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In Tanzania, 71% of rice is grown in a rainfed lowland rice production ecosystem,
primarily in river basins where extremeweather events like floods are frequent. For
a six-year period (2017–2022), flood mapping was conducted using Sentinel-1
data in the Google Earth Engine (GEE) platform, utilizing change detection and
thresholding methodology. In addition to flood mapping, land use and land cover
(LULC) were also analyzed using Sentinel-2 data in GEE, employing the Random
Forest (RF) algorithm for classification. The aim was to understand the
spatiotemporal extent of floods in two study locations. The resulting flood
maps achieved an overall accuracy (OA) greater than 90% for all sites and
study years. The findings revealed that agricultural land was the predominant
land use/cover in both sub-basins, and floods were widespread in both regions.
The study highlighted the interannual variability in flood extent, both spatially and
temporally. Specifically, at the Ikwiriri site, floods were more extensive in 2020,
covering 54.95% of the cultivated area, while in 2017, the minimum flood extent
occurred, affecting 14% of the cultivated area. Similarly, at the Mngeta site,
extensive floods were observed in 2020, with floods impacting 5.53% of the
cultivated areas, while lower flood extents were observed in 2017, affecting 1.49%
of the cultivated areas. Furthermore, the study demonstrated distinct
spatiotemporal patterns of floods in both locations, with areas in proximity to
rivers and wetlands experiencing more frequent floods. The research showcased
the capabilities of the GEE cloud computation platform for flood inundation
mapping, emphasizing its potential for enhancing our understanding of rice-
producing environments. The generated flood maps can be utilized to guide the
selection of areas for trials of flood-tolerant rice varieties and the dissemination of
technologies such as flood-tolerant rice varieties, contributing to the resilience of
rice farmers in these two floodplains.
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1 Introduction

In many areas of Tanzania and Sub-Saharan Africa, rice (Oryza
sativa L.) is one of the most widely grown cereal crops (Nasrin et al.,
2015). Being the second most cultivated cereal crop in Tanzania
(Kalala et al., 2017) and a significant source of dietary energy
(United Republic of Tanzania, 2019), rainfed agriculture
continues to be a key production system (Chang’a et al., 2017).
Tanzania is facing a comparable situation to the rest of Sub-Saharan
Africa where the production of rice is inadequate to meet the needs
of the growing population (van-Oort et al., 2015). In Tanzania,
71 percent of rice is produced under a lowland rainfed ecosystem
mostly in floodplains where flooding is a common condition (Gabiri
et al., 2018). The typical rice yield in Tanzania is roughly 2.3 t ha-1 on
average, less than the country’s potential yield of 4–10 t ha-1 (Meliyo
et al., 2017). The low production can be attributed to a variety of
reasons, including biotic and abiotic stressors such as salt, drought,
and floods.

Flooding is among the major stress constraint to rice
production, especially in rainfed lowland rice production carried
out in floodplains (Mackill et al., 2012). Because of anoxic conditions
in flooded soils, direct-seeded rice succumbs to poor germination
during floods (Ismail et al., 2012). Additionally, rice crops become
submerged at the vegetative growth stage as a result of flash floods
and standing water, which limit plant cell-to-atmosphere gas
exchange, hence affecting rice plant respiration and
photosynthesis (Zhou et al., 2020). Breeding efforts have resulted
in the development of rice cultivars with improved submergence
tolerance, especially vegetative submergence conferred by the
SUB1 locus (Mackill et al., 2012). In line with breeding,
identification of vulnerable hotspots has been one of the key
mechanisms in enhancing resilience mostly by targeting research
areas and distributing tolerant varieties to farmers in the most
vulnerable locations (van-Oort et al., 2015). For example, Remote
Sensing (RS) maps were used to direct the distribution of the
submergence-tolerant variety Swarna SUB1 to locations most
likely to experience submergence stress (Mackill et al., 2012;
Koppa and Amarnath, 2021).

Traditional methods of mapping floods face several limitations;
these include the lack of adequate data, high costs, high time
consumption, and the difficulty in mapping floods at the bigger
catchment level (Dao and Liou, 2015; Ullah and Zhang, 2020). RS
provides benefits compared to traditional mapping such as lower time
consumption, lower costs, and application in data-scarce locations,
which makes it potentially useful for guiding decisions in response to
floods (Das, 2019). Thus, due to the development of RS products,
spatial-temporal monitoring of rice-growing regions is becoming
more widespread globally (Mosleh et al., 2015; Segarra et al., 2020)
and the understanding of rice-growing areas has become faster and
less expensive using optical and microwave remote sensing (Dao and
Liou, 2015). RS techniques can thus be used to investigate the
dynamics in rice-growing regions such as vegetation submergence
(Kuenzer and Knauer, 2013) even in cloud-prone regions (Torbick
et al., 2017). A number of high-resolution satellite products are
accessible to the general public and for research at no cost.
Sentinel-1 and Sentinel-2 missions, among others, offer free surface
reflectance images that are essential for tracking environmental
processes such as flooding in rice-growing regions. An alternative

is to employ Sentinel-1 Synthetic Aperture Radar (SAR), as image
acquisition is not constrained by atmospheric conditions such as
clouds which can constrain Sentinel 2 usage (Uddin et al., 2019;
Singha et al., 2020). The constellation of Sentinel-1A/B satellites and
its open data archive significantly changed the availability of data and
made C-band SAR time series with high geographical and temporal
resolution freely and publicly accessible (Clauss et al., 2018). Data
analysis of RS data has been transformed by the current explosion of
big data analysis platforms.

TheGoogle Earth Engine (GEE) platform, developed by Google in
2010, has emerged as a valuable tool for monitoring various surface
activities, including agriculture and hydrodynamics (Amani et al.,
2020). Leveraging the capabilities of GEE and high-resolution
Sentinel-1 synthetic aperture radar (SAR) data, automated and
near-real-time monitoring of rice-growing regions and associated
stresses such as floods has become feasible. Recent studies have
demonstrated the effectiveness of integrating temporal Sentinel-1
data and GEE for mapping and monitoring rice growth extent and
cropping patterns (Pandey et al., 2022). For instance, Rudiyanto et al.
(2019) successfully employed machine learning functions in GEE to
produce 10 m resolution maps over a large area (10 million ha)
encompassing rice cultivation in Indonesia and Malaysia. Similarly,
Csorba et al. (2019) utilized Sentinel-1 data to assess rice production
ecology in Rwanda by employing SAR-based phenological
parameters. These studies exemplify the valuable insights that can
be gained fromGEE and Sentinel-1 data in monitoring andmanaging
rice production. Moreover, the comprehensive evaluation of flood
inundation in the Ganga-Brahmaputra River basin has emphasized
the significance of geospatially enabled computation (GEC) and the
utilization of Sentinel-1 data for effective crop monitoring (Pandey
et al., 2022). By identifying flood-prone areas and estimating the
potential impact on agricultural land, such studies provide decision-
makers with crucial information to implement flood risk reduction
measures and undertake efficient mitigation activities.

In the lowlands of Kilombero and Lower-Rufiji River basins,
Tanzania, floods are frequent as basins receive heavy rains and water
from other catchment areas (Duvail and Hamerlynck, 2007; Kato,
2007). In the Kilombero floodplain, significant grain yield variability
under different nutrient management strategies in different
hydrological conditions indicated the interacting effects of
hydrological conditions and agronomic management on rice yield
(Kwesiga et al., 2019). However, in spite of the known high occurrence
of floods in this region, no studies have so far mapped the extent and
hotspots of floods. Therefore, we applied RS to monitor flood
occurrence in these two data-scare rice-growing areas. The aim of
this work was to map flood hotspots in the rice-growing Kilombero
and Rufiji River basin areas using publicly accessible Sentinel-1 SAR
and GEE platforms. The resulting flood hotspot maps will be a useful
decision support tool in planning for flood adaptation measures such
as the distribution of rice varieties tolerant to flood-related stresses.

2 Study area, data, and methodology

2.1 Study area

This study focused on two regions situated in two sub-basins of
Tanzania’s main river basin (Rufiji). The two research locations
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(Figure 1) Mngeta division (covering Mofu and Mbingu wards), and
Ikwiriri ward are situated in the major rice-growing areas of the
Kilombero and Lower-Rufiji sub-basins, respectively. The two sub-
basins were selected due to their rice production potential and
known history of flood episodes. Floods occurrences are frequent
in the two basins especially in March and April, when the basins
suffer prolonged rain and runoff coming from other areas bordering
the two sub-basins.

With an area of 40,420 km2, or around 23% of the Rufiji basin,
the Kilombero Valley is the largest freshwater wetland in East Africa.
Out of the mentioned area, the largest portion of the 7,967 km2

floodplain is regarded as a Ramsar site (Höllermann et al., 2021).
The Kilombero valley serves as Tanzania’s major rice basket
accounting for 9% of the country’s total rice production (Kwesiga
et al., 2019). Approximately 80% of the arable cultivated area in the
Kilombero Valley is monocropped with rice (Gebrekidan et al.,
2020).

Lower-Rufiji serves as a site of collection for water from the
other three sub-basins of the Rufiji basins, making it one of
Tanzania’s most vulnerable flood zones. Rice farming and
fishing are two of the main economic activities in the Lower-
Rufiji floodplain, where more than 150,000 people reside.
Despite having one of the greatest rivers in Africa, the Rufiji
area is among the poorest in the nation (Hamerlynck et al.,
2011). In order to adapt to the hydrological dynamics of the
basin when the rice crop fails owing to severe flooding,
smallholder rice farmers in the Lower-Rufiji floodplain

engage in recession agriculture (locally known as Mlao) and
fishing (Duvail and Hamerlynck, 2007). Extreme droughts,
which are also frequent in light of the present climate
change, are another drawback for recession agriculture in the
Lower-Rufiji floodplain.

2.2 Data

2.2.1 Sentinel-1 SAR imageries acquisition and
pre-processing

Sentinel-1A/B Synthetic Aperture Radar (SAR) C-band
(5.4 GHz) was employed in this study for flood mapping
(Table 1). Depending on whether both or just one satellite is
available, the twin satellites (Sentinel 1A and B) have a temporal
resolution of 6 or 12 days. Sentinel-1 imageries are acquired in four
modes, Strip Map (SM), Extra Wide Swath (EW), Interferometric
Wide Swath (IW), and Wave (WV), with either single or dual
polarization and have a spatial resolution of 10 m. Interferometric
Wide Swath (IW) was used in this study. IW has dual polarization
with (VV and VH) vertical transmit and vertical receive (VV) and
vertical transmit and horizontal receive (VH); in this study, VV
polarization was used for flood mapping. Sentinel-1 images were
acquired during the rice-growing season in March and April; during
this time, both sub-basins experience seasonal floods. Automatically,
pre-processed level-1 ground range detection (GRD) scenes were
used to map floods. Sentinel-1 pre-processing steps involve: (i) orbit

FIGURE 1
The location of the two study sites (Ikwiriri and Mngeta) as depicted from the Rufiji Basin.
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filling, (ii) ground range detection border noise removal, (iii)
thermal noise removal, (iv) radiometric calibration, (v) terrain
correction to account for terrain characteristics, (vi) speckle noise
removal, and (vii) conversion of backscatter intensity to decibels
(dB) through logarithmic scaling.

2.2.2 Sentinel-2 MSI imageries acquisition and
pre-processing

Sentinel-2A/B Multispectral Instrument (MSI) imageries were
used in rice mapping (Table 1). Sentinel-2 imageries are freely

provided by the European Space Agency (ESA) since 2015 with
spatial resolution ranging from 10 m to 60 m and temporal
resolution of 5 days (Segarra et al., 2020). Surface reflectance
visible bands with 10 m resolution of blue (490 nm), green
(560 nm), red (665 nm), near-infrared (842 nm), and 20 m short
wave near-infrared band (SWIR) were used in this study. Median
value composite images of the study areas were acquired during
flood season when crops were at a vegetative stage, that is, in March
and April of 2017–2022, which were used inmapping land cover and
for accuracy assessment of flood maps.

TABLE 1 Datasets used in this study.

Dataset Spatial resolution Temporal resolution Data provider

Sentinel-1A/B SAR Imagery 10 m 6–12 days https://scihub.copernicus.eu/dhus/

Sentinel-2A/B MSI Imagery 10 m—60 m 5 days https://scihub.copernicus.eu/dhus/

WWF HydroSHEDS Void-Filled DEM 3-arc second - https://www.hydrosheds.org/products

SRTM DEM 1-arc second - https://earthexplorer.usgs.gov/

Global surface water layer 30 m - https://global-surface-water.appspot.com/map

FIGURE 2
Methodology used to map floods, land cover, and flood-affected fields.
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2.2.3 Ancillary data
Shuttle Radar Topographic Mission (SRTM) Digital

Elevation Model (DEM) with 30 m spatial resolution (1 Arc
Second) was used during automatic preprocessing in range
doppler terrain correction of sentinel-1 image (Zhang et al.,
2020). WWF HydroSHEDS Void-Filled DEM was used in GEE
to mask areas with a slope greater than 5%. The global Surface
Water layer was used to mask out areas with permanent water
features during flood map processing.

2.3 Methodology

2.3.1 Flood maps processing
In order to map flooded areas for the years from 2017 to

2022, change detection and thresholding (CDAT) on the GEE
platform was utilized (Long et al., 2014). The methodology
consists of two steps: change detection between reference
images and images taken during the flood period and
thresholding to separate flooded and non-flooded pixels from

FIGURE 3
Sentinel-1 composites for the year 2020; the image covered the Ikwiriri site (indicated with red boundary). (A) The composite reference image was
taken in August and September. (B) The composite image was taken during flood season in March and April.

TABLE 2 Confusion matrix table for flood map accuracy assessment in two study areas.

2017 2018 2019 2020 2021 2022

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

Ikwiriri Flooded area 100.0 96.7 100.00 97.14 97.01 92.86 100.00 90.00 100.00 95.89 97.22 93.33

Non-flooded
area

95.90 97.20 93.75 100.00 84.85 93.33 95.89 100.00 90.00 100.00 82.14 92.00

OA 97.1 98.00 93.00 97.00 97.00 93.00

KC 93.0 95.33 83.80 92.65 92.65 82.05

Mngeta Flooded area 94.12 96.00 94.23 98.00 94.12 96.00 94.34 100.00 94.00 100.00 90.20 95.83

Non-flooded
area

95.92 94.00 97.92 94.00 95.92 94.00 100.00 94.23 100.00 94.34 96.15 90.91

OA 95.00 96.00 95.00 97.06 97.00 93.20

KC 90.00 92.00 90.00 94.12 94.00 86.40

PA, Producer Accuracy; UA, User Accuracy; OA, Overall Accuracy; KC, Kappa Coefficient.
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the difference images (Figure 2). In the case of the Kilombero and
Lower-Rufiji locations, the reference image was the median value
composite of images acquired in the dry months of August and
September. Reference images are those taken during the dry season
when there is no flooding (Clement et al., 2018). Figure 3 is an
example of two types of images using the CDAT methodology.

In change detection, the difference between the reference image
and the composite images captured during the flooding season was

computed. Changed surface conditions were highlighted in the
difference image by variations in radar responses (Clement et al.,
2018). Compared to other surfaces that are not covered by water, the
water’s low backscatter radar signals make it appear darker in SAR
images (Singha et al., 2020). As a result of the flood water’s low radar
backscatter signal and changes in surface conditions brought on by
the presence of water, there is a significant negative backscatter value
in the difference image (Pandey et al., 2022). WWF HydroSHEDS

FIGURE 4
(A) The spatiotemporal pattern of flooded areas derived from Sentinel-1 imagery, capturing the dynamic patterns within the Ikwiriri study site from
2017 to 2022. (B) The spatiotemporal pattern of flooded areas derived from Sentinel-1 imagery, capturing the dynamic patterns within the Mngeta study
site from 2017 to 2022.
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Void-Filled DEMwas used to mask areas with greater than 5% slope
in order to mask out topographic areas that are not likely to flood.
Large negative backscatter values were employed to highlight
inundated areas in the thresholding strategy, which classified the
image into flooded and non-flooded classes based on backscatter
values (Long et al., 2014). Backscatter values of −15 dB or below were
employed as a threshold for flooded areas. This threshold has been
used for locating flood signals in river floodplains in other river
basins of Africa (Kouassi et al., 2020).

Sentinel-2 images were used to determine the accuracy of
Sentinel-1 SAR-derived flood maps (McCormack et al., 2022).
Water features were extracted from multispectral Sentinel-2
imageries by computing modified normalized difference water
index (mNDWI) using green and short wave infra-red (SWIR).
The choice of Sentinel-2 as the reference map was dictated by the
temporal proximity of Sentinel-1 and 2, and reference images
were taken during the flood season (McCormack et al., 2022).
The mNDWI was chosen to extract water features due to its
ability to distinguish water features from built-up (Xu, 2006).

The flood extent map was computed from SAR and was
compared against mNDWI (Clement et al., 2018). For
validation, 500 validation points were randomly selected from
the sentinel-2-derived flood map and compared with the
sentinel-1 flood map where producer, user, and total
accuracies were computed along with Cohen’s Kappa
coefficient of agreement.

mNDWI � Green band 3( ) − SWIR band 11( )
Green band 3( ) + SWIR band 11( )

2.3.2 Land use and cover map processing
Land use and cover maps for the years 2017–2022 were

processed in GEE using Sentinel-2 MSI images. Random Forest
(RF) classifier was used to classify a composite of images captured in
March and April (Phan et al., 2020). RF is the most popular classifier
for classifying land covers and has proven to be able to handle noisy
datasets and outliers while still producing higher-accuracy
classification results (Tamiminia et al., 2020). The

TABLE 3 Confusion matrix summary for Ikwiriri LULC classification accuracy.

LULC class

2017 2018 2019 2020 2021 2022

PA UA PA UA PA UA PA UA PA UA PA UA

Bushland 81.72 90.48 80.88 90.16 82.47 82.47 72.61 83.90 82.19 87.59 72.61 81.33

Forest 90.91 76.92 91.67 52.38 100 65.38 65.38 62.50 91.67 55.02 65.38 80.95

Agriculture 95.16 95.16 93.58 89.47 95.92 95.50 94.21 95.47 92.78 91.04 94.21 90.52

Bare land 88.89 72.73 80.77 80.77 75.00 65.63 81.48 63.63 80.77 84.01 81.48 91.66

Wetland 81.48 75.86 89.47 85.00 65.71 79.31 91.30 75.86 89.47 94.44 91.30 67.74

Water 72.73 84.21 61.54 72.73 76.00 82.61 95.23 94.73 90.91 90.91 95.23 95.23

Built-up 90.01 81.82 84.62 100 66.66 85.71 88.01 86.66 83.33 100 88.00 100

OA 89.80 87.33 86.66 88.962 88.6 88.02

KC 81.15 80.88 80.78 81.619 81.93 80.1111

PA, Producers Accuracy; UA, Users Accuracy; OA, Overall Accuracy; KC, Kappa coefficient.

TABLE 4 Confusion matrix summary for Mngeta LULC classification accuracy.

Class

2017 2018 2019 2020 2021 2022

PA UA PA UA PA UA PA UA PA UA PA UA

Built-up 100 93.75 73.91 73.91 88.24 75 100 83.33 62.5 43.48 100 83.33

Bare land 95.24 83.33 70.59 77.42 81.25 61.9 88.89 57.14 50.08 61.29 88.89 57.14

Water 90.48 86.36 66.67 48.00 80.21 85.71 90.07 75.12 100 43.48 90.02 75.03

Wetland 89.66 94.55 91.54 92.97 93.59 97.33 93.94 96.88 90.77 90.77 93.94 96.88

Woodland 76.92 61.22 72.73 71.11 75.47 81.63 58.82 61.22 62.75 71.11 58.82 61.22

Forest 88.24 85.71 85.71 75.01 82.61 76.01 87.5.06 84.03 87.10 67.50 87.50 84.01

Agriculture 89.96 94.3 92.59 96.15 93.64 93.21 88.74 89.91 88.39 95.19 88.74 89.91

OA 89.6 86.8 90.2 87.6 82.8 87.6

KC 85.37 81.97 85.91 81.49 76.27 81.49

PA, Producers Accuracy; UA, Users Accuracy; OA, Overall Accuracy; KC, Kappa coefficient.
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aforementioned justifications describe why the RF classifier was
utilized in this study to classify LULC. Seven land use/land cover
(LULC) classes (forest, bushland, built-up, farmland, bare land,
wetland, and water) were generated using the RF classifier
training data based on pixel values. The accuracy assessment was
carried out by visually interpreting 500 randomly selected ground
truth points on a sentinel-2 image and comparing them to classified
LULC. Finally, user, producer, overall accuracies, and Cohen’s
Kappa coefficient were obtained from the confusion matrix.

The LULC raster data was transformed to a vector format, and
classes with similar values for agricultural land were merged in order
to determine the regions under cultivation. Flood-affected fields
were created by superimposing extracted agricultural land layer and
flood layer since the Sentinel-1 flood map and LULC map both had
10 m spatial resolution.

3 Results

3.1 Flood maps accuracy

Flood map accuracy assessment was conducted for two
locations, Ikwiriri and Mngeta, for the years 2017–2022. The
assessment aimed to evaluate the accuracy of the flood mapping

algorithm by measuring the Producer Accuracy (PA) and User
Accuracy (UA) for both flooded and non-flooded areas.
Additionally, the Overall Accuracy (OA) and Kappa Coefficient
(KC) were calculated to provide an overall assessment of the
accuracy of the flood maps (Table 2). For Ikwiriri, the results
show that the flood mapping algorithm achieved reasonably high
accuracy in identifying flooded areas. The UA values ranged from
90.00% to 97.14%, indicating that the algorithm correctly identified
a significant portion of the flooded areas. The PA values were also
high, ranging from 90.00% to 100.00%, suggesting that the algorithm
effectively avoided misclassifying non-flooded areas as flooded. The
Overall Accuracy (OA) ranged from 93.00% to 98.00%, indicating a
consistently high level of accuracy. The Kappa Coefficient (KC)
values ranged from 82.05% to 95.33%, indicating substantial
agreement between the predicted and observed flood maps. For
Mngeta, the flood mapping algorithm demonstrated consistent
accuracy in identifying flooded areas, as reflected by the PA
values ranging from 94.00% to 94.34%. The UA values were also
consistently high, ranging from 95.83% to 100.00%, indicating a low
rate of misclassification for non-flooded areas. The Overall Accuracy
(OA) ranged from 93.20% to 97.06%, suggesting a high overall
accuracy level. The Kappa Coefficient (KC) values ranged from
86.40% to 94.12%, indicating substantial agreement with
flood maps.

3.2 Flood extent and spatial-temporal
pattern

The flood extent in two study sites, Mngeta and Ikwiriri, was
analyzed over a period of 6 years (2017–2022) to assess the dynamics
of the floods. The results indicate significant variations in the flood
extent between the two sites and across different years (Figure 5). In
Ikwiriri, the flood extent showed considerable variability over the six-
year period (Figure 4A). The highest flood extent was observed in
2020, with an area of 3,114.55 ha being flooded. This was followed by
2018, which had a flood extent of 2,285.64 ha. The flood extents in
2019, 2021, and 2022 were 2,029.25 ha, 1,772.17 ha, and 1,114.26 ha,
respectively. The lowest flood extent was recorded in 2017, covering
an area of only 627.92 ha. In Mngeta, the flood extent also varied
considerably from year to year (Figure 4B). Again, the highest flood
extent was observed in 2020, with an area of 9,300.11 ha beingflooded.
This was followed by 2018, which had a flood extent of 7,585.12 ha.
The lowest flood extent was recorded in 2019, covering an area of only
2,046.76 ha. The subsequent years witnessed further fluctuations
where flooded areas in 2017, 2021, and 2022 were 4,856.66 ha,
7,972.69 ha, and 2,563.16 ha, respectively. These fluctuations in the
flooded area indicate a similar trend in extent and the dynamic nature
of flooding and considerable interannual variability in flood extent
within the study sites.

3.3 Land use and cover mapping

Classification results of the land LULC of two study areas for the
six mapped years are presented in Figures 6A, B. Computed
producer and user accuracies for the two study areas for each
LULC class are summarised in Tables 3, 4. In general, user and

TABLE 5 Land use/cover coverage of the two study sites for the six mapped
years classified using a random forest classifier.

LULC
class

2017 2018 2019 2020 2021 2022

Ikwiriri

Bushland
(ha)

2010.54 1411.54 2770.54 2049.67 2383.30 2423.32

Woodland
(ha)

3900 3289.42 1120.32 302.75 399.09 417.06

Agriculture
(ha)

2232.68 2912.68 3953.73 5551.22 5814 5838.06

Bare
land (ha)

216.99 816.99 816.99 786.09 506.54 473.38

Wetland (ha) 998 961.32 731.37 651.84 365.7 341.57

Water (ha) 699.42 610.42 599.42 586.45 451.13 425.25

Built-up (ha) 89.56 99 109 123.31 131.57 132.66

Mngeta

Built-up (ha) 287.99 291.74 292.74 317.16 325.83 338.64

Bare
land (ha)

768.74 2101.57 2899.74 1440.92 745.51 1004.74

Water (ha) 7349.24 1996.98 2060.94 1245.96 1034.88 746.44

Wetland (ha) 15518.24 17315.92 16959.9 16147.3 14607.8 13561.76

Woodland
(ha)

2298.5 4372.65 3686.88 4885.08 6716.05 6231.72

Forests (ha) 3755.92 3330.88 3168.74 2475.06 2273.43 2096.57

Agriculture
(ha)

20631.07 20999.96 21340.76 23838 24266.2 26479.83
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producer accuracies greater than 89.66% were obtained in
agriculture and wetland classes across the two study areas and
for the mapped years. The lowest user and producer accuracies
were obtained in the Mngeta site in classes, built-up, water, and
bare land. Furthermore, the overall accuracy and Kappa
coefficients generated from the confusion matrix (Tables 3, 4)
indicated that LULC had a higher overall accuracy (greater than
88%) across the two study areas for the six mapped years. The
Kappa coefficient ranged from 76.27% to 85.91% across the two
study areas and years which indicates good reliability for the
produced LULC maps.

The results section also presents the land use and land cover
(LULC) patterns of the two study areas, Ikwiriri and Mngeta, over a
period of 6 years. The dominant LULC class in both study areas was
agriculture, which exhibited a consistent increase in area over the six
mapped years (Table 5). In Ikwiriri, the agriculture class expanded from
2232.68 ha in 2017 to 5838.06 ha in 2022. Similarly, Mngeta
experienced a significant expansion of agriculture from 20631.07 ha
in 2017 to 26479.83 ha in 2022. This indicates a clear dominance of
agricultural land use in both areas. A notable change observed in the
study areas was the shrinking of the wetland areas. In Ikwiriri, the
wetland area decreased from 998 ha in 2017 to 341.57 ha in 2022.

TABLE 6 The table provides the year-wise information on flooded areas, total cultivated areas, and the percentage of flooded areas relative to the total cultivated
areas for each study site, Mngeta and Ikwiriri. The actual areas affected by floods are presented in hectares, while the percentages indicate the proportion of
flooded areas in relation to the total cultivated areas.

Study site Year Flooded areas (hectares) Total cultivated area (hectares) Percentage of flooded areas (%)

Mngeta 2017 307 20631.07 1.49

Mngeta 2018 730 20999.96 3.48

Mngeta 2019 789 21340.76 3.69

Mngeta 2020 1320 23838.01 5.53

Mngeta 2021 750 24266.2 3.09

Mngeta 2022 596 26479.83 2.25

Ikwiriri 2017 331 2232.68 14.82

Ikwiriri 2018 1599.99 2912.68 54.95

Ikwiriri 2019 1952.41 3953.73 49.36

Ikwiriri 2020 1952.41 5551.22 35.17

Ikwiriri 2021 1852 5814.00 31.86

Ikwiriri 2022 817.4 5838.06 14.00

FIGURE 5
Flood extent in the Ikwiriri and Mngeta sites for the six mapped years from 2017 to 2022.
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Similarly, Mngeta witnessed a reduction in wetland area from
15518.24 ha in 2017 to 13561.76 ha in 2022. This decline in
wetland areas highlights the potential environmental impact of
land use changes and raises concerns about the conservation
of wetland ecosystems. The analysis also revealed the presence
of other LULC classes. Bushland, bare land, water bodies, and
built-up areas were identified in both study areas; their extents also
varied across the years. The classification results were consistent
across the years, indicating the robustness of the random forest
classifier in accurately mapping the LULC patterns. Generally, the
results suggest that the land use/cover in both study sites changed
over the six mapped years, with changes in the area covered by
agriculture and bushland being the most prominent.

3.4 Flood-affected cultivated areas

This section highlights the trend of the cultivated land affected by
floods in the two study areas, Mngeta and Ikwiriri, by focusing on the
percentage of flooded areas per total cultivated area for themapped years.

InMngeta, the percentage of flooded areas varied between 1.49% in
2017 and 5.53% in 2020 (Table 6). This indicates that the extent of
flooded areas relative to the total cultivated area fluctuated over the
years (Figure 9B). The years with low flooded areas, such as 2017 and
2022, had percentages below 2.5%. Conversely, the year 2020 stands out
with a notably high percentage of 5.53%. This suggests that
2020 experienced a significant increase in flooded areas compared to
other years in Mngeta. Moving to Ikwiriri, the percentages of flooded

FIGURE 6
(A) The spatial pattern of land use/cover in the Ikwiriri site based on Sentinel-2 composite images showing the distribution of different LULC from
2017 to 2022. (B) The spatial pattern of land use/cover in the Mngeta site based on Sentinel-2 composite images showing the distribution of different
LULC from 2017 to 2022.
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areas per total cultivated areas were considerably higher compared to
Mngeta (Figure 9A). The year 2018 exhibited an exceptionally high
percentage of 54.95%, indicating that over half of the total cultivated
area was affected by floods during that year. Similarly, 2019 and
2020 had relatively high percentages of 49.36% and 35.17%,
respectively. These years can be considered periods with significant
flood impacts on cultivated land in Ikwiriri. In contrast, the years
2017 and 2022 showed relatively lower percentages of flooded areas in
Ikwiriri, with values of 14.82% and 14.00%, respectively. Although
these percentages are lower compared to the years with highly flooded
areas, they still indicate a considerable impact on agricultural land.
Trends of the cultivated areas affected by floods align with the trends
of the total areas affected by floods in the two study sites shown in
Figure 5.

4 Discussion

In the present study, we used data from Sentinel-1 to map the
extent of floods in two Sub-basins of the Rufiji Basin, Tanzania
using the GEE cloud computation platform. In the following
sections, we discuss mapping floods with open-source Sentinel-1
SAR and GEE, the land cover of the mapped areas, and the
spatiotemporal pattern of the floods in two areas over the mapped
years.

4.1 Successful flood and land cover mapping
using open-source data and GEE

Change detection and thresholding (CDAT) was employed in
this study to map floodplains at two different sites utilizing
sentinel-1 imageries. Higher accuracy of flood maps was
obtained and the results can be attributed to Sentinel-1’s
ability to differentiate water from other surface features in
classification images (Singha et al., 2020) since water has a
relatively low backscatter coefficient so that these surfaces are
clearly distinguished from other surface features (Singha et al.,
2020). Our findings show that across years and sites, the maps’
overall accuracy (OA) was higher than 93%, and their
dependability was likewise significant. Similar findings have
been reported by Long et al., 2014; Clement et al., 2018;
Singha et al., 2020, who used the CDAT method to create
flood maps with an accuracy of more than 90% using
Sentinel-1 data. Thus, we were able to confirm the
effectiveness of CDAT algorithms for flood detection and
classification using Sentinel-1 Radar images (Long et al., 2014;
Singha et al., 2020), thereby providing an effective way to map
floods in flood data-scarce regions such as the rice growing
floodplains of Kilombero and Lower-Rufiji, Tanzania.

Using the Random Forest (RF) algorithm, we successfully
generated high-accuracy land use and land cover (LULC) maps

FIGURE 7
Kilombero sub-basin typical profile. Adopted from Kato. (2007).

FIGURE 8
Lower-Rufiji sub-basin typical profile showing characteristics of the floodplain topography. Adopted from Duvail and Hamerlynck. (2007).

Frontiers in Earth Science frontiersin.org11

Michael et al. 10.3389/feart.2023.1183834

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1183834


at a 10-m spatial resolution by utilizing multitemporal aggregated
Sentinel-2 data (Figures 6A, B). Our findings align with a study by
Kusmec et al. (2021), emphasizing the effectiveness of
multitemporal image aggregation for accurate LULC mapping.
The RF algorithm’s ability to handle complex datasets and
capture nonlinear relationships, coupled with its ensemble
learning approach and feature importance analysis, contributes to
the robust and reliable classification of results (Zhang et al., 2022).
The accurate LULC maps produced through this approach have

significant importance for environmental monitoring and
facilitating informed decision-making.

4.2 Changes in land use and cover in study
sites from 2017–2022

Generally, the two study areas are dominated by agricultural
fields, which account for more than 49% of the total area of the

FIGURE 9
(A) The spatiotemporal pattern of floods affecting agricultural fields covering the Ikwiriri site for six mapped years (2017 to 2022). (B) The
spatiotemporal pattern of floods affecting agricultural fields covering the Mngeta site for six mapped years (2017 to 2022).
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study sites for the six mapped years. An expansion of the
cultivated areas (Table 6) was observed, which could be
attributed to rainfall anomalies across the six mapped years
and the increased demand for rice. Zaveri et al. (2020) found
that rainfall anomaly is one of the significant causes of cropland
expansion in developing countries. Wetland was also a key land
cover, and they were observed to be shrinking from the year
2017–2022. The shrinking of the total areas covered by wetlands
and water bodies can be attributed to the declining amount of
water due to the decline in total rainfall at the two sites from the
year 2017–2022. According to Leemhuis et al. (2017), rice
plantations have gradually replaced wetland habitats in the
Kilombero Valley, resulting in a loss of 60.15% in the wetland
area of the Kilombero Valley (from 5,436 km2 in 1990 to
2166 km2 in 2016). However, a larger time span than 6 years
would be preferable for analyzing further land use changes in our
two study areas.

4.3 Spatial-temporal pattern of floods and
affected fields

The analysis of interannual variability in flooded areas
revealed that flood occurrences in the two sub-basins are
dynamic, indicating a fluctuating pattern. It was observed
that areas that experience floods in 1 year may face water
shortages in other years, highlighting the temporal variability
of flood events. These findings are consistent with previous
studies conducted by Duvail and Hamerlynck. (2007) and
Gabiri et al. (2018), which also reported the hydrodynamic
extremes within the two sub-basins. Figures 4A, B further
demonstrate the spatial pattern of floods, showing
concentration along the river and near wetland areas. In the
Kilombero basin, where the Mngeta division is located, floods
have been attributed to factors such as overflowing rivers and
streams, shallow groundwater leading to quick soil saturation
during prolonged rainy seasons, and lateral water flow from
mountainous regions (Gabiri et al., 2018). Extensive
discussions have taken place regarding the impact of basin
morphology on flood events in the Kilombero basin and
Lower-Rufiji, as documented by Kato. (2007) and Duvail and
Hamerlynck. (2007). The basin morphology of Kilombero and
Lower-Rufiji, which are the specific locations of our study, is
illustrated in Figures 7, 8. These figures demonstrate that flood-
prone areas, as indicated by the identified flood hotspots and
corresponding results, are closely connected to the river and
water areas such as wetlands. This correlation is evident in the
observed flood patterns depicted in Figures 9A, B. Similarly,
floods in the Lower Rufiji, where the Ikwiriri ward is situated, are
primarily caused by the overflow of the Rufiji River due to rainfall
and floods in the upstream sub-basins, including the Kilombero
sub-basin.

According to our findings, In Mngeta, there is an expansion
of cultivated areas and continuous shrinking in the wetland area;
this is also evident in other studies (Leemhuis et al., 2017). As
rice fields expand close to or into the wetland areas, more of the
fields succumb to submergence stress caused by seasonal floods.
Kwesiga et al. (2019) also found that rice yield gaps depend on

the hydrological position of the farms in the Kilombero basin. Up
to 38% of the total yield gap has been linked to adverse hydrology
at the Kilombero floodplain’s central position (areas closer to the
water bodies such as rivers and wetlands. This yield gap was
influenced by the depth and length of the flood water, especially
when rice was at its early reproductive growth stage, which is
vulnerable to submergence (Kwesiga et al., 2019). In Ikwiriri,
affected fields are along the Rufiji River and the pattern is similar
across years (Figures 7A, B). During extreme floods, especially
when floods are not synchronized with rainfall, rice farmers near
the Rufiji River suffer greater crop losses (Duvail and
Hamerlynck, 2007).

The significance of our study lies in its contribution toward
enhancing the understanding of hydrodynamics in two specific
target areas. Through our research, we have demonstrated the
valuable role that remote sensing plays in monitoring flooding
within a region that lacks sufficient data on rice cultivation. By
harnessing the power of remote sensing technology, we have
unveiled the potential for using it as a useful tool in flood
monitoring within data-scarce rice-growing regions. One of
the key implications of our findings is the identification of
effective mitigation strategies, which are made possible
through the mapping techniques employed. Our study has
shed light on the geographical patterns and dynamics
associated with the spatial extent of lands affected by floods,
both agricultural and non-agricultural. By generating detailed
maps, we have provided valuable insights that can guide decision-
making processes related to flood mitigation efforts.
Furthermore, the maps generated through our study have the
potential to inform and guide various applications, including rice
breeding initiatives. With access to accurate flood-related data
and insights into the areas impacted by floods, our research
facilitates informed decision-making regarding the selection of
locations for variety testing and distribution as part of rice
breeding programs. This enables researchers and stakeholders
in the agricultural sector to optimize their efforts in developing
resilient rice varieties that are better suited for flood-prone
regions.

5 Conclusion

The findings of this study show that remote sensing
technologies can provide fast information about the extent of
floods in river valleys. Open-source Sentinel-1 SAR data was
used to map flooding and land use in two target regions.
According to our analysis of Sentinel-1 SAR, both study sites
experienced floods, but the extent varied across years and space.
Additionally, a distinct geographical pattern of flooding was
observed in two locations across a number of years, with
submergence-prone areas being spatially positioned along
similar rivers and wetlands. Our findings indicate how open-
source Sentinel-1 SAR data has the potential for developing
flood inundation maps with high accuracy and high spatial
resolution even under the prevalence of severe cloud cover
during flooding periods. The Change Detection and
Thresholding Technique used in this study to map floods
with Sentinel-1 and land use/cover with Sentinel-2 was
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relatively simple and was based on publicly available data. We
find the method applicable for other data-scarce region locations
where flood gauging stations are rare. Additionally, the cloud
computation platform (GEE platform) offered a valuable area
for computing large amounts of remote sensing data without
heavily relying on the processing speed and storage capacity of
the user’s computer. In order to increase rice farmers’ resilience
to extreme weather events in the face of climate change, the
identified flood-prone areas can be a useful tool and foundation
for management decisions, such as setting up multi-
environmental trials for flood-tolerant varieties and directing
the dissemination of tolerant varieties.
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