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The North Himalayan Gneiss Domes, which are essential parts of the Cenozoic
extensional structures in Southern Tibet, record the thermal and tectonic
processes that occurred after the India-Asian collision and are thought to be
effective structures regulating post-collision intracontinental deformation.
However, it is still unclear how these domes are formed and how they
contribute to the regulation process. Here, we performed detailed geological
mapping, elevation transect sampling, low-temperature thermochronological
testing, and 3D modeling on the Kangmar dome, which is located west of the
N‒S treading Yadong-Gulu rift, and its core-cover contact fault is suspected to be
the northern continuation of the South Tibetan Detachment System (STDS). Our
analysis revealed a discrepancy in the deformation histories of the dome’s
northern and southern portions. We proposed a model in which the core-
cover contact fault of the Kangmar dome was a part of the South Tibetan
Detachment System and the doming event that occurred at ~12.2 Ma was
dominated by thrust stacking of the southward mid-crustal channel flow. The
rapid cooling following the middle Miocene was possibly influenced by the N‒S
Trending Yadong-Gulu rift activity. The present landscape was shaped by the
incision of the Nianchu River, which was accompanied by increased glacial activity
during the Pleistocene. Our findings enhance the intracontinental deformation
patterns following collisions and shed light on the numerous domes in Himalayas
and other orogenic belts.
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1 Introduction

The North Himalayan Gneiss Domes (NHGDs) are ubiquitous structures within the
Himalaya orogen belt, which, together with the N‒S trending normal faults and the Southern
Tibetan detachment systems, compose the typical postcollision extensional structures in
northern Himalaya (Zhang et al., 2012). These well-exposed middle-lower crustal rocks are
archives of the crustal thickening, metamorphism, melting, deformation, and exhumation
processes that occurred throughout the convergence of India and Eurasia (e.g., Schärer et al.,
1986; Lee et al., 2000; Lee et al., 2006; Quigley et al., 2008; Zeng et al., 2009; Gao and Zeng.,
2014). Various formation mechanisms and the geological evolution of the domes have been
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hypothesized (Le Fort et al., 1987; Chen et al., 1990; Lee et al., 2000;
Larson et al., 2010). Particular domes have been studied via limited
research methods, the evolutionary history of gneiss domes has been
intensely debated. This has also led to a lack of clarity regarding the
interconnection of Cenozoic extensional structures in southern
Tibet.

Eskola (1949) initially stated that a mantled gneiss dome was
composed of a metamorphic-plutonic complex core that was
overlain by supracrustal strata. After the discovery of extensional
detachment faults (Coney et al., 1980), a number of classic gneiss
domes (e.g., Simplonmetamorphic terrane in the Alps; gneiss domes
in the Variscan belt) have been construed as extensional
metamorphic core complexes (Mattauer et al., 1988; Mancktelow
and Pavlis., 1994; Wawrzyniec et al., 2001). The high-strain
detachment faults of gneiss dome systems usually form core-
cover contact faults, which separate the dome cores from their
overlying strata (Jessup et al., 2019). The difference in perception of
the core-cover contact fault is also reflected in a controversy over the
last few decades regarding the formation mechanisms of the typical
gneiss domes found throughout the globe, which has led to three
main mechanisms: 1) diapirism (Ramberg, 1980), 2) crustal
shortening (e.g., Brun, 2003; Ramsay, 1967), and 3) crustal
extension (e.g., Miller et al., 1992). Jessup et al. (2019) classified
the kinematic models that were derived from these mechanisms and
applied to the NHGD into three inconsistent groups: 1) diapirism
and/or buoyancy-driven models (e.g., Le Fort et al., 1987); 2)
metamorphic core complex models (e.g., Chen et al., 1990); and
3) out-of-sequence thrusting and/or folding models (Lee et al., 2000;
Larson et al., 2010). Predictably, apart from the activity of the core-
cover contact fault, which to some extent influences the exhumation
history of the dome, it is conceivable that the precise definition of the
kinematic property, activity processes, and affiliation of the dome
plays a decisive part in exploring the domes’ formation mechanism
and geotectonic evolution.

Although the gneiss core and overlying strata of the Kangmar
dome have been dated sufficiently by prior studies (Debon, 1980; Xu
and Jin, 1986; Liu et al., 2004; Wang et al., 2018), the spatiotemporal
evolution history has not been elucidated. As a distinct extensional
structure, the exhumation of the gneiss core and the timing and
intensity of the detachment fault are crucial for understanding the
doming process, which remains ambiguous. This study aims to
address the cooling histories between the southern and northern
portions of the dome through detailed geochronological
investigations and via the thermochronological dating of samples
collected along elevation transects. We apply multiple-scenario
thermokinematic modeling to clarify the evolutionary history of
the core-cover contact fault, the rock uplift, and the river incision
that occurred following the doming event to create a bridge between
dome formation and regional structural activities. Coupled with the
morphological analyses of the Nianchu River and the explanation of
the rapid cooling events, we shed additional light on how the
Kangmar dome formed and was exhumed. Our results suggest
that the hanging wall of the core-cover contact fault has an
overall northward movement, and the doming event occurred
first in its southern portion ~12.2 Ma, which was much earlier
than that in the northern portion. The second rapid cooling in
the Pleistocene was mainly due to glaciation intensified by global
cooling.

2 Geological background

2.1 Regional geological setting

The Himalayan orogenic belt was formed by the continuous
convergence of the Indian and Eurasian continents after their initial
collision during the early Cenozoic (Molnar and Tapponnier, 1975;
Yin and Harrison, 2000; Li et al., 2012; Meng et al., 2012). Crustal
shortening and extension are two deformational styles in the
Himalayan orogenic belt (Li et al., 2015), forming the thrust
structures of the Main Frontal Thrust (MFT), the Main
Boundary Thrust (MBT), and the Main Central Thrust (MCT)
from the south and the extensional South Tibetan Detachment
System (STDS) to the north. These structures divide the
Himalayan orogenic belt into four parts from south to north: the
Sub-Himalayan Sequence (SHS), the Lesser Himalayan Sequence
(LHS), the Greater Himalayan Crystalline Complex (GHC) and the
Tethyan Himalayan Sequence (THS) (Figure 1A).

The Tethys Himalayan Sequence is bounded by the Indus-
Yarlung suture zone (IYTZ) to the north and the STDS to the
south, which represent the remnants of the stratigraphic sequence
deposited along the India passive margin toward the Neotethys
Ocean (Sciunnach and Garzanti, 2012). This area is separated into
southern and northern sections by the Gyirong-Kangmar thrust
(GKT) (Ratschbacher et al., 1994). The N‒S Trending Rifts (NSTR)
(Figure 2A) and NHGD are located within these sedimentary strata
and, together with the STDS, form a typical postcollisional
extensional structure in the northern Himalayas. The NHGD is
exposed within the THS (Figure 1A). It consists of more than ten
discontinuous, subparallel latitudinal band-spreading domes,
including from west to east the Malashan, Lhagoi Kangri, Mabja,
Kampa, Kangmar, Ramba, Yardoi, and Cuonadong gneiss domes
(e.g., Zhang et al., 2004; Aikman et al., 2008; King et al., 2011; Zeng
et al., 2011; Liu et al., 2014). With an average peak elevation of over
5,000 m, the dome belt trail is consistent with the partial drainage
divide of the Yarlung Tsangpo River (Figure 1B).

Numerous previous studies on leucogranite rocks within the
NHGD have documented a series of crystallization and
emplacement ages ranging from 47 to 7 Ma (e.g., Lee et al., 2004;
Zeng et al., 2011; Gao et al., 2012; Liu et al., 2014; Ji et al., 2020; Chen
et al., 2022) and cooling ages that range from 22 to 6 Ma (e.g., Lee
et al., 2000; Lee et al., 2004; Guo et al., 2008). With deformation and
metamorphic characteristics almost identical to the GHS, it was
proposed that the NHGD domes were part of a laterally continuous
plane with the GHS at the onset of Himalayan orogenesis (Harrison
et al., 1997; Beaumont et al., 2001; Beaumont et al., 2004; Lee et al.,
2006; Ding et al., 2016), and combined with the fact that the cores of
these domes are always subducted beneath the THS, their core-cover
contact faults are therefore widely recognized as continuous parts of
the STDS (Chen et al., 1990; Hauck et al., 1998; Liu et al., 2014). The
current research consensus on elevation histories is that two major
ductile deformation events were recorded in those domes: an older
N–S shortening and vertical thickening episode and a younger N–S
extensional and vertical thinning episode, which were bracketed in
age between late Eocene-early Oligocene to middle Miocene (Chen,
1997; Lee et al., 2000; Zhang et al., 2004; Aoya et al., 2005; Aoya et al.,
2006; Quigley et al., 2006; Kawakami et al., 2007; Quigley et al.,
2008).
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Topographically, the Yarlung Tsangpo catchment and the
Ganges catchment area are bordered in southern Tibet, and their
dividing line roughly coincides with the NHGD uplift belt
(Figure 1B), to the south of which most of the rivers drain
southward into the Ganges, except the Nianchu River. As one of
the largest tributaries of the Yarlung Tsangpo, the Nianchu River
originates from the Greater Himalaya (Chongbayong Co., 28.22°N,
89.64°E, 4,575 m above sea level) and drains the THS with a total
length of 190 km (Figure 2A). The Kangmar dome is deeply incised
by the Nianchu River, which preserves the high-steepness of the
stream-valley landscape.

2.2 Geology of the Kangmar dome

The Kangmar dome (Figure 3A), located in the eastern segment
of the NHGD, contains a gneiss core that is mantled by Precambrian
basement metasedimentary rocks and overlain by the low-grade
metamorphic to non-metamorphic THS. The core-cover contact
fault is fully exposed in the stream valley formed by the Nianchu
River and is characterized as a low-angle ductile shear belt
(Figure 3A). Above the contact is the hanging wall unit, which is
composed of Ordovician to Cretaceous rocks that range from
metamorphosed schist rocks at the base to unmetamorphosed
sedimentary rocks at the top. Apart from the valley landscape,
there are several glacial relics represented by glacial valleys
(Figure 3B), resulting in the intermittent presence of tributaries
of the Nianchu River.

Additional U‒Pb dating of the gneiss core has revealed
crystallization ages of 520–478 Ma (Schärer et al., 1986; Lee

et al., 2000; Xia et al., 2008; Gao et al., 2019). A combination
of 40Ar/39Ar thermochronology ages obtained from the core or
from the ductile shear belt has shown two phases of cooling for
the Kangmar dome at ~20 and ~13 Ma (Chen., 1979; Lee et al.,
2000; Liu et al., 2004; Wang et al., 2015). These cooling ages were
interpreted as partial thermal events or responses to fault activity.
There is a general trend of younger values from south to north
(Figure 3C).

3 Approach and methods

3.1 Geological mapping and sample
processing

The outcropping of strata in the Kangmar dome and adjacent
regions resulted in widespread exposure of typical internal
structures, which are ideal features to explore the deformation
characteristics of the dome. The geological mapping of the
Kangmar dome includes measurements of stretching lineations
preserved within the gneiss core and observations of the complex
deformation structures within the core-cover contact fault shear
zone and cover strata. Compared to the abundant
thermochronology results from samples distributed from the
incoming horizontal elevation (e.g., Chen., 1979; Lee et al.,
2000; Liu et al., 2016; Wang et al., 2015), there are few data
points from the age-elevation transects that could be used to
calculate exhumation rates, assuming temporally and spatially
invariant horizontal isotherms (Wagner and Reimer, 1972). To
understand the evolution history, we collected samples from two

FIGURE 1
(A) Simplified geologic map of the Himalayan orogenic belt, southern Tibet, showing locations of the North Himalayan Gneiss Dome (modified after
Wang et al., 2022). (B) Simplified geologic map of the Yarlung Tsangpo catchment, showing the relative locations of the NGHD, Nianchu River and Yalung
Tsangpo River. MBT, Main Boundary thrust; MCT, Main Central thrust; MFT, Main Frontal thrust; STDS, South Tibetan detachment system; IYSZ, Indus-
Yarlung suture zone; THS, Tethys Himalaya Sequence; GHS, Grater Himalaya sequence; LHS, lesser Himalaya sequence; SH, sub-Himalaya; NHGD,
North Himalayan Gneiss Dome.
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subvertical transects along two ridges on the gneiss core, located
in the northern and southern portions of the dome (Figure 3A).
The two transects were sampled over a relief of ~720 m (southern

transect) and ~860 m (northern transect) along the ranges and
both within a limited horizontal distance. The rocks sampled are
all gneiss with a sampling interval of ~100 m.

FIGURE 2
(A) Regional channel steepness in parts of the Nianchu catchment. See Figure 1 for location. Two black boxesmark the locations of the Kangmar and
Ramba domes. The dark red framesmark the regional segments of the Yadong-Gulu rift. (B) Swath profile [corresponding to the purple rectangular box in
(A)] along the Nianchu River, showing the undulating topography along the Nianchu River.
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3.2 Low-temperature thermochronology

Low-temperature thermochronometry is a technique that
reconstructs the thermal evolution of the upper crust (<5 km)
(Wagner and Van den Haute, 2012) for examining the cooling

history of footwall samples exhumed via normal fault exhumation
mechanisms that include time-varying rock uplift and landscape
evolution (Reiners and Shuster, 2009; Ault et al., 2019). We use
apatite fission track (AFT), zircon (U-Th)/He (ZHe) and zircon
fission track (ZFT) dating for this study, which covers a large scale of

FIGURE 3
(A) Simplified geologic map of the Kangmar gneiss dome. (B) Satellite image of the Kangmar dome area, marking the glacial remains represented by
the ice erosion valley. (C) Composite structure-age diagram of the Kangmar dome. The locations of cross-section lines are shown in (A), and ages are
cited from Lee et al. (2000) and show an increasing trend from south to north.
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annealing and retention and ranges from ambient temperatures to
~190°C (Reiners, 2005; Ketcham et al., 2007; Tamer and Ketcham,
2020). Here, we present 14 AFT, 6 ZHe, and 5 ZFT samples
(Table 1).

AFT and ZFT analyses for the two transects were performed at
Apatite Technology Co., Ltd., whereas ZHe analyses were performed
at The University of Melbourne. Details of the experimental
procedure are in Supplementary Text S1.

3.3 Morphometry analysis of the Nianchu
River

The morphological study of the rivers in the region is also
included in our work, as we assume that a precise sequencing of
fluvial formation and tectonic activity are essential prerequisites for
a rational exploration of cooling history. The bedrock channel
response to differential rock uplift could be measured by the
channel-steepness index ksn (Whipple and Tucker, 1999; Kirby
et al., 2003), which is based on the power-law relationship: S =
ksA

−θ (S: local channel slope; A: contributing drainage area; θ:
concavity index; Flint, 1974). We adopted the principle to
measure the local channel slope (S) for the change in upstream
drainage area (A) along the length of the channel profiles and then
calculated a normalized channel steepness (ksn) using a fixed
reference concavity θ = 0.45, as shown by Liang et al. (2020).
Channel steepness values are color coded for the river channels
shown in Figure 2A to highlight the changes in channel morphology
along with their channel profiles. A high-relief landscape area was
also defined that encompassed the region in which the main channel

or tributaries of the Nianchu River had relatively high Ksn values.
The distribution of N‒S trending Yadong-Gulu rifts was also
superimposed to visually represent the possible response of the
river to fault activity.

4 Results

4.1 Deformation characteristics of the dome

The gneiss core contains a well-developed stretching lineation,
which is defined by aligned biotites and weakly flattened quartz
grains (Figure 4B). Measurements of stretching lineations were
spread over the entire gneiss core and resulted in an
approximately N‒S treading (Figure 3A). Meanwhile,
mesostructures observed within the ductile shear belt of the core-
cover-contact fault show a nearly identical kinematic stress direction
of N‒S (Figure 4E). The kinematic stress structures observed over
the contact began to exhibit an additional progressively more
pronounced E‒W extension, composed of K-feldspar
porphyroblasts to S-C fabric (Figures 4C, D), which indicates E‒
W shearing in direction and magnitude with the gneiss core. The
lower Permian slate layer (Figure 5A), located in the southern
position of the covering low-grade metamorphic rock, retains
large-scale shear-type boudinage structures (Figure 5B),
indicating vertical thinning due to top-to-the-N shearing. The
kink band (Figure 5C) superposed on preexisting asymmetrical
folds also shows top-to-the-N shearing.

The circular shape indicating the exposed core-cover contact
fault was recognized as a normal fault on both the southern and

TABLE 1 Summary of new AFT, ZHe, and ZFT data reported in this study.

Sample no. Ele. (m) Lat. (N°) Long. (E°) AFT age (Ma) (±1σ) MTL (μm)/N ZHe age (Ma) (±1σ) ZFT age (Ma) (±1σ)

Southern transect

D0812 5,100 28.6416 89.6688 5.9 ± 0.9 10.98/5 9.2 ± 0.5 15.0 ± 0.7

D0813 5,000 28.6439 89.6653 5.4 ± 0.9

D0814 4,900 28.6461 89.6631 4.3 ± 0.7

D0815 4,800 28.6485 89.6624 3.5 ± 0.5

D0816 4,700 28.6502 89.6623 4.5 ± 0.7 9.2 ± 0.6 13.6 ± 0.6

D0817 4,620 28.6516 89.6618 2.7 ± 0.5

D0819 4,460 28.6545 89.6613 3.7 ± 0.5

D0820 4,380 28.6563 89.6614 4.6 ± 0.6 13.40/12 8.7 ± 0.6 17.3 ± 0.9

Nouthern transect

D7101 5,060 28.6650 89.6437 8.9 ± 3.9

D7103 4,860 28.6670 89.6486 5.9 ± 0.7 11.07/16 9.2 ± 0.5 14.7 ± 0.6

D7105 4,660 28.6730 89.6531 6.0 ± 0.7 12.26/40 8.9 ± 0.6 16.8 ± 0.8

D7107 4,420 28.6809 89.6577 5.8 ± 0.8 11.50/47

D7108 4,310 28.6825 89.6587 4.1 ± 0.7 11.76/50

D7109 4,200 28.6846 89.6597 2.7 ± 0.5 9.2 ± 0.5
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northern portions of the dome (Figure 6). The dip of the core-cover
contact fault differs and the southern part shows a greater
inclination (25°) than the northern portion (15°) (Figure 4A).
The cover of both dome portions is consistent in terms of
lithological succession but differs in thickness, with the southern
portion displaying significantly thicker than the northern portion.
This is especially the case in the Precambrian crystallization
basement, which shows an apparent thickness of ~620 m in the
southern portion (Figure 6A) and only ~380 m in the northern
portion (Figure 6B).

4.2 Low-temperature thermochronology
ages

The AFT ages of fourteen gneiss samples range from 2.7 ± 0.5 to
8.9 ± 3.9 Ma (Tables 1, 2). The Southern transect ages range from
2.7 to 5.9 Ma, whereas the northern transect ages range from 2.7 to
8.9 Ma (Table 2). The AFT dating of the southern transect included
eight samples, all of which passed the χ2 test, representing a single

age population (Galbraith and Laslett, 1993), which suggests that
these samples experienced full annealing for their AFT ages. The
AFT dating of the northern transect included six samples. Samples
D0701, D0707, and D0708 yield AFT ages of 8.9 ± 3.9, 5.8 ± 0.8 and
4.1 ± 0.7 Ma, respectively (Supplementary Figure S1), which did not
pass the χ2 tests, suggesting multiple age populations (Galbraith and
Laslett, 1993). The two transects both show clear age-elevation
relationships (Figures 7D, E). Six samples (D0812, D0820,
D0703, D0705, D0707, and D0708) from the two transects have
relatively consistent and short unprojected mean horizontal
confined track lengths, with negative skewness (Supplementary
Figure S1; Table 2), which range from 10.98 to 13.40 μm. This
suggests that these samples had a relatively short stay at the partial
annealing zone and represent metamorphic rocks that cooled fast as
they neared the surface (Wang et al., 2018; Bi et al., 2022).

Twenty-two single-grain ZHe dates from six samples have been
reported (Table 3). Generally, the ZHe ages offer a narrow range of
~9 Ma. For the two transects, the ages of samples are mostly
reproducible, and the plots of the ZHe ages versus grain size or
effective Uranium [(eU) = (U) + 0.235 × (Th)] content show no clear

FIGURE 4
(A) Composite diagram illustrating the three-dimensional structure of the Kangmar dome. The locations of the cross-section lines and legend are
shown in Figure 3A. (B–E): Summary of kinematic structures in different positions of the Kangmar dome.
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relationship (Supplementary Figure S2); hence, radiation damage
does not appear to influence the age distribution (Guenthner et al.,
2013).

The ZFT ages of the five gneiss samples range from 14.7 ± 0.6 to
17.3 ± 0.9 Ma (Tables 1, 4). All samples failed to pass the χ2 test
(Supplementary Figure S3), perhaps because of the poor quality of
zircons; therefore, the central zircon fission track ages were
preferred, which ranged from 13.6 ± 0.6 to 17.3 ± 0.9 Ma in the
southern transect and 14.7 ± 0.6 to 16.8 ± 0.8 Ma in the northern
transect. Neither of the two transects had enough confined track
lengths to determine their cooling modes.

All the low-temperature thermochronology ages are younger
than their corresponding zircon U‒Pb ages of 520–478 Ma (Schärer
et al., 1986; Lee et al., 2000; Xia et al., 2008; Gao et al., 2019),
suggesting that these ages were generated by monotonic cooling
after magma emplacement and crystallization (Gleadow et al., 1986).

4.3 Channel steepness index of the Nianchu
River

The morphology of the Nianchu drainage is generally
inhomogeneous, even though the channel steepness of the
Nianchu mainstream remains within a limited range for the

majority of stream segments. Its tributaries in the upper and
lower reaches have similar Ksn values of <40, which were smaller
than those in the middle reaches (40-64) within the Kangmar dome
region. Although some tributaries were not identified in our
fieldwork, these tributaries identified by GIS within the Kangmar
dome area could perhaps be regarded as intermittent rivers, and
their ksn values can also be used to characterize the steepness of the
river valley in this region. These rivers with high ksn values (>40) are
circled by the white line in Figure 2A and represent high-relief
geomorphology, which suggests that the Nianchu River has
undergone a low-relief to high-relief landscape transition during
its upper-middle reaches and trends toward a low-relief landscape in
its middle-lower reaches. The Kangmar dome is basically located in
the center of the defined high-relief landscape area.

5 Thermokinematic modeling (Pecube)

The Pecube modeling process considers landscape evolution
(topography, relief), the crustal thermal regime, tectonic setting
(fault configurations, surface uplift or subsidence) and the
isostasy to quantify thermal histories for rock particles at depth
during exhumation or burial contexts (Braun, 2003; Braun et al.,
2012). The Pecube thermokinematic program allows the testing of

FIGURE 5
(A) Structural observation within the lower Permian slate layer, (B) large-scale shear-type boudinage representing near top-to-the-N shearing and
vertical thinning, and kink band structure (C) in the structural lower level representing the northward movement of the upper strata.
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multiple tectonic scenarios and predicts the geographic distribution
of thermochronological ages for individual samples. As part of this
process, it solves the 3D heat equation in the crust and takes into
account exhumation through lateral and vertical rock kinetics, as
well as relief evolution. By reducing the misfit function between
predictions and observations, we employed Pecube v3.0 (Braun
et al., 2012) in inverse modes (neighborhood algorithm;
Sambridge, 1999a; Sambridge, 1999b) to establish optimal value
ranges for the tested parameters.

5.1 Model setup

In the Pecube modeling, geological scenarios accommodate
temporal fluctuations in vertical exhumation rates and fault slip
rates, either separately or in combination. Exhumation or
topographic changes between different phases can be defined by
different transition times (Ou et al., 2021). We defined an
“exhumation scenario” that considers exclusively vertical
exhumation rates that change geographically and temporally to
maintain the present topography over time. Our new AFT ages
are similar in age results to Lee et al. (2000) but show an opposite
increase in the trends of different ages within the same tectonic layer
(Figures 3C, 7D, E). Coupled with the difference in geological
observations and dating ages between the southern and northern

transects of the Kangmar dome, it is reasonable to propose that the
two portions have different cooling rates; therefore, we modeled the
two portions separately in the “exhumation scenario”
(Supplementary Table S2). Models were started at 20 Ma to
encompass the history recorded by most of our measured data.
We have divided the timeline into many phases to give maximum
freedom to the free parameters in the inversion. These resulting
transition times are not geologically meaningful, and those
transition times will be determined by the differences in rates
before and after the transitions. To control for variables, the two
models differed only in their age code but were similar in the area
and the ranges of the free parameters (Figure 7B). The initial
topographic elevation, which represents the elevation before
uplift, is set within a parameter space between 3,450 and
4,570 m, consistent with the highest and lowest elevations of the
current Nianchu River, and we use the results to test the rationality
of the two models. Details of the thermal and mechanical parameter
values used in the inverse models are detailed in Supplementary
Table S1.

In an additional simulation of the northern portion, we define a
“fault-exhumation scenario” as a scenario that more
comprehensively considers the activities of the fault in
consideration of our field geological investigations, which showed
that the northern and southern portions of the dome were subject to
N‒S shearing, possibly due to fault activity. The inclination of the set

FIGURE 6
Field relationships in the Kangmar dome. (A) East-looking view of the south portion, and (B) south-looking view of the north portion. Photographs
taken from the location and orientation indicated by white boxes in Figure 3 show that the strata sequence was continuous, but the distance between the
“core-cover contact” and marker-bed marble belt in the Precambrian basement was significantly different.
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fault in that model was consistent with the present day inclination,
and the remaining cooling was decoupled to the vertical direction
and was expressed by setting a subvertical fault (Figure 7C). In
contrast, the initial topographic elevation and transition times of this
scenario will adopt the best-fit parameter of the northern
“exhumation scenario” to control the number of unknowns
(Supplementary Table S2), while other parameters are the same
as the first scenario (Supplementary Table S1).

The calculation was supported by the Advanced Computing East
China Subcenter. Each inversion procedure contained
19,000 Pecube forward models, and 60 iterations, with
300 sample sizes per iteration and a 33% resampling rate, were
applied. The calculation of the misfit function is related to the
measured-predicted relationship for each sample.

5.2 Numerical thermo(-kinematic) modeling
results

The inversion results from the three models for the two
scenarios are listed in Supplementary Table S2. The two models
for the exhumation scenario have misfit values of 0.21 and 0.19,
and the fault-exhumation scenario has a misfit value of 0.18. As
mentioned before, the simulation results from the two models for
the initial topo are 4,560 and 4,539 m, respectively, which are
similar to the present day topographic elevation differences. Given
that their models are based on different parameter settings, this
similarity for the common free parameters indicates that the
model settings are logical and provides a basis for a joint
discussion of the two models (Figure 7B). The lowest-misfit
model produces an excellent fit between the predicted and

measured ages of the AFT, ZHe and ZFT thermochronometers
(Figures 7D–F), and the biotite 40Ar/39Ar ages are distributed in a
narrow range of 14–15 Ma, which is consistent with the result
reported by Lee et al. (2000). Subsequently, we recalculate the
depth-time paths generated from the temperature‒time path in
the forward model, combined with the average annual
temperature of the Earth’s surface (8°C) and the geostrophic
gradient of 30°C/km.

6 Discussion

We identified inconsistent cooling histories between the
northern and southern portions of the Kangmar dome. The
modeling directly reveals the cooling histories of the two
transects, the velocity of the fault activity and the vertical
cooling. However, the interpretation of experimental and
modeling results, coupled with geological evidence, is
premised on a discussion of the properties of the Nianchu
River since the modeled vertical cooling rates do not directly
represent the surface uplift rates. Additionally, the flexural
response to surface changes should also be considered.
However, we believe that the Nianchu River is an antecedent
stream river, which is indicated by the Ksn analysis results. Under
such a premise, the incision of the Nianchu River will always be
accompanied by surface uplift, and its rate will increase with
increasing surface uplift rate. Then, in the absence of regionally
significant climate change, we think that the obtained cooling
rates are a positive function of surface uplift or river incision.
From this, the results of the modeling scenarios can be used to
develop the following discussion.

TABLE 2 Apatite fission track results from the Kangmar dome.

Sample no. No. of
grains

Spontaneous Induced Dosimeter P (χ2) % Central age
(Ma) (±1σ)

ρs (×104 cm−2) Ns ρi (×105 cm−2) Ni ρd (×105 cm−2) Nd

D0812 40 1.47 43 4.464 1,308 9.107 6,630 88 5.9 ± 0.9

D0813 42 1.46 38 5.316 1,388 10.106 6,630 28.1 5.4 ± 0.9

D0814 42 1.01 55 4.905 2,677 11.102 6,630 11.5 4.3 ± 0.7

D0815 42 0.80 58 4.604 3,318 10.098 6,630 66.5 3.5 ± 0.5

D0816 42 0.59 46 2.111 1,632 8.113 6,630 62.4 4.5 ± 0.7

D0817 42 0.49 35 3.266 2,311 9.109 6,630 12.8 2.7 ± 0.5

D0819 42 1.26 108 6.632 5,671 10.106 6,630 17.5 3.7 ± 0.5

D0820 42 1.16 73 5.485 3,465 11.102 6,630 53.4 4.6 ± 0.6

D7101 42 0.8 31 2.429 947 12.098 6,630 0 8.9 ± 3.9

D7103 42 2.0 97 8.666 4,197 13.094 6,630 34.6 5.9 ± 0.7

D7105 42 1.46 92 6.74 4,236 14.09 6,630 41.2 6.0 ± 0.7

D7107 42 1.62 102 8.046 5,061 15.087 6,630 1.4 5.8 ± 0.8

D7108 42 0.90 79 7.115 6,271 16.083 6,630 0 4.1 ± 0.7

D7109 42 0.58 32 7.065 3,905 17.079 6,630 84.4 2.7 ± 0.5

All samples were dated using the external detector method. The AFT ages were evaluated by the RadialPlotter (Vermeesch, 2009).
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6.1 Geologic affiliation of the core-cover
contact fault

Alternatively, the “core–cover contact” fault of the Kangmar
dome was defined as follows: 1) the fault is part of a thrust duplex,
which was based on observations of tight to isoclinal folds in the
top metasedimentary carapace that converged to the south, the
reorientation of fold axes to N‒S in the lower carapace, and how
the shear strain rose with structural depth (Burg et al., 1984); 2)
the fault represents the response of a metamorphic core complex-
type detachment fault to the gravitational collapse of the
Himalayan topographic front (Chen et al., 1990); 3) the fault
is a non-conformity with no or minimal displacement (Lee et al.,
2000); or 4) the fault indicates a normal-sense (top-to-the-N)

brittle‒ductile shear zone, equivalent to the STDS (Wagner et al.,
2010).

The most remarkable result of our geological analysis is the N‒S
movement of the fault hanging wall, as reflected by stretching
lineation, which distinguishes the Kangmar dome from the
diapirism mechanisms of typical domes, such as the Yardoi dome
(Zhang et al., 2007) that is located at the easternmost end of the
NHGD. The stretching lineation of its core is oriented in a spreading
direction to the periphery and extends downward. In the inversion
result of the exhumation scenario, the southern portion of the dome
experienced its first rapid cooling before 17.7 Ma (Supplementary
Table S2; Figure 8A), and the depth contour lines based on depth‒
time paths reflect that the southern portion was uplifted earlier
before the northern portion since ~17.7 Ma and located at a

FIGURE 7
(A) Location of the two elevation transects (Refer to Figure 3A legend for details); (B) Exhumation scenario and (C) Fault-exhumation scenario setup
for the 3-D thermokinematic modeling (parameters are given in Supplementary Table S1). Measured and modeled age-elevation relationship of the
southern (D) and northern (E) transects in Exhumation scenario, (F) northern transect in Fault-exhumation scenario.
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TABLE 3 Single-grain zircon (U-Th)/He results from the Kangmar dome.

Grain no. He (ncc) Mass (mg) U (ppm) Th (ppm) Th/U Rs (μm) FT Corr. Age (Ma) Error (±1σ) Weighted
mean

(Ma ± 1σ)

eU

D0812-1 3.821 0.0058 525.8 269.3 0.51 55.2 0.77 9.1 0.6 9.2 ± 0.5 589.1

D0812-2 13.306 0.0054 1780.8 1,324.4 0.74 57.3 0.77 9.7 0.6 2092.1

D0812-3 3.946 0.0057 548.0 226.6 0.41 54.9 0.77 9.4 0.6 601.2

D0812-4 3.793 0.0051 618.4 308.7 0.50 54.7 0.77 8.8 0.5 691.0

D0816-1 10.684 0.0132 608.8 358.3 0.59 71.0 0.82 9.6 0.6 9.2 ± 0.6 693.0

D0816-2 17.165 0.0113 1,136.7 591.8 0.52 65.8 0.81 9.8 0.6 1,275.8

D0816-3 16.287 0.0104 1,352.7 495.1 0.37 67.8 0.81 8.7 0.5 1,469.0

D0820-1 8.615 0.0061 1,080.8 508.6 0.47 55.1 0.77 9.6 0.6 8.7 ± 0.6 1,200.3

D0820-2 10.892 0.0092 1,169.4 372.1 0.32 64.2 0.80 7.8 0.5 1,256.9

D0820-3 21.529 0.0093 1988.9 459.2 0.23 61.1 0.79 9.1 0.6 2096.8

D7103-1 1.389 0.0059 182.9 98.2 0.54 57.0 0.77 9.3 0.6 9.2 ± 0.5 206.0

D7103-2 13.898 0.0085 1,277.6 530.6 0.42 64.9 0.80 9.5 0.6 1,402.3

D7103-3 8.898 0.0075 965.2 429.2 0.44 61.3 0.79 9.2 0.6 1,066.1

D7103-4 3.055 0.0081 302.2 177.0 0.59 56.7 0.77 9.0 0.6 343.8

D7103-5 12.904 0.0112 912.4 449.9 0.49 67.5 0.81 9.3 0.6 1,018.2

D7105-1 16.019 0.0077 1762.0 803.7 0.46 58.8 0.78 8.8 0.5 8.9 ± 0.6 1950.9

D7105-2 22.598 0.0118 1,583.1 441.0 0.28 77.6 0.83 9.3 0.6 1,686.7

D7105-3 29.928 0.0129 2045.5 791.0 0.39 73.6 0.83 8.5 0.5 2,231.4

D7109-1 14.789 0.0104 1,197.4 233.7 0.20 65.8 0.81 9.3 0.6 9.2 ± 0.5 1,252.3

D7109-2 19.878 0.0090 1702.1 1,057.6 0.62 65.7 0.80 9.3 0.6 1950.6

D7109-3 8.246 0.0075 868.0 430.8 0.50 58.0 0.78 9.3 0.6 969.3

D7109-4 12.026 0.0137 772.9 157.0 0.20 73.7 0.83 8.9 0.6 809.8

Rs is the sphere equivalent radius of hexagonal crystal (Beucher et al., 2013); FT is the alpha-ejection correction after Farley et al. (1996); Weighted means at 95% confidence level calculated using Isoplot V3.59 (Ludwig, 1992).
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shallower depth until ~5 Ma (Figure 9). Since the activity of the fault
somehow affects the kinematic features of the gneiss core, the
significant variation in uplift histories of the two portions in such
a limited area is, we believe, related to the differential properties of
the core-cover contact fault at each side. Furthermore, the
intersection depth of the biotite 40Ar/39Ar isotherm in the
northern portion is deeper than it is in reality. In comparison,
the biotite intersection depth in the south portion is shallower
(Figure 9), suggesting that the isotherm within the south portion
has shifted upward at this stage. These differences could be
explained by the thrust-sense faulting of the hanging wall in the
south portion, which is consistent with the geological evidence that
the southern strata are thicker (Figure 6) and the present day
structures indicating top-to-the-N shearing (Figure 5). Thus, the
northward movement of the cover strata caused the first rapid
cooling in the southern portion, and this rapid cooling event
started earlier than the starting time of our simulation models at
20 Ma.

In the exhumation scenario, the first rapid cooling of the
northern portion began at ~12.2 Ma, and after the inversion of
the fault-exhumation scenario, we detailed the effects of vertical
cooling or cooling along the fault and the results show that rapid
cooling began at ~12.2 Ma and was oriented mainly along the fault
(Figure 8B). Although this timing is consistent with the 40Ar/39Ar
age of ~13.23 Ma, which was derived from the analysis of syn-
deformation muscovite from the mylonitic garnet two-mica schist
within the fault shear zone and was interpreted as the initial
detaching time of the core-cover contact fault (Wang et al.,
2015), we do not consider that this phase of rapid cooling was
controlled by fault activity, but instead, we believe that the doming
event of the north portion was the direct cause of cooling. The
doming of the gneiss core increases the dip of the fault, which leads
to the emergence of cooling velocities along the fault. According to
the forward-modeled depth isochrons (Figure 9), the northern
transect started to dramatically uplift after 12 Ma, and the
doming event first occurred in the northern portion at 12.2 Ma,
much later than it did in the south. Since the core-cover contact fault
of the Kangmar dome was a continuous interface exposed from
north to south without interruption, it is reasonable to infer that the
cover strata of the northern portion also had a consistent northward
movement history before its doming event.

Our simulations showed that the cover strata above the
Kangmar gneiss core had the same northward movement as

the STDS in the Miocene and were consistent with the
geological evidence characterized by the extensive distribution
of stress formations in both the gneiss core and cover (Figure 3A),
which revealed a N‒S movement of the cover strata. As discussed
below, considering that the onset time of the dome and its
location is coincident with the STDS, we concur with the
suggestion of Chen et al. (1990), Hauck et al. (1998), and Liu
et al. (2016) that this fault is the northern continuation of the
STDS and is an exposed portion of the Tethyan Himalayan
sedimentary sequence.

6.2 Rapid cooling history of the dome

6.2.1 Post-middle Miocene rapid cooling
In our simulations, the timing of the doming event in the

southern portion precedes that in the northern portion, and the
core of the Kangmar dome has been experiencing rapid cooling
since the Miocene and the northern portion had a higher cooling
rate from 12.2 to 9.1 Ma and a more consistent cooling rate after
9.1 Ma and before 1.8 Ma. We believe that the core-cover contact
fault of the Kangmar dome is subordinate to the STDS. The rapid
cooling of the northern portion of the Kangmar dome at ~12 Ma,
which accompanied doming during this period, was caused by
the northward sliding of the STDS. However, present day studies
suggest that the more short-lived southern STDS ended prior to
11 Ma (Dong, et al., 2021; Figure 8D). The northward movement
of the upper strata could not cause the rapid cooling of the
southern portion. Since there are many E‒W extensional
structures above the dome (e.g., Figures 4C, D), we take the
N‒S trending rift’s impact on dome cooling. Wang et al. (2022)
concluded from fault gouge studies that the Pari-Duoqingcuo
graben (Figure 2A) was active earlier than 9 Ma and that the
activity of the Yadong-Gulu Rift was consistent and continuous.
Bian et al. (2022) further inverted the thermochronological data
of the Yadong area and concluded that the onset of rifting
occurred at 12 Ma (Figure 8D), which coincides with our
modeled results for the rapid cooling of the northern portion.
It is plausible that the E‒W extension of the Yadong-Gulu Rift
may have triggered the uplift of the dome core by vertically
thinning the cover strata, thereby causing this phase of rapid
cooling. However, this explanation still needs more geological
evidence and discussion.

TABLE 4 Zircon fission track results from the Kangmar dome.

Sample no. No. of
grains

Spontaneous Induced Dosimeter P (χ2) % Central age
(Ma) (±1σ)

ρs
(×105 cm−2)

Ns ρi
(×105 cm−2)

Ni ρd
(×105 cm−2)

Nd

D0812 36 40.508 3,524 122.776 10,681 10.346 6,844 0 15.0 ± 0.7

D0816 36 28.893 2,292 91.657 7,271 9.775 6,844 0.5 13.6 ± 0.6

D0820 36 47.133 3,739 154.699 12,272 13.128 6,844 0 17.3 ± 0.9

D7103 37 39.792 3,540 149.447 13,295 12.486 6,844 0.2 14.7 ± 0.6

D7105 36 42.508 3,393 132.975 10,614 11.844 6,844 0 16.8 ± 0.8

All samples were dated using the external detector method. The ZFT ages were evaluated by the RadialPlotter (Vermeesch, 2009).
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6.2.2 Pleistocene rapid cooling
If the northward sliding of the STDS and the tectonic action

of vertical thinning of the THS due to the E‒W extension of the
Yadong-Gulu rift are plausible explanations for the Miocene
rapid cooling of the Kangmar dome, the activity in the

Yadong-Gulu Rift, which was not significantly accelerated in
the Pleistocene, would not have caused the rapid cooling event
starting after ~1.8 Ma. The extensive present day pale glacial
remains and very low modern glacial cover of the Kangmar dome
prevent us from ignoring glacial activity over the geological-

FIGURE 8
Graphical representation of the best-fit inversion result of the cooling rate from the exhumation scenario (A) and/or velocity from fault-exhumation
scenario (B); (C) the chemical index of alteration (CIA) data from Ocean Drilling Program (ODP) Hole 885A, North Pacific Ocean (Zhang., et, al. 2019), the
sea surface temperature data fromOcean Drilling Program (ODP) Hole 722 in Arabian Sea and 1021 in North Pacific Ocean (Herbert and Lawrence, 2016);
(D) Tectonic activities in the Kangmar-Yadong area, southern Tibet. Timing of the STDS (Webb et al., 2017; Dong et al., 2021) and E‒W extension
(Dong et al., 2021; Bian et al., 2022; Wang et al., 2022).
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historical period within its region. At this stage, climatic events
on the Tibetan Plateau coincided with global climatic events (Ji
et al., 2013), and sea surface temperature changes reflected in
boreholes from the North Pacific (ODP1021) and Indian Ocean
(ODP722) (Herbert and Laerence, 2016) show that the Earth’s
climate changed markedly during the Pliocene (Figure 8C), with
a general trend of variable cooling over time. According to our
simulations, the Pleistocene rapid cooling of the gneiss core is
temporally similar to this rapid global cooling of sea surface
temperature. Zhang et al. (2019) revealed the enhanced chemical
alteration in the Asian hinterlands through the changes in the
chemical index of alteration (CIA) of the core sediments from
ODP885A in the North Pacific Ocean and attributed it to the
increased surface exhumation caused by increased inland
glaciation (Figure 8C). We suggest that the enhanced glacial
activity of the Kangmar dome region in the context of this
phase of rapid global cooling during the Pleistocene may have
directly intensified surface exhumation, and at the same time, the
increase in glacial melt water further strengthened the incision of
the Nianchu River. This joint action may have caused rapid
cooling since ~1.8.

6.3 Evolution of the dome and its
implications

After the doming event occurred in the Miocene, our
modeling results revealed a northward movement along the
STDS, which differed significantly from the “gravitational

collapse” model in terms of fault movement properties.
However, Chen et al. (1990) argued that the dome developed
via mechanisms similar to the metamorphic core complexes
(MCC) in Cordilleran regions. Our fault-modeling results
agree with this fault affiliation. With an absence of essential
components, e.g., detachment systems, hanging-wall extension
faults, and basins, the mechanism based on simple linkage with
typical MCC is seemingly unreasonable.

In light of an “inverted” pattern in which the mica cooling ages
increased toward deeper structural levels and decreased northward
at the same level, Lee et al. (2000) proposed that the doming event
resulted from the thrusting of the hanging wall mid-crustal rocks
along the north-dipping Gyirong-Kangmar thrust fault (GKT)
(Figure 3C). Wang et al. (2022) modified the movement nature
of the core-cover contact and tested a mid-crustal “channel-flow”
model that solved its dynamic origin. However, the mechanism of
“thrust along the GKT” does not fit our measured age based on a
lower closure temperature that shows an increasing trend from
south to north (Figures 7D, E), nor could it adequately explain the
various slipping histories of the core-cover contact fault between
the southern and northern portions. The core-cover contact fault
around the Kangmar dome has been imaged as continuous and
high-amplitude reflection events at relatively shallow depths along
the INDEPTH seismic reflection profile (Nelson et al., 1996; Zhao
et al., 1993). Liu et al. (2006) confirmed that the dip angle of the
mid-crustal reflection formed by the Main Himalayan Thrust
(MHT) increases progressively with its northward extension
and that the MHT continues north of the Kangmar dome. The
thrust stacking above the MHT detected by the most recent

FIGURE 9
Topographic profiles, averaged equilibrium line altitudes (ELAs), and exhumation patterns (depth isochrones) along a south‒north swath across the
Kangmar dome. The swath is part of Figure 2B. The curves in the green box represent the depth‒time path of the two transects generated from their best-
fit model, note that the blue dotted line represents the isotherms (assuming that the south portion takes the B-Ar value of ~14 Ma, the north ~12 Ma),
GGD, Geothermal-Gradient Depth. The orange lines represent the depth isochrones generated from the depth‒time path.
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regional N‒S trending seismic profile (Li et al., 2021) between the
Mabja dome and Kampa dome was interpreted as the cause of the
doming event. However, the GKT was not observed at the
corresponding depth in either seismic profile, and the STDS
was identified at a depth of 3–3.5 km as a continuous interface
overlying the high-velocity body and extending northward for a
considerable distance (Figure 10D). Although the profile is located
in a rift between the Mabja dome and the Kampa dome, where the
STDS is not yet exposed, it is reasonable to assume that the crustal
morphology it reflects is intermediate in the evolution of other
domes. The “thrust stacks” at depths of 11–20 km, which are
considered to control the formation of the Mabja dome, could
also be transplanted to explain the cause of the Kangmar doming
event (Figure 10B), and with the latest sensible application of
channel flow reported by Chen et al. (2022), we further infer that
the “thrust stack” in the lower-middle crust is related to the
southward flowing channel flow.

Overall, the northward sliding of the THS related to the
detachment of the STDS since ~20 Ma resulted in the
N-S-trending stretching lineation of the gneiss core and
dominated the earlier uplift of the southern portion
(Figure 10A). Note that the incision of the Nianchu River
was always accompanied by the surface uplift of the dome.
The doming event that occurred at ~12.2 Ma was caused by
the thrust stack, which was related to the southward flowing
channel flow. Since the activities of the STDS located south of
the Kangmar dome ceased before 11 Ma, the following uplifting
of the dome might be associated with the N‒S trending Yadong-
Gulu rift and its associated persistent thinning in the upper crust
(Figure 10B), which caused the existence of E‒W extensional
structures. The Pleistocene rapid cooling was attributed to
enhanced glacial activity, and the incision of the Nianchu
River formed the present Kangmar dome landscape
(Figure 10C).

FIGURE 10
Proposed model for the evolution of the Kangmar dome. (A) Top-down-to-N sliding related to the detachment of the STDS and the southward
extrusion of the GHC; (B) doming expressed from local crustal thickening caused by stacked thrusts and the associated incision of the Nianchu River.
Note that the detachment of the STDS persisted, and the YGR became active at some approximate later time. (C) Continued fast cooling due to glacier
activity; (D) interpretation of the deep seismic reflection profile image by Li et al. (2021). R1-R5 are relatively high reflections. R1, R2, and R3 are parts
of a thrust decollement, possibly the MCT. R4 represents the consequent doming, and R5 is interpreted to be the STDS shear zone. MCT, Main Central
thrust; STDS, Southern Tibetan detachment system; THS, Tethys Himalaya Sequence; GHS, Grater Himalaya sequence; YGR, Yadong-Gulu rift.
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7 Conclusion

We present new (U-Th)/He and fission track data from two
elevation transects across the Kangmar dome. Based on geological
mapping and our new numerical modeling results, we demonstrate
distinct cooling histories within the different portions of the
Kangmar dome. We suggest that the core-cover contact fault was
the northern continuation of the STDS exposed in the THS. We
argue that the two phases of rapid cooling events during theMiocene
and the Pleistocene resulted from regional extension structures and
enhanced glacial activity, respectively. Combined with previous
studies, we proposed a new model in which the development of
the Kangmar dome was dominated by a thrust stack associated with
the southward flowing channel flow, which challenges the previous
models of southward thrusting along the GKT.
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