further, pH field and
alkalinity bicarbonate used depth as an added covariate while
electrical conductivity did not. Figures 5–7 show the reduction
in uncertainty for pH field, electrical conductivity, and alkalinity
bicarbonate, respectively. All three show a general trend in
reduced variance with the addition of optimal monitoring
bores. It is observable that the variance is significantly
reduced within the whole 30-km buffer zone even when the
parameter (pH field) did not have any existing observations in
this area.

Visually (Figures 5–8), our method appears to reduce
prediction uncertainty for pH field, electrical conductivity, and
alkalinity bicarbonate. To show that our method reduced
uncertainty for all baseline water quality indicators, we present
a summary of standard deviations aggregated across pixels for each
variable. Specifically, we present a 95% confidence interval (in the
form of 2.5th and 97.5th percentiles for the lower and upper
bounds) and the median standard deviations across all
interpolated pixels for the original kriging models and inclusion
of the optimal borehole locations. For comparison purposes, we
also include these values from choosing a random set of boreholes
in the buffer region. These results are found in Table 3. As
expected, the standard deviations across all water quality
variables has decreased. Critically, each water quality variable
had lower uncertainties when optimal locations were included

TABLE 2 (Continued) Covariance function and parameter estimates and inclusion of depth as a covariate for all baseline water quality variables.

Variable Inc. Depth Model Nugget Sill Range (KM) Scale

Heterotrophic Plate Count (22°C) No Spherical 3.73 1.34 1.7 0

Nickel No Matérn 0.00 0.92 1.5 0.5

Total Dissolved Solids at 180°C Yes Matérn 0.04 0.16 12.0 2

FIGURE 4
Potential new bore locations (red) for monitoring baseline water
quality in the Pilliga Sandstone unit and existing bore locations with at
least one water quality observation (blue).
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compared to the random locations. While we do not compare all
possible 10-borehole situations due to computational expense, our
experience indicated that regardless of which combination of

spatial locations we chose, the optimal borehole location
produced the highest reduction in uncertainty (that is, the
lowest standard deviations).

FIGURE 5
Estimated variance for pH (A)without newmonitoring locations and (B) after optimization and supplementation with the newmonitoring locations
for “pH field” water quality variable. Red dots indicate potential new monitoring locations.

FIGURE 6
Estimated variance of electrical conductivity (A) without new monitoring locations and (B) after optimization and supplementation with the new
monitoring locations for “Electrical Conductivity”water quality variable. Red dots indicate potential newmonitoring locations. Blue dots indicate existing
observations.
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It is noteworthy that there are different ways to approach the
groundwater monitoring network design problem. For example, the
design may include identifying the optimal number of bores
required for a specific purpose as one of the design objectives. In
this study, we did not consider any specific purpose of design other
than minimizing the uncertainty of several water quality parameters
within a chosen area. Hence, we specified the number of bores to be
10. In the practical contexts, it is often the budget that prescribe the

number of bores to be drilled. However, there are contexts in which
decision maker may be interested in identifying the optimal number
of bores to be drilled for a specific monitoring goal. Certainly, it
stands to reason that there will be diminishing returns in uncertainty
reduction with increasing number of boreholes, but we believe this
would be a question for another research study, given our interest in
this study is showcasing a new method for determining optimal
borehole locations. This would require a rule for determining how

FIGURE 7
Estimated variance of bicarbonate (A) without new monitoring locations and (B) after optimization and supplementation with the new monitoring
locations for “Alkalinity Bicarbonate”water quality variable. Red dots indicate potential newmonitoring locations. Blue dots indicate existing observations.

FIGURE 8
Density estimates of prediction variance across all pixels in the buffer region. Left plot shows pH field, middle shows Electrical Conductivity, and right
shows Alkalinity Bicarbonate. Black lines indicate original prediction uncertainty, red shows prediction uncertainty if the optimal borehole locations were
included, and blue shows a prediction uncertainty when using random borehole locations.
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TABLE 3 Summary of standard deviations across pixels for the original kriging models, inclusion of optimal borehole locations, and inclusion of random borehole
locations. The percentiles presented are 2.5th, median, and 97.5th percentiles.

Original Optimal Random

Variable 2.5 P’tile Median 97.5 P’tile 2.5 P’tile Median 97.5 P’tile 2.5 P’tile Median 97.5 P’tile

pH (field) 0.0041 0.0056 0.0067 0.0004 0.0012 0.0023 0.0003 0.0014 0.0038

pH (lab) 0.0317 0.0317 0.0317 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316

Alkalinity (Bicarbonate as CaCO3) 0.1797 0.5199 1.8656 0.1747 0.2447 0.4462 0.1753 0.2738 1.5213

Alkalinity (Bicarbonate) 0.3359 0.3647 0.5539 0.3135 0.3176 0.3451 0.3142 0.3297 0.4383

Alkalinity (total) 1.3226 1.3226 1.3226 0.7315 1.1756 1.1756 0.7254 1.1792 1.1792

Alkalinity (total) as CaCO3 0.2944 0.7442 2.4144 0.2870 0.3804 0.6539 0.2893 0.4166 2.0469

Aluminium 3.7682 3.7738 3.7738 3.7163 3.7403 3.7403 3.7189 3.7403 3.7403

Barium 0.5521 1.2176 1.9142 0.4888 0.8410 1.1233 0.4646 0.9052 1.7658

Bromide 7.9214 8.3421 8.9499 6.4633 7.7163 7.9709 6.6089 7.7910 8.1213

Calcium 0.5296 1.0587 1.4659 0.5241 0.7301 0.9917 0.5231 0.7909 1.4271

Chloride 0.0538 0.1144 0.1586 0.0471 0.0845 0.1080 0.0450 0.0902 0.1524

Copper 2.6484 3.1374 4.1641 2.6258 2.8727 3.3394 2.6305 2.8843 3.9301

Dissolved Oxygen 0.3097 0.3097 0.3097 0.1839 0.3025 0.3027 0.1887 0.3029 0.3029

Electrical conductivity (lab) 0.1443 0.2710 0.6877 0.1417 0.1775 0.2687 0.1425 0.1870 0.6091

Fluoride 0.0880 0.1367 0.5164 0.0859 0.1018 0.1705 0.0867 0.1042 0.4572

Hydrogen 0.7607 1.0749 1.0749 0.5526 1.0513 1.0513 0.5525 1.0519 1.0519

Helium 2.8116 2.8793 2.8793 2.2552 2.5554 2.5594 2.2262 2.5661 2.5661

Iodide 0.1883 0.1889 0.1889 0.1385 0.1849 0.1850 0.1424 0.1851 0.1851

Iron 3.2593 3.3402 3.3402 3.1066 3.3229 3.3235 3.1192 3.3234 3.3237

Lead 0.9522 1.2307 1.4551 0.9389 1.0897 1.2229 0.9208 1.1123 1.3864

Lithium 0.0850 0.7046 1.8690 0.0762 0.1443 0.4793 0.0718 0.2015 1.6665

Magnesium 0.1532 0.9096 1.4590 0.1465 0.3131 0.7244 0.1353 0.3972 1.4295

Manganese 1.2616 1.8146 2.4243 1.2536 1.5142 1.8288 1.2547 1.5687 2.3526

Nitrate (as NO3-) 2.8827 3.0699 3.3774 2.7247 2.7855 2.9530 2.7223 2.8089 3.0373

PhoSphericalate 9.0323 9.5083 10.2011 7.5633 8.7952 9.0861 7.7307 8.8828 9.2562

Potassium 0.2545 0.3348 0.3348 0.1700 0.3334 0.3334 0.1695 0.3334 0.3334

Silica 1.2223 1.5942 3.7407 1.2019 1.3616 1.9470 1.2080 1.3732 3.3430

Sodium 0.0373 0.0721 0.4168 0.0361 0.0448 0.0869 0.0365 0.0468 0.3556

Strontium 0.2170 0.8352 1.5672 0.2058 0.3265 0.6780 0.2021 0.4006 1.4947

Sulphate 0.2183 0.4611 0.8127 0.2069 0.3231 0.4452 0.1976 0.3475 0.7679

Uranium 1.2520 1.5731 3.5339 1.2293 1.3715 1.9670 1.2350 1.3785 3.2428

Zinc 4.3978 4.5134 4.7098 4.1043 4.3812 4.4950 4.1260 4.4032 4.5434

Hardness 0.6424 0.7043 1.2600 0.5848 0.6148 0.6950 0.5892 0.6409 0.8945

d13C pptPDB 78.8534 95.1350 145.6833 77.2633 85.9610 94.7044 77.4221 88.4788 125.5748

Chromium 1.7408 1.9058 3.0909 1.6887 1.7258 1.9218 1.6949 1.7869 2.4422

Total Organic Carbon 1.2136 1.3361 2.4307 1.0959 1.1578 1.3099 1.1077 1.2070 1.6976

Cobalt 0.3878 0.3938 0.3938 0.3488 0.3657 0.3657 0.3503 0.3657 0.3657

(Continued on following page)
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much uncertainty may be reduced for increasing boreholes and
finding out when adding more provides minimal reduction in
uncertainty. It is also important to note the limitations of the
study that the monitoring network design approach presented in
this study is based on statistical variance reduction and assumes that
the parameters vary continuously in space with plausible spatial
covariance structures. Physical processes that may influence abrupt
changes in these water quality parameters were assumed to be
absent. Indeed, a limitation of this study is the accuracy of the
spatial interpolation. The methodology may not be applicable in
areas or contexts in which parameters vary abruptly or randomly
and lack spatial covariance.

4 Conclusion

We developed an optimization approach for designing optimal
monitoring bore locations for water quality measurements and
demonstrated the applicability of the method for reducing
uncertainty in the spatial prediction of many water quality
parameters using observations from a limited number of bores.
The method makes use of multiple geostatistical Kriging models for
spatial modelling of many groundwater quality parameters. The
kriging models were then used in conjunction with a Differential
Evolution algorithm to determine optimal monitoring locations that
minimized prediction variance of all considered water quality
parameters.

The method is demonstrated by applying it for designing a 10-
bore monitoring network in the Pilliga Sandstone aquifer in the
Namoi region of Australia. Evaluations indicate that the optimal
network is able to reduce the prediction variances for all water
quality parameters. The use of kriging models makes it
computationally feasible to include large number of water quality
parameters in the monitoring network design. Thus, the method is
scalable to practical contexts where regulatory or other agencies
want to optimize drilling of monitoring bores for monitoring all
baseline water quality parameters (Janardhanan et al., 2019).
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TABLE 3 (Continued) Summary of standard deviations across pixels for the original kriging models, inclusion of optimal borehole locations, and inclusion of
random borehole locations. The percentiles presented are 2.5th, median, and 97.5th percentiles.

Original Optimal Random

Dissolved Organic Carbon 1.5165 1.6932 3.1914 1.4178 1.4360 1.6272 1.4208 1.5045 2.1497

Heterotrophic Plate Count 5.6718 5.6718 5.6718 5.3440 5.3449 5.3449 5.3430 5.3449 5.3449

Nickel 1.0102 1.0476 1.0476 0.8944 0.9713 0.9715 0.8978 0.9716 0.9716

Total Dissolved Solids 0.0688 0.2485 0.6117 0.0657 0.1393 0.1960 0.0591 0.1615 0.3497

Frontiers in Earth Science frontiersin.org12

Gladish et al. 10.3389/feart.2023.1188316

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1188316


References

Ammar, K., Khalil, A., McKee, M., and Kaluarachchi, J. (2008). Bayesian deduction
for redundancy detection in groundwater quality monitoring networks. Water Resour.
Res. 44 (8). doi:10.1029/2006wr005616

Aryal, S. K., Northey, J., Slatter, E., Ivkovic, K., Crosbie, R., Janardhanan, S., et al.
(2018). “Observations analysis, statistical analysis and interpolation for the Namoi
subregion,” in Product 2.1-2.2 for the Namoi subregion from the northern inland
catchments bioregional assessment (Canberra, Australia: Department of the
Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience
Australia). http://data.bioregionalassessments.gov.au/product/NIC/NAM/2.1-2.2.

Asefa, T., Kemblowski, M., Lall, U., Urroz, G., Mckee, M., and Khalil, A. (2004).
Support vectors-based groundwater head observation networks design. Water Resour.
Res. 40(11). doi:10.1029/2004wr003304

Asefa, T., Kemblowski, M., Lall, U., and Urroz, G. (2005). Support vector machines for
nonlinear state space reconstruction: application to the Great Salt Lake time series.
Water Resour. Res. 41. W12422, doi:10.1029/2004wr003785

Ayvaz, M. T., and Elçi, A. (2018). Identification of the optimum groundwater quality
monitoring network using a genetic algorithm based optimization approach.
J. Hydrology 563, 1078–1091. doi:10.1016/j.jhydrol.2018.06.006

Bode, F., Ferré, T. P. A., Zigelli, N., Emmert, M., and Nowak,W. (2018). Reconnecting
stochastic methods with HydrogeologicalApplications: A utilitarian uncertainty
analysis and RiskAssessment approach for the design of OptimalMonitoring
networks. Water Resour. Res. 54, 2270–2287. doi:10.1002/2017WR020919

Chadalavada, S., and Datta, B. (2008). Dynamic optimal monitoring network design
for transient transport of pollutants in groundwater aquifers.Water Resour. Manag. 22,
651–670. doi:10.1007/s11269-007-9184-x

Cressie, N. (1993). Aggregation in geostatistical problems. Amsterdam, Netherlands:
Springer, 25–36.

Cressie, N., and Wikle, C. K. (2011). Statistics for spatio-temporal data. Wiley & Sons.
Hoboken, NJ, USA.

Datta, B., and Dhiman, S. D. (1996). Chance-constrained optimal monitoring
network design for pollutants in ground water. J. Water Resour. Plan. Manag. 122
(3), 180–188. doi:10.1061/(asce)0733-9496(1996)122:3(180)

Dhar, A., and Datta, B. (2007). Multiobjective design of dynamic monitoring
networks for detection of groundwater pollution. J. water Resour. Plan. Manag. 133
(4), 329–338. doi:10.1061/(asce)0733-9496(2007)133:4(329)

Dokou, Z., and Pinder, G. F. (2009). Optimal search strategy for the definition of
a DNAPL source. J. Hydrology 376 (3-4), 542–556. doi:10.1016/j.jhydrol.2009.
07.062

Fan, Y., Lu, W., Miao, T., Li, J., and Lin, J. (2020). Multiobjective optimization of
the groundwater exploitation layout in coastal areas based on multiple surrogate
models. Environ. Sci. Pollut. Res. 27 (16), 19561–19576. doi:10.1007/s11356-020-
08367-2

Herrera, G. S., and Pinder, G. F. (2005). Space-time optimization of groundwater
quality sampling networks. Water Resour. Res. 41 (12). doi:10.1029/2004wr003626

Hosseini, M., and Kerachian, R. (2017). A data fusion-based methodology for optimal
redesign of groundwater monitoring networks. J. Hydrology 552, 267–282. doi:10.1016/
j.jhydrol.2017.06.046

Hudak, P. F., and Loaiciga, H. A. (1992). A location modeling approach for
groundwater monitoring network augmentation. Water Resour. Res. 28 (3),
643–649. doi:10.1029/91wr02851

Janardhanan, S., Gladish, D., Gonzalez, D., Pagendam, D., Pickett, T., and Cui, T.
(2019). Optimal design and prediction-independent verification of groundwater
monitoring network. Water 12 (1), 123. doi:10.3390/w12010123

Kollat, J. B., and Reed, P. M. (2007). A computational scaling analysis of
multiobjective evolutionary algorithms in long-term groundwater monitoring
applications. Adv. Water Resour. 30 (3), 408–419. doi:10.1016/j.advwatres.2006.05.009

Kollat, J. B., and Reed, P. M. (2006). Comparing state-of-the-art evolutionary multi-
objective algorithms for long-term groundwater monitoring design. Adv. Water Resour.
29 (6), 792–807. doi:10.1016/j.advwatres.2005.07.010

Kollat, J. B., Reed, P. M., and Kasprzyk, J. R. (2008). A new epsilon-dominance
hierarchical Bayesian optimization algorithm for large multiobjective monitoring
network design problems. Adv. Water Resour. 31 (5), 828–845. doi:10.1016/j.
advwatres.2008.01.017

Kollat, J. B., Reed, P. M., and Maxwell, R. M. (2011). Many-objective groundwater
monitoring network design using bias-aware ensemble Kalman filtering, evolutionary
optimization, and visual analytics. Water Resour. Res. 47 (2). doi:10.1029/2010wr009194

Loaiciga, H. A. (1989). An optimization approach for groundwater quality
monitoring network design. Water Resour. Res. 25 (8), 1771–1782. doi:10.1029/
wr025i008p01771

Luo, Q., Wu, J., Yang, Y., Qian, J., and Wu, J. (2016). Multi-objective optimization of
long-term groundwater monitoring network design using a probabilistic Pareto genetic
algorithm under uncertainty. J. Hydrology 534, 352–363. doi:10.1016/j.jhydrol.2016.
01.009

Mahar, P. S., and Datta, B. (1997). Optimal monitoring network and ground-
water–pollution source identification. J. water Resour. Plan. Manag. 123 (4),
199–207. doi:10.1061/(asce)0733-9496(1997)123:4(199)

Massmann, J., and Freeze, R. A. (1987). Groundwater contamination from waste
management sites: the interaction between risk-based engineering design and regulatory
policy: 1. methodology. Water Resour. Res. 23 (2), 351–367. doi:10.1029/wr023i002p00351

McKinney, D. C., and Loucks, D. P. (1992). Network design for predicting groundwater
contamination. water Resour. Res. 28 (1), 133–147. doi:10.1029/91wr02397

Meyer, P. D., and Brill, E. D., Jr (1988). A method for locating wells in a groundwater
monitoring network under conditions of uncertainty. Water Resour. Res. 24 (8),
1277–1282. doi:10.1029/wr024i008p01277

Mirzaie-Nodoushan, F., Bozorg-Haddad, O., and Loáiciga, H. A. (2017). Optimal
design of groundwater-level monitoring networks. J. Hydroinformatics 19 (6), 920–929.
doi:10.2166/hydro.2017.044

Montas, H. J., Mohtar, R. H., Hassan, A. E., and AlKhal, F. A. (2000). Heuristic
space–time design of monitoring wells for contaminant plume characterization in
stochastic flow fields. J. Contam. Hydrology 43 (3-4), 271–301. doi:10.1016/s0169-
7722(99)00108-4

Mullen, K. M., Ardia, D., Gil, D., Windover, D., and Cline, J. (2011). DEoptim: an r
package for global optimization by differential evolution. J. Stat. Softw. 40 (6), 1–26.
doi:10.18637/jss.v040.i06

Nunes, L. M., Cunha, M. C., and Ribeiro, L. (2004). Groundwater monitoring network
optimization with redundancy reduction. J. Water Resour. Plan. Manag. 130 (1), 33–43.
doi:10.1061/(asce)0733-9496(2004)130:1(33)

R Core Team (2022). R: A language and environment for statistical computing. R
Foundation for Statistical. Ames, IA, USA.

Reed (2000). Computing, Springer, Vienna, Austria. URL https://www.R-project.org/.
Reed.

Reed, P., Kollat, J. B., and Devireddy, V. K. (2007). Using interactive archives in
evolutionary multiobjective optimization: A case study for long-term groundwater
monitoring design. Environ. Model. Softw. 22 (5), 683–692. doi:10.1016/j.envsoft.2005.
12.021

Reed, P., Minsker, B. S., and Goldberg, D. E. (2003). Simplifying multiobjective
optimization: an automated design methodology for the nondominated sorted genetic
algorithm-ii. Water Resour. Res. 39 (7). doi:10.1029/2002wr001483

Reed, P. M., and Minsker, B. S. (2004). Striking the balance: long-term groundwater
monitoring design for conflicting objectives. J. Water Resour. Plan. Manag. 130 (2),
140–149. doi:10.1061/(asce)0733-9496(2004)130:2(140)

Rizzo, D. M., Dougherty, D. E., and Yu, M. (2000). “An adaptive long-term
monitoring and operations system (aLTMOsTM) for optimization in environmental
management,” In Building partnerships, ASCE 2000 Joint Conf. on Water Resources
Engineering and Water Resources Planning and Management, ASCE, Reston, VA,
1–10. doi:10.1061/40517(2000)113

Ruiz-Cárdenas, R., Ferreira, M. A., and Schmidt, A. M. (2010). Stochastic search
algorithms for optimal design of monitoring networks. Environmetrics official J. Int.
Environmetrics Soc. 21 (1), 102–112. doi:10.1002/env.989

Song, J., Yang, Y., Chen, G., Sun, X., Jin, L., Wu, J., et al. (2019). Surrogate assisted
multi-objective robust optimization for groundwater monitoring network design.
J. Hydrology 577, 123994. doi:10.1016/j.jhydrol.2019.123994

Sreekanth, J., Crosbie, R., Pickett, T., Cui, T., Peeters, L., Slatter, E., et al. (2017).
“Groundwater numerical modelling for the Namoi subregion,” in Product 2.6.2 for the
Namoi subregion from the northern inland catchments bioregional assessment
(Canberra, Australia: Department of the Environment and Energy, Bureau of
Meteorology, CSIRO and Geoscience Australia).

Sreekanth, J., Gladish, D., Gonzalez, D., Pagendam, D., Pickett, T., and Cui, T. (2018).
CSG-Induced groundwater impacts in the Pilliga region: Prediction uncertainty, data-
worth and optimal monitoring strategies. Canberra, Australia: Commonwealth Scientific
and Industrial Research Organisation.

Storn, R., and Price, K. (1997). Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces. J. Glob. Optim. 11 (4), 341–359. doi:10.
1023/A:1008202821328

Wagner, B. J. (1995). Recent advances in simulation-optimization groundwater
management modeling. Rev. Geophys. 33 (2), 1021–1028. doi:10.1029/95rg00394

Wu, J., Zheng, C., and Chien, C. C. (2005). Cost-effective sampling network design for
contaminant plume monitoring under general hydrogeological conditions. J. Contam.
Hydrology 77 (1-2), 41–65. doi:10.1016/j.jconhyd.2004.11.006

Wu, J., Zheng, C., Chien, C. C., and Zheng, L. (2006). A comparative study of Monte
Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling
network design under uncertainty. Adv. Water Resour. 29 (6), 899–911. doi:10.1016/j.
advwatres.2005.08.005

Zhang, Y., Pinder, G. F., and Herrera, G. S. (2005). Least cost design of groundwater
quality monitoring networks. Water Resour. Res. 41 (8). doi:10.1029/2005wr003936

Frontiers in Earth Science frontiersin.org13

Gladish et al. 10.3389/feart.2023.1188316

https://doi.org/10.1029/2006wr005616
http://data.bioregionalassessments.gov.au/product/NIC/NAM/2.1-2.2
https://doi.org/10.1029/2004wr003304
https://doi.org/10.1029/2004wr003785
https://doi.org/10.1016/j.jhydrol.2018.06.006
https://doi.org/10.1002/2017WR020919
https://doi.org/10.1007/s11269-007-9184-x
https://doi.org/10.1061/(asce)0733-9496(1996)122:3(180)
https://doi.org/10.1061/(asce)0733-9496(2007)133:4(329)
https://doi.org/10.1016/j.jhydrol.2009.07.062
https://doi.org/10.1016/j.jhydrol.2009.07.062
https://doi.org/10.1007/s11356-020-08367-2
https://doi.org/10.1007/s11356-020-08367-2
https://doi.org/10.1029/2004wr003626
https://doi.org/10.1016/j.jhydrol.2017.06.046
https://doi.org/10.1016/j.jhydrol.2017.06.046
https://doi.org/10.1029/91wr02851
https://doi.org/10.3390/w12010123
https://doi.org/10.1016/j.advwatres.2006.05.009
https://doi.org/10.1016/j.advwatres.2005.07.010
https://doi.org/10.1016/j.advwatres.2008.01.017
https://doi.org/10.1016/j.advwatres.2008.01.017
https://doi.org/10.1029/2010wr009194
https://doi.org/10.1029/wr025i008p01771
https://doi.org/10.1029/wr025i008p01771
https://doi.org/10.1016/j.jhydrol.2016.01.009
https://doi.org/10.1016/j.jhydrol.2016.01.009
https://doi.org/10.1061/(asce)0733-9496(1997)123:4(199)
https://doi.org/10.1029/wr023i002p00351
https://doi.org/10.1029/91wr02397
https://doi.org/10.1029/wr024i008p01277
https://doi.org/10.2166/hydro.2017.044
https://doi.org/10.1016/s0169-7722(99)00108-4
https://doi.org/10.1016/s0169-7722(99)00108-4
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.1061/(asce)0733-9496(2004)130:1(33)
https://www.R-project.org/.Reed
https://www.R-project.org/.Reed
https://doi.org/10.1016/j.envsoft.2005.12.021
https://doi.org/10.1016/j.envsoft.2005.12.021
https://doi.org/10.1029/2002wr001483
https://doi.org/10.1061/(asce)0733-9496(2004)130:2(140)
https://doi.org/10.1061/40517(2000)113
https://doi.org/10.1002/env.989
https://doi.org/10.1016/j.jhydrol.2019.123994
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1029/95rg00394
https://doi.org/10.1016/j.jconhyd.2004.11.006
https://doi.org/10.1016/j.advwatres.2005.08.005
https://doi.org/10.1016/j.advwatres.2005.08.005
https://doi.org/10.1029/2005wr003936
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1188316

	Geostatistical based optimization of groundwater monitoring well network design
	1 Introduction
	2 Methods
	2.1 Data and study area
	2.2 Geostatistical kriging model
	2.2.1 Interpolation
	2.2.2 Covariance functions

	2.3 Optimal monitoring design using differential evolution

	3 Results
	4 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


